
Problem Solving and Program Design -

Chapter 6

Cory L. Strope

Chapter 6

6.1 Functions with Simple Output Parameters

6.2 Multiple Calls to a Function with I/O Parameters

6.3 Scope of Names

6.4 Formal Output Parameters as Actual Arguments

6.6 Debugging and Testing a Program System

6.7 Common Programming Errors

• In this chapter -= 3, we wrote the separate components –
functions – of a program, corresponding to individual steps in
a problem solution.

• Providing input to a function
• Returning a single output.

• In this chapter, we learn how to connect functions to create a
program system – an arrangement of parts that makes your

program pass information from one function to another.

Functions with Simple Outputs

func(argument list)

• Argument lists provide the communication links between the
main function and its function subprograms.

• Arguments enable a function to manipulate different data
each time it is called.

• So far, we have passed inputs into a function and returned

only one result value from a function.

• This section, we use output parameters to return multiple
results from a function.

Functions – Simple Outputs

How a function call works:

• When a function call executes, the computer allocates

memory space in the function data for each formal parameter.

• The value of each actual parameter is stored in the memory
cell allocated to its corresponding formal parameter.

• The function body can manipulate this value.

Example Program

void myFunc(int arg);

int main(void) {

int x = 5;

myFunc(x);

printf("%d\n", x);

return 0;

}

void myFunc(int arg) {

arg = 4;

}

Functions – Simple Outputs

int main(void) {

int x = 5;

...

Functions – Simple Outputs

int x = 5;

myFunc(x);

...

Functions – Simple Outputs

void myFunc(int arg) {

arg = 4;

}

Functions – Simple Outputs

int x = 5;

myFunc(x);

printf("%d\n", x);

}

Output = 5

Functions with Multiple Output Parameters

• Using a ∗ in the argument list allow us to define a pointer to
memory.

• A pointer must have a data type for the compiler to reserve
the correct amount of memory.

• To pass a memory location in the calling of the function, use
a &.

• The & is used to send the memory address of the variable.

• The ∗ is used to access the data and not the address value.

pointer.c

Example Program

void myFunc(int *arg);

int main(void) {

int x = 5;

myFunc(&x);

printf("%d\n", x);

return 0;

}

void myFunc(int *arg) {

arg = 4;

}

Is this right?

Example Program

void myFunc(int *arg);

int main(void) {

int x = 5;

myFunc(&x);

printf("%d\n", x);

return 0;

}

void myFunc(int *arg) {

arg = 4; <---------

}

This sets the pointer value of arg to memory location 4. This will
lead to the beloved error:
Segmentation fault

Example Program

void myFunc(int *arg);

int main(void) {

int x = 5;

myFunc(&x);

printf("%d\n", x);

return 0;

}

void myFunc(int *arg) {

*arg = 4;

}

Functions – Simple Outputs

int main(void) {

int x = 5;

...

Functions – Simple Outputs

int x = 5;

myFunc(&x);

...

Functions – Simple Outputs

void myFunc(int *arg) {

*arg = 4;

}

Functions – Simple Outputs

int x = 5;

myFunc(&x);

printf("%d\n", x);

}

Output = 4

• In the function declaration, variables named with ∗ are
identified as input/output parameters.

• The function uses the input values and may change the actual
values passed.

• In this example, we pass information into a function and return

the results through the functions input/output parameters.

• It also demonstrates how a function may be called more than
once in a given program and process different data in each

call.

#include <stdio.h>

void order(double *smp, double *lgp);

int main(void) {

double num1, num2, num3;

printf("Enter three numbers seperated by blanks> ");

scanf("%lf %lf %lf", &num1, &num2, &num3);

order(&num1, &num2);

order(&num1, &num3);

order(&num2, &num3);

printf("The numbers in ascending order are: ");

printf("%.2f %.2f %.2f\n", num1, num2, num3);

return 0;

}

void order(double *smp, double *lgp) {

double tmp;

if (*smp > *lgp) {

tmp = *smp;

*smp = *lgp;

*lgp = tmp;

}

}

Generally, functions that take a set of parameters and return a

single result are preferable because of readability, such as sin(x)
and other math functions.

Scope of Names

• The scope of a name refers to the region of a program where
a particular meaning of a name is visible or can be referenced.

• all people are people
• chips ∈ England, french fries ∈ America, freedom fries ∈

Washington D.C.
• The word “fridge” for refridgerator.

Scope – Not just a Mouthwash

#define MAX 950

#define LIMIT 344343

void one(int anarg, double second);

int fun_two(int one, char anarg);

int main(void) {

int localvar; ...

}

void one(int anarg, double second) {

int onelocal; ...

{ int twolocal; }

}

int fun_two(int one, char anarg) {

int localvar; ...

}

Scope

• The name MAX and LIMIT are defined constant macros
• Their scope begins at their definition and continues to the end

of the source file.
• All three functions can access MAX and LIMIT.

• All of the formal parameters (function arguments) and local
variables are visible only from their declaration to the closing
brace of the function in which they are declared, even if the

names are the same.

Formal Output Parameters as Actual Arguments

• So far all of our actual arguments in calls to functions have

been either local variables or input parameters of the calling
function.

• However, sometimes a function needs to pass its own output
parameters as an argument when it calls another function.

void scan_fraction(int *nump, int *denomp) {

char slash, discard;

int status, error;

do {

error = 0;

printf("Enter a common fraction as two integers ");

printf("separated by a slash> ");

status = scanf("%d %c%d", nump, &slash, denomp);

//test for errors as shown in the book

do {

scanf("%c", &discard);

} while (discard != ’\n’);

} while (error);

}

Formal Output Parameters as Actual Arguments

• So far all of our actual arguments in calls to functions have
been either local variables or input parameters of the calling
function.

• However, sometimes a function needs to pass its own output
parameters as an argument when it calls another function.

• scan fraction(int ∗nump, int ∗denomp)
• scanf("%d %c%d",nump,&slash,denomp);

• Key point is that in the scanf, there is no & in front of nump

or denomp.

Debugging and Testing a Program System

• As the number of statements in a program grows, the
possibility of error also increases.

• Reducing the number of operations each function performs
also reduces the likelihood of errors.

• Small functions are also much easier to read and test.

• top-down testing is the process of testing a program starting
at main function and testing each function thereafter.

• We test a function with a unit test by writing a short driver
function to call it.

• This can be done in the main function by commenting out
other function calls (comment out the head and legs of
stickman to see if the body is correctly made).

• Bottom-up testing is the process of separately testing
individual functions before inserting them in a program

system.
• System integration tests are tests of the entire system
• Try both top-down and bottom-up to make sure the program

is fully tested.

Common Programming Errors

• Many opportunities for errors arise when you use functions
with parameter lists

• Ensuring that the actual argument list has the same number of
items as the formal parameter list.

• Each input argument must be of a type that can be assigned
to its corresponding formal parameter.

• An actual output argument must be of the same pointer data
type as the corresponding formal parameter.

• Proper use of parameters is difficult for beginning
programmers to master, but it is an essential skill.

• It is easy to introduce errors in a function that produces
multiple results.

• The output parameter must be of a pointer type (∗)
• The calling function neglects to send a correct variable address

(using &)

Common Programming Errors

• An identifier referenced outside of its scope will return an

undeclared symbol syntax error.

• Commonly occurs if the { or } are misplaced, or if too many

open or close brackets are present in the program.

