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Repetition in Programs

Just as the ability to make decisions (if-else selection

statements) is an important programming tool, so too is the ability
to specify the repetition of a group of operations.

When solving a general problem, it is sometimes helpful to write

a solution to a specific case. Once this is done, ask yourself:

• Were there any steps that I repeated? If so, which ones?

• Do I know how many times I will have to repeat the steps?

• If not, how did I know how long to keep repeating the steps?



Counting Loops

The loop shown below in pseudocode is called a
counter-controlled loop (or counting loop) because its
repetition is managed by a loop control variable lcv whose value

represents a count.

Set lcv to an initial value of 0

while the lcv < final_value {

Block of program code;

Increase lcv by 1;

}

Counter-controlled loop are used when we know how many loop
repetitions to use before loop execution.



The While Statement
This example while loop computes and displays the gross pay for
seven employees. The loop body is a compound statement

(between { and }). The loop repetition condition controls the
while loop.

count_emp = 0; // Set counter to 0;

while (count_emp < 7) { // If count_emp < 7, do stmts

printf("Hours> ");

scanf("%d",&hours);

printf("Rate> ");

scanf("%lf",&rate);

pay = hours * rate;

printf("Pay is $%6.2f\n", pay);

count_emp = count_emp + 1; /* Increment count_emp */

}

printf("\nAll employees processed\n");



While Statement

Syntax of the while Statement:

• Initialize the lcv
• Without initialization, the lcv value is meaningless.

• Test the lcv before the start of each loop repetition

• Update the lcv during the iteration
• Ensures that the program progresses to the final goal

count = 0;

while(count < 1) {

printf("Count = %d\n",count + 1);

}

If any of these are skipped it may produce an infinite loop.



General While Loops

It is better to generalize variables when possible. For example:

int num_emp=0, count_emp=0;

printf("How many employees> ");

scanf("%d", &num_emp);

while(count_emp < num_emp) {

. . .

count_emp = count_emp + 1;

}

Using num emp instead of the constant 7 allows our code to be

more general.



While loop examples

Σ100

i=1i

is equivalent to 1 + 2 + 3 + . . . + 100. Using the while loop:

sum = 0;

lcv = 1;

while (lcv <= 100) {

sum = sum + lcv;

lcv = lcv + 1;

}

printf("Sum is %d", sum);



While loop examples

Π100

i=1i

is equivalent to 1 × 2 × . . . × 100. The while loop can be used

similarly as for addition:

product = 1;

lcv = 1;

while (lcv <= 100) {

product = product * lcv;

lcv = lcv + 1;

}



Compound Assignment Operators

• Expressions such as:
variable = variable op expression;

where op is a C operator such as +,−, ∗, /, etc. occur frequently.

• C has a set of shortcuts:
Instead of writing x = x + 1 we can write x += 1.

• Similarly, -=, *=, /=, and %= are used in the same way.

product = 1; lcv = 1;

while(lcv <= 100) {

product *= lcv;

lcv += 1;

}

Or, for a more complex example:

n = n ∗ (x + 1);≡ n∗ = x + 1;



for loops

• Program Style

• Increment and Decrement Operators

• Increment and Decrement Other Than 1



for loops

• A better way to construct a counting loop is to use the for
statement.

• while loops always run the risk of infinite loops.

• C provides for statements as another form for implementing

loops.

• As before we need to initialize, test, and update the loop
control variable.

The for statement designates a specific place for the initialization,

testing, and update components.



for loop Example

Σ100

i=0i

sum = 0;

for (lcv = 0; lcv <= 100; lcv++) {

sum = sum + lcv;

}

Notation: lcv++ is another notation, equivalent to lcv = lcv +

1 and lcv += 1.



Program Style

For clarity, the book usually places each expression of the for

heading on a separate line. If all three expressions are very short,

however, they will be placed on one line.
The body of the for loop is indented just as the if statement.



Increment and Decrement Operators

The counting loops that we have seen have all included assignment
expressions of the form

• counter = counter + 1

• counter++

• counter += 1

This will add 1 to the variable counter. If we use a - (--) instead
of a + (++), it will subtract 1 to the variable counter.



Increment and Decrement Other Than 1

The increment (+=) and decrement -= operators will also work for

values greater than 1.

• Increment operations: sum = sum + x or sum += x, will

take the value of sum, add x to it, and then assign the new
value to sum.

• Decrement operations: temp = temp - x or temp -= x,

will take the value of temp, subtract x from it and then assign
the new value to temp.



Conditional Loops

• The exact number of loop repetitions we need to run for a
loop will not always be known before loop execution begins.

• Stick-Men: Do we need to exit the program if the user inputs
a value other than 1 or 2 for the number of heads, or sets of
arms? (or legs..?)

Initialization step? Test? Update action?



Example

Create a program that prompts the user for a value and multiplies
it by temp and stores the result in temp until the user enters a 0.

In pseudocode:

assign temp the value of 1

prompt the user for a value

while value does not equal 0

assign temp the value temp times value

prompt the user for a value

output the value of temp



Example

Code:

temp = 1;

printf("Enter a value, 0 will stop the program> ");

scanf("%d",&value);

while(value != 0) {

temp = temp * value;

printf("Enter a value, 0 will stop the program> ");

scanf("%d",&value);

}

printf("The product is %d", temp);



Loop Design

To this point, we have been analysing the actions a loop performs.

Now, we also want to design our own loops:

• Sentinel-Controlled Loops

• Using a for Statement to Implement a Sentinel Loop

• Endfile-Controlled Loops

• Infinite Loops on Faulty Data



Sentinel-Controlled Loops

• Often we don’t know how many data items the loop should

process when it begins execution.

• Sentinel-Controlled Loops continue to read data until a
unique data value is read, called the “sentinal value”.

• The sentinal value should be a value that could not normally
occur as data.

• Reading the sentinal value signals the program to stop reading

and processing new data.

• Examples: Product of a list of numbers, with ‘0’ stopping the

loop.

1. Get a line of data

2. While the sentinal value not encountered

3. Process the data line (compute)

4. Get another line of data



Using a for statement

Because the for statement combines the initialization, test, and
update in once place, some programmers prefer to use it to

implement sentinel-controlled loops.

printf("Enter first score (or %d to quit)> ", sentinel);

for(scanf("%d",&score);

score != sentinel;

scanf("%d",&score)) {

sum += score;

printf("Enter next score (%d to quit)> ", sentinel);

}



Endfile-Controlled Loops

In Section 2.7, we discussed writing programs to run in batch
mode using data files.

• A data file is always terminated by an endfile (EOF) character
that can be detected by the scanf and fscanf functions.

• Therefore you can write a “batch” program that processes a

list of data of any length without requiring a special sentinel
value at the end of the data file.

1. Get first data value and save input status.

2. While input status !EOF

3. Process data value (compute)

4. Get next data value, save in input status.



#include <stdio.h>

int main(void) {

FILE *inp;

int sum = 0, score, input_status;

inp = fopen("scores.dat", "r");

input_status = fscanf(inp, "%d", &score);

while (input_status != EOF) {

printf("%5d \n", score);

sum += score;

input_status = fscanf(inp, "%d", &score);

}

printf("\nSum of exam scores is %d\n", sum);

fclose(inp);

return 0;

}



Infinite Loop on Faulty Data

If we used a 7o instead of 70 for example 5.10:

• 1. Program would accepts all integers of the input. ‘7’ is a

score of type int

input buffer = 7 o

• 2. Value not the sentinel, so add 7 into sum.
input buffer = o

• 3. Program reads ‘o’ −→ defaults to value of 0, does not read

’o’.
input buffer = o

• 4. Value not the sentinel, add 0 into sum.

input buffer = o

• 5. Program reads ‘o’ −→ defaults to value of 0, does not read
’o’.

input buffer = o
...



Nested Loops

Like if statements, loops can also be nested.

• Nested loops consist of an outer loop with or more inner loops.

• Each time the outer loop is repeated, the inner loops are

reentered.

• The inner loop control expressions are reevaluated, and all

required iterations are performed.



Example

lcv1 = 0;

sum = 0;

while (lcv1 < 100) {

lcv2 = 0;

while (lcv2 < 100) {

sum = sum + 1;

lcv2++;

}

lcv1++;

}



The do-while Statement and Flag-Controlled Loops

• do-while statement

• flag-controlled loops



Do-While Statement

• The for statement and the while statement evaluate
conditions before the first execution of the loop body.

• In most cases, this pretest is desirable;
• Prevents the loop from executing when there are no data items

to process
• Prevents execution when the intial value of the loop control

variable is outside the expected range.

• Situations involving interactive input, when we know that a
loop must execute at least one time, often use a do-while

loop.



Do While Example

do {

printf("Enter a letter from A through E> ");

scanf("%c", &letter_choice);

} while (letter_choice < ’A’ || letter_choice > ’E’);



Flag-Controlled Loops

• Sometimes a loop repetition condition becomes so complex
that placing the full expression in its usual spot is awkward.

• In many cases, the condition may be simplified by using a
flag.

• A flag is a type int variable used to represent whether or not
a certain event has occured.

• A flag has one of two values: 1 (true) and 0 (false).



How to Debug and Test Programs

• Using Debugger Programs

• Debugging without a Debugger

• Off-by-One Loop Errors

• Testing



Using Debugger Programs

• A debugger helps you to debug a C program.

• Allows you to execute your program one statement at a time.
• Through single-step execution, you can trace your programs

execution and observe the effect of each C statement on
variables you select.

• If your program is very long, you can seperate your program
into segments by setting breakpoints at selected statements.

• The debugger executes all statements upto the breakpoint
• You can examine the variables and values at this point to make

sure your program is working.



Debugging without a Debugger

• Use several printf statements to output the values of your
variables to make sure they have the correct value in them as

your program executes.

• It is often helpful to print out the value of your loop control
variable to make sure you are incrementing it and will not

enter an infinite loop.



Off-by-One Loop Errors

Loop boundaries - the initial and final values of the loop control
variable.

• A fairly common logic error in programs with loops is a loop
that executes one more time or one less time than required.

• If a sentinel-controlled loop performs an extra repetition, it
may erroneously process the sential value along with the
regular data.

• while(val != SENTINEL) { scanf("%d",&val);

variable op val; }

• If a loop performs a counting operation, make sure that the
initial and final values of the loop control variable are correct
and that the loop repetition condition is right.

• The sum of 1. . . 100, is not for(i = 1; i < 100; i++)

sum += i;; i <= 100 should be used.



Testing

After all errors have been corrected and the program appears to
execute as expected, the program should be tested thoroughly to
make sure it works.

For a simple program, make enough test runs to verify that the

program works properly for representative samples of all possible
data combinations.



Common Programming Errors

• if and while statement can be confused, since they have

similar appearance,

• Remember to initialize loop control variable as to prevent

infinite loops.

• Infinite loops are bad. Avoid infinite loops. Just avoid them.

• Remember to use { and } around the code of the loop
statements.

• Be careful about the loop conditions, if we only want positive

results then (result != 0) would not work since result might
become negative without ever being 0.

• do-while loops always executes once and then tests the
condition.

• With the compound assignment operators, the parentheses are
assumed to be around any expression that is the second
operand,

• a *= b + c; equals a = a * (b + c); not a = a*b + c;.


