
PSPDiC(9): Strings

Cory L. Strope



Chapter 9

9.1 String Basics

9.2 String Library Functions: Assignment and Substrings

9.3 Longer Strings: Concatenation and Whole-Line Input

9.4 String Comparison

9.5 Arrays of Pointers

9.6 Character Operations

9.7 String-to-Number and Number-to-String Conversion

9.9 Common Programming Errors



Strings

• In using arrays, we have seen limited use of character data.
• Using characters, we mostly deal with a grouping of characters,
• Groups of characters in C are called a string.

• C implements the string data structure using arrays of type
char,

• Strings are important in computer science because many
computer applications are concerned with the manipulation of
textual data rather than numerical data.



String Basic

• We have already used string constants extensively in our
earlier work.

• Calls to scanf or printf used a string constant as the first
argument.

• printf(−→"Average = %.2f"←−, avg)
• "Average = %.2f" is a string of 14 characters

• We can also use a #define INSUFF DATA "Insufficient
Data"

• "Insufficient Data" is a string and can be printed with a
%s.



Declaring and Initializing String Variables

• Declaring a string variable is the same as declaring an array of
type char.

• char string var[30];
• the variable string var will hold strings anywhere from 0 to

29 characters long.

• Strings differ from other data structures in the way C handles
them.

• char str[20] = "Initial value";



Declaring Cont.

char str[20] = "Initial value";

The above will produce the following in memory:

[0] [4] [9] [14]

I n i t i a l v a l u e \0 ? ... ?

• The \0 is the null character, which marks the end of the
string.

• C needs this to be present in every string in order to properly
print the string.

• Thus, in the above declaration, str can only hold 19

characters since we need one spot for the null character.



Arrays of Strings

• Because one string is an array of characters, an array of
strings is a two-dimensional array of characters in which each

row is one string.

• The following are statements to declare an array to store up
to 30 names, each of which is less than 25 characters long:

#define NUM_PEOPLE 30

#define NAME_LEN 25

char names[NUM_PEOPLE][NAME_LEN];

• We can initialize an array of strings at declaration in the

following manner:

char month[12][10] = {"January", "February",

"March","April", "May", "June", "July", "August",

"September","October", "November", "December"};



Input/Output with printf and scanf

• Both printf and scanf can handle string arguments as long

as the placeholder %s is used in the format string:

• printf("Topic: %s\n", string var);

• Functions that take string arguments depend on finding a null
character to mark the end of the string.

• If printf were passed a character array that contained no
’\0’, the function would first interpret the contents of each
array element as a character and display it.

• Then printf would continue to display as characters the
content of memory locations following the array argument until
it encountered a null character or until it attempted to access
a memory cell that was not assigned to the program, causing a
run-time error.



Input/Output Cont.

• We can justify strings either on the left side or the right:
• Default is left justification. %-4s sets a 4 space buffer for the

words.
• To right justify, we type %3s. This will right justify all strings

that have a null character at or before their third element.
• scanf takes string input in a manner similar to numeric input.

• scanf skips leading whitespace characters such as blanks,
newlines, and tabs.

• Starting with the first non-whitespace character, scanf copies
the characters it encounters into successive memory cells of its
character array argument.

• When a whitespace character is reached, scanning stops, and
scanf places the null character at the end of the string in its
array argument.

• scanf("%s", string var);

• Notice that there is no &, this is because arrays point to
memory locations already and there is no use for &.



String Library Functions: Assignment and Substrings

• So far, we have used the assignment operator “=” to copy
data into a variable.

• We use the assignment symbol in a declaration of a string
variable for initialization, but this is the only context that is
valid.

• This is because arrays point to the first memory location an
not the value.

• C provides functions to work with strings, located in the
string.h file.

• Now we to do a #include <string.h> at the top of the
program.

• Table 9.1 on page 441 summarizes which functions are
provided.



String Assignment

• Function strcpy(char *str1, char *str2) copies str2
into str1.

• EX: To copy "Test String" into variable one str:
strcpy(one str, "Test String");

• Like a call to scanf with a %s placeholder, a call to strcpy()

can overflow the space allocated for the destination variable.
• If one str was declared as the following:
char one str[20];

and we performed the following function:
strcpy(one str, "A very long test string");

The final characters ’i’, ’n’, ’g’, and ’\0’ would be overwritten.



Selected String Library Functions

• strcat(src,dest): Appends dest onto src.
• if src[20] = "Source ", dest[] = "dest", and
strcat(src,dest);, then:
printf("%s\n", src) ⇒ Source dest.

• strcmp(s1,s2): Compares s1 and s2 alphabetically.
• if s1 < s2 ⇒ return negative value.
• if s1 > s2 ⇒ return positive value.
• if s1 == s2 ⇒ return 0.

• strlen(str): Returns the number of characters in str.
• strlen("What"); ⇒ 4.



String Assignment

• C provides another copying function called strncpy().

• This copies n values of the second value to the destination.
strncpy(one str, "Test String", 4);

• This copies 4 characters of "Test String" into the variable
one str.

• If the first n characters does not contain the null character,
then it is not copied into one str

• You must add one str[n] = ’\0’;, otherwise you will
overrun the array.

• If n is longer than the second string, then the last character or
null string is copied over and over until we get up to n.
strncpy(one str, "Test", 8);

• This means one str contains "Test", but this is not eight
characters to the null character will be copied three times into
one str,

• Thus one str contains:
"Test\0\0\0\0".



Substrings

• We frequently need to reference a substring of a longer
character string.

• We might want to examine the “Cl” in the string “NaCl”.
• strncpy can be used to extract the first n characters of a

string.
• The working of strncpy will give us insight into how we could

also use this function to copy a middle or an ending portion of
a string.
strncpy(one str, &sl[2], 2);

• This goes to the first spot in the array and gets the memory
location, and then strncpy copies 2 elements starting at this
new memory location1.

• To extract the end of this string we can do the follow:
strcpy(one str, &sl[2]);

1Note that we are copying only the ”Cl” portion of the string. May need to

manually add the null character.



Longer Strings: Concatenation and Whole-Line Input

• strcat and strncat:
• Concatenation is taking two strings and then puts them into

one string.

• strcat takes two strings as arguments.
• The second string is appended to the end of the first string.
• Thus if one var = "Cory " and two var = "Strope", then
strcat(one var, two var); would make one var = "Cory

Strope"
• Make sure that one var has enough space to accomodate

both strings, or else this command will overflow the
boundaries, and overwrite other data.

• strncat does the same as strcat, but it only copies n
characters from the second string,

• strncat(one var,two var,3); would make one var =

"Cory Str".
• Null character might not be added, so you may have to do this

manually Remember to use strlen to make sure you know the
size of the string and you don’t have overflow.



Longer Strings

The two most important questions dealing with strings are the

following:
(1) Is there enough room to perform the given operation?
(2) Does the created string end in ’\0’?



Distinction Between Characters and Strings

• When using strcat, one may be tempted to supply a single
character as one of the two strings.

• A type char value is not a valid argument for a function with
a parameter of type char *.

• In order to concatenate a single character, you must use "a"

and not ’a’.



Scanning a Full Line

• The scanf only gets non-whitespace characters

• Sometimes it is necessary to get the whitespace characters.
Thus in the stdio library there is a function gets and fgets.
char read line[80];

gets(read line);

• The first line declares a string of size 80, and the second will
get 80 characters from the user.

• If the user enters more than 80 characters we will get an
overflow.

• fgets is similar, but it takes three arguments.
char read line[80];

fgets(file name,read line,size);



String Comparison

• In earlier chapters we learned learned relational and equality
operators such as: =, !=, <, >, <=, and >=.

• We can not use these for strings, since they are an array of
characters.

• If we try to refer to a string without the subscript we are
actually referring to the memory location, so string 1 <

string 2, would compare the memory locations.



String Comparison

• Because we can not use =, ! =, <,>,<=, >=. C provides us
a function called strcmp and strncmp.

• strcmp(string 1,string 2); compares string 1 to
string 2.

• It gives a negative number if string 1 is less than string 2,
• It gives a zero if they are equal, and
• It gives a positive number if string 1 is larger than string 2.

• strncmp(string 1,string 2,n); compares the first n
characters of string 1 and string 2.

• It returns the same results as strcmp.



Comparison and Swapping

We can perform a sorting algorithm to a list of strings:

for(i=0; i<num_string; i++){

for(j=i; i<num_string; j++)

if (strcmp(list[i], list[j]) < 0)

Swap(list[i],list[j]);

}

What would Swap look like?



Comparison and Swapping

Swapping two strings:

strcpy(tmp, list[index_of_min]);

strcpy(list[index_of_min], list[fill]);

strcpy(list[fill], tmp);



Arrays of String Constants

We can use the idea of 2-dimensional arrays to store a list of
names.

char names[98][20]; The first represents how many names we will
have, the second tells us how long each name can be.

strcpy(names[0], ”Cory Strope”); This would put the string ”Cory
Strope” in the first spot of names.



Character Operations

• We can put #include <ctype.h> at the top of our

program to access more functions that operate on characters.

• scanf("%c", &ch); vs. ch = getchar();

• Both get a character;
• getchar(); returns an integer; the EOF has no character

associated with it.

• fscanf(inp, "%c", &ch); vs. ch = getc(inp);

• Get characters to file. Similar to scanf and getchar.

• printf("%c", ch); vs. putchar(ch);
• Outputs a character to the screen.

• fprintf(outp, "%c", ch); vs. putc(ch, outp);



Character Analysis and Conversion

• isalpha(ch); checks to see if the variable ch is a letter of

the alphabet

• isdigit(ch); checks to see if the variable ch is holding a
digit

• returns 0 for no
• returns a positive integer for yes

• islower(ch); checks to see if ch is holding a lowercase
character (toupper)

• isupper(ch); other way ’round. (tolower)

• ispunct(ch); ch holding a punctuation?

• isspace(ch); ch holding a space?



String-to-Number and Number-to-String Conversions

• sprintf takes numbers, doubles, characters, and strings and
concatenates them into one large string.

• sprintf(string 1, "%d integer %c - %s", int val,

char val, string 2);

•

• If int val = 42, char val = ‘a’, and string 2 = "Cory

Strope"

• then string 1 would be "42 integer a - Cory Strope".

• sscanf takes a string and parses it into integer, doubles,
characters, and strings.

• sscanf(" 42 3.141592 Cory Strope", "%d %lf %s %s",

&num, &pi, &string 1, &string 2);

• num = 42, pi = 3.141592, string 1 = "Cory", and
string 2 = "Strope".



Common Programming Errors

• We usually use functions to compute some value and use the
return to send that value back to the main function. However
functions are not allowed to return strings, so we must use

what we learned about input/output parameters.

• Know when to use & and when not to use them, don’t use

them for whole arrays, but use them for int, char, and
double.

• Be careful not to overflow strings.

• Most importantly make sure that there is always a ’\0’ at

the end of your strings.


