
Problem Solving and Program Design -
Chapter 7

Cory L. Strope



Chapter 7

7.1 Representation and conversion of numeric types

7.2 Representation and conversion of type char

7.3 Enumerated Types

7.5 Common Programming Errors



We have used three standard data types: int, double, and char.

• Type int values are used in C to represent both the numeric
concept of an integer and the logical concepts true and

false.

• Standard types and user-defined enumerated types are simple,
or scalar, data types because only a single value can be

stored in a variable of each type.



Representation and Conversion of Numeric Types

• Differences Between Numeric Types

• Numerical Inaccuracies

• Automatic Conversion of Data Types

• Explicit Conversion of Data Types



Differences Between Numeric Types

Uses of different data types:

• Data type double can be used for all numbers.

• But:
• Operations involving integers are faster than double
• Less storage space is needed to store type int values.
• operations with integers are always precise, whereas some loss

of accuracy can occur when dealing with type double

numbers.

• These differences result from the way numbers are represented
in the computer’s memory.



All data are represented in memory as binary strings, strings of 0s
and 1s.

• The binary string stored for type in value 13 is not the same
as the binary string stored for 13.0.

• Positive integers are represented by standard binary numbers,

13 = 01101.
• The format of type double, or floating-point, values is

analogous to scientific notation −→ i.e. 3.141592× 100 is PI.
• Similarly, for double values, the storage area occupied by the

number is divided into two sections: the mantissa and the
exponent.

• The mantissa is a binary fraction between .5 and 1.0 for
positive numbers and between -0.5 and -1.0 for negative
numbers.

• The exponent is an integer.

• The mantissa and exponent are chosen so that:

real number = mantissa× 2exponent

• Because of the finite size of memory cell, not all real numbers
in the range allowed can be represented precisely as type



Size of int/double

Type Range in ANSI standards

short -32,767 ... 32,767

unsigned short 0 ... 65,535
int -32,767 ... 32,767
unsigned int 0 ... 65,535

long int -2,147,483,647 ... 2,147,483,647
unsigned long int 0 ... 4,294,967,295

Type Approximate Range

float 10−37 ... 1038

double 10−307 ... 10308

long double 10−4931 ... 104932



Numerical Inaccuracies

One of the problems in processing data of type double is that
sometimes an error occurs in representing real numbers.

• Representation error: Just as some fractions cannot be
represented in the decimal number system (e.g., 1/3 is
0.3333...), some fractions cannot be represented exactly as
binary numbers in the type double format.

• Sometimes called round-off error

• This depends on the number of binary digits used in the
mantissa. More bits −→ smaller error.

• Because of this kind of error, an equality comparison of two
type double values can lead to surprising results.

• for(i=0.0; i != 10.0; i+=0.1) ...



Inaccuracies cont’d...

• Problems can occur when manipulating very large and very
small real numbers.

• Cancellation error Adding a small number to a large number,
the larger number may “cancel out” the smaller number.

• If x is much larger than y , the x + y may have the same value
as x (for example, 1000.0 + 0.0000001234 is equal to 1000.0
on some computers).

• Arithmetic underflow: Multiplying small numbers may cause
the result to be too small to be represented accurately, so it
will be represented as zero.

• Arithmetic overflow: Use your imagination for this one.



Automatic Conversion of Data Types

In Chapter 2, we saw several cases in which data of one numeric
type were automatically converted to another numeric type.

int k = 5, m = 4, n;

double x = 1.5, y = 2.1, z;

k + x, conversion is done before + since x is of type double

z = k / m, conversion is done after / since k and m are both

of type int, thus we get 1

n = x * y, we compute x * y to get 3.15 and then converted

to type int and 3 is stored in n



Explicit Conversion of Data Types

• In addition to automatic conversions, C also provides an
explicit type conversion operation called a cast.

z = (double)k/(double)m;

• The value to be converted causes the value to change to
double data format before it is used in the computation.

• Casting is a very high precedence operation, so it is performed
before the division.

• (double)(k/m) will do k/m first: The highest precedence
operator is always the parentheses.



Representation and Conversion of Type char

• The data type char allows us to store and manipulate
individual characters

• Variables of type char have been used to store type char

constants consisting of a single character enclosed in
apostrophes.

• How does C compute ’A’ < ’Z’?
• Each character has its own unique numeric code, the binary

form of this code is stored in a memory cell that has a
character value, see Appendix A for ASCII, EBCDIC, and CDC
formats.

• Thus ’A’ equals 65, ’Z’ equals 90, and ’|’ equals 108, thus ’A’
< ’Z’ is true and ’A’ < ’|’ is also true.



Enumerated Types

• Good solutions to many programming problems require new
data types.

• In a calendar program you might need to distinguish between
the different months: january, february, march, april, may,
june, july, august, september, october, november, december.

• C allows you to associate a numeric code with each category
by creating an enumerated type that has its own list of

meaningful values.

typedef enum {

january, february, march, april, may,

june, july, august, september, october,

november, december} month_t;

month_t month;



Enumerated Types

• Defining type month as shown causes the enumeration

constant january to be represented as the integer 0, constant

february to be represented as integer 1, and so on.

• Variable month and the twelve enumeration constants can be
manipulated just as one would handle any other integers.

month = january;

month++;

if (month == february)

printf("True");

else

printf("False");

month = month + 100000;\\



Common Programming Errors

• Predicting and hand-checking the results of every program is
especially important because of the way C represents the
various data types.

• Arithmetic underflow and overflow resulting from a poor choice
of variable type are common causes of erroneous results.

• Programs that approximate solutions need to be careful of
rounding errors.

• When defining enumerated types, only identifiers can appear
in the list of values for the type.

• Be careful not to reuse one of the identifiers in another type,

or as a variable name in a function that needs your type
definition.

• Keep in mind that there is no built-in facility for input/output

of the identifiers that are the valid values of an enumerated
type. You must either scan and display the underlying integer

representation or write your own input/output functions.


