
Problem Solving and Program Design -

Chapter 4

Cory L. Strope

• Control Structure

• Conditions

• if statements

Control Structure

• Control structures:
• Control the flow of execution in a program or function.
• Enable you to combine individual instructions into a single

logical unit with one entry point (i.e. int main(void) {) and
one exit point (return 0; }).

• Three kinds of structures to control execution flow:
• Sequence,
• Selection, and
• Repetition.

Sequential Flow

Compound statement:

• Written as a group of

statements

• Bracketed by { and }, and

• Used to specify sequential

flow.

}

 .
 .

statement1;

 .

statement3;
statement2;

{

statement4;

Selection Flow

Selection control structure:

• Evaluates criteria to
determine which

alternative “path” to
follow. .

Selection Control Structure

statement2;

.

.

statement1;

Selection Flow – Conditions

condition - An expression that is either true or false.

A program chooses alternative paths by testing a (set of)
condition(s).

• (ConditionEval == 1) → true,

• (ConditionEval == 0) → false.

• The resting heart rate is a good indicator of health

• if resting heart rate < 75 then you are in good health.
• if resting heart rate is 80, ConditionEval is false.
• if resting heart rate is 50, ConditionEval is true.
• if resting heart rate is 75, what is ConditionEval?

Relational and Equality Operators

Conditions come in four forms:

• variable relational-operator variable

• variable relational-operator CONSTANT

• variable equality-operator variable

• variable equality-operator CONSTANT

Operator Meaning Type

< less than relational

> greater than relational
<= less than or equal to relational

>= greater than or equal to relational
== equal to equality
!= not equal to equality

What about more than one condition?

Logical Operators

Logical operators: Operators that can combine conditions to

make more complicated selection statements.

&& logical and
|| logical or
! logical complement, negation, or not.

logical expressions - expressions that involve conditional
statement(s) and logical operator(s).

temperature > 90.0 && humidity > 0.90
Are we going to go or not?

(go || !go) = ?

Operator Tables for &&, ||, and !

true = Any nonzero value (−1, 0.00001, 20000000, 3.1415, . . .)
false = 0.

op operand1 operand2 operand1 op operand2
&& true true true

true false ?
false true false

false false false

|| true true true

true false ?
false true true

false false false

! NULL true false

NULL false true

Operator Precedence

high function calls

!,+,-,& (unary operations), if(!done) { ; }

*,/,%,

+,-,

<,>,<=,>=,

==,!=,

&&, if(x > 0 && x < 6) { ; }

||,
low =

Rest of Section

• Short-circuit evalutation:
• C stops evaluating after the end condition of a statement is

known
• true || anything = true.

• false && anything = false.

• Writing english conditions in C:
• Is your C condition is logically equivalent to the english

statement?

• Comparing characters:
• We can compare characters in C using the relational and

equality operators.

• Logical assignment:
• Assign an int a value of nonzero for true or zero for false

Comparing Characters

We can also compare characters using relational and equality

operators.

• Comparisons are based on the bit values of the characters, as

found in the ASCII table.

Expressions Value

‘9’ < ‘0’ 1 (true)

‘a’ < ‘e’ 1 (true)
‘B’ <= ‘A’ 0 (false)

‘Z’ == ‘z’ 0 (false)
‘a’ < ‘A’ system dependent
‘a’ <= ch && ch <= ‘z’ 1 (true) if ch is a lowercase letter

The if Statement

• if Statement with Two Alternatives

• if Statement with One Alternative

• A Comparison of One and Two Alternative if Statements

• Program Style

if Statement with Two Alternatives

• Conditions are used to assign boolean (T,F) values to
variables

• senior citizen = (age >= 65)

• More often, conditions are used to make a choice between
alternatives, through the if statement.

if (!senior_citizen)

printf("Your hamburger is $3.50\n");

else

printf("Your hamburger is $2.50!\n");

This if statement selects one of the two calls to printf. If the

condition is 1 (true) it chooses the first printf, if the condition
is 0 (false) it chooses the second printf.

if Statement with One Alternative

• if statements with two alternatives choose a statement to
execute, however

• if statements with one alternative decide whether a
statement should be executed based on a condition.

For example, when we make a division, we do not want to divide

by zero, so:

if (x != 0)

product = product / x;

if Statements

if crsr_or_frgt == ’C’

printf("Cruiser\n");

printf("Combat ship\n");

if (crsr_or_frgt == ’C’);

printf("Cruiser\n");

printf("Combat ship\n");

Program Style

• Statements following the if statements should be indented

• else statement is at the same indentation as the if

statement

• Statements following the else statements should be indented.

The format of the if statement makes its meaning apparent and is
used solely to improve program readability.

if(condition) {

statementT

} else {

statementF

}

if Statement with Compound Statements

• In previous slides, if and else statements have performed

only one operation if true

• C always assumes that each if or else statement will be
followed by one operation.

• if(true) Operation;

• If more than one statement needs to be done for an if or

else, we use {} to group a set of statements into one
compound statement.

if (pop_today > pop_yesterday) {

growth = pop_today - pop_yesterday;

growth_pct = 100.0 * growth / pop_yesterday;

printf("The growth percentage is %.2f.\n", growth_pct);

}

Another Example

if (crash_test_rating_index <= MAX_SAFE_CTRI) {

printf("Car #%d: safe\n", auto_id);

safe = safe + 1;

} else {

printf("Car #%d: unsafe\n", auto_id);

unsafe = unsafe + 1;

}

• If you omit the braces, what happens?

• Placement of braces and keywords is optional

if(cond) {

} else {

}

Tracing an if Statement

• Verifying the correctness of a C statement before running the
program

• Catching logical errors will save a lot of time in debugging.

• A hand trace or desk check is a step-by-step simulation of

each step of the program, as well as how the values of the
variables change at each step.

if(x > y) {

temp = x;

x = y;

y = temp;

}

Section 4.5 shows how to use decision steps (if statements) in
algorithm design.

Also as a side note it is common to use Constant Macros in

conditional checks to enhance readability and ease maintenance.

Nested if Statements and Multiple-Alternative Decisions

√
No decisions: Sequential program.√
One decision: if-then (One alternative)

• if (cond) statement;√
Decision between two alternatives: if-then-else (Two
alternative statements)

• if (cond) statement1; else statement2;

→ Decisions between many alternatives
• School level

Nested if Statements and Multiple-Alternative Decisions

if (x < 0)

pre_school = pre_school + 1;

else

if (x <= 12)

public_school = public_school + 1;

else

univ_career_homeless = univ_career_homeless + 1;

if (x <= 0)

pre_school = pre_school + 1;

if (x <= 12 && x > 0)

public_school = public_school + 1;

if (x > 12)

univ_career_homeless = univ_career_homeless +1;

Nested ifs vs. Sequence of ifs

• Beginning programmers sometime prefer to use a sequence of

if statements

if (x <= 0)

pre_school = pre_school + 1;

if (x <= 12 && x > 0)

public_school = public_school + 1;

if (x > 12)

univ_career_homeless = univ_career_homeless +1;

• However, it is neither as readable nor as efficient.
• Not as readable, since the sequence does not clearly show that

exactly one of the three assignment statements is executed for
a particular x.

• It is less efficient because all three of the conditions are always
tested. In the nested if statement, only the first condition is
tested when x is positive.

Multiple-Alternative Decision Form of Nested if

Nested if statements can become quite complex.

• In situations where there are multiple if-then-else

statements, it is easier to code the multiple alternative as
shown below.

if (condition_1)

statement_1

else if (condition_2)

statement_2

.

.

.

else if (condition_n)

statement_n

else

statement_e

Example – Range Elimination

We want to describe noise loudness measured in decibels with the

effect of the noise. The following table shows the relationship
between noise level and human perceptions of noises.

Loudness in Decibels (db) Perception

50 or lower quiet

51 - 70 intrusive
71 - 90 annoying

91 - 110 very annoying
above 110 uncomfortable

Example in C code

if (loudness <= 50)

printf("quiet");

else if (loudness <= 70)

printf("intrusive");

else if (loudness <= 90)

printf("annoying");

else if (loudness <= 110)

printf("very annoying");

else

printf("uncomfortable");

Multiple-Alternative if, Order of Conditions

• When more than one condition in a multiple-alternative
decision is true, only the task following the first true condition
executes.

• The order of the conditions can affect the outcome.

• The order of conditions also effect program efficiency.
• If loud noises are much more likely, it is more efficient to test

first for noise levels above 110 db, then for levels between 91
and 110 db, and so on.

Nested if Statements with More Than One Variable

• In most of our examples, if statements test the value of a
single variable

• We have been able to write each nested if statement as a
multiple-alternative decision.

• if(x>y) stmt; else if(x<y) stmt; else stmt;

• If several variables are involved in the decision, we cannot
always use a multiple-alternative decision. However, we can
use nested if statement as a“filter” to select data that satisfy

several different criteria.

Code Example

The Department of Defense would like a program that identifies

singles males between the ages of 18 and 26, inclusive.

/* Print a message if all criteria are met.*/

if (marital_status == ’S’)

if (gender == ’M’)

if (age >= 18 && age <= 26)

printf("All criteria are met.\n");

or:

if (maritial_status == ’S’ && gender == ’M’ &&

age >= 18 && age <= 26)

printf("All criteria are met.\n");

Switch

• The switch statement is similar to a multiple-alternative if

statement, but can be used only for type char or type int

expressions.

• Useful when the selection depends on the value of a single

variable (called the controlling variable)

• Expressions in the switch statement must cover all possible
values of the controlling variable.

• Each viable expression −→ case statement
• All other values −→ fall-through (default:) statement.

Switch Example

#include <stdio.h>

int main(void) {

char class;

scanf("%c",&class);

switch (class) {

case ’B’:

case ’b’:

printf("Battleship\n");

break;

case ’C’:

case ’c’:

printf("Cruiser\n");

break;

default:

printf("Unknown ship class%c\n", class);

}

}

Common Errors

• Using a string such as “Cruiser” or “Frigate” as a case label.
• String = ‘C’ ‘r’ ‘u’ ‘i’ ‘s’ ‘e’ ‘r’
• Why can’t a switch statement use a type double value?

• The omission of the break statement at the end an
alternative causes the execution to “fall through” into the
next alternative.

• Forgetting the closing brace of the switch statement body.

Nested if versus switch

• A nested if is more general then the switch

• if: Can check any number of any data type variables vs. one
value for int or char data type.

• if: Can use a range of values, such as < 100

• switch: More readable

• switch: Can not compare strings or doubles

• switch: Can not handle a range of values in one case label

• Use the switch whenever there are ten or fewer case labels

• Use the default label whenever possible

Common Programming Errors

• if (0 ≤ x ≤ 4) is always true, first it does 0 ≤ x which
is true or false, so it evaluates to 1 for true and 0 for
false and then it takes that value, 0 or 1, and does 1 ≤ 4 or
0 ≤ 4 and both are always true.

• In order to check a range, use (0 ≤ 4 && x ≤ 4).

• if (x = 10) is always true, the = symbol assigns x the value
of 10, so the conditional statement evaluates to 10, and since
10 is nonzero this is true.

Common Errors cont.

• Don’t forget to parenthesize the condition.

• Don’t forget the { and } if they are needed.

• When doing nested if statement, try to select conditions so
that you can use the range-elimination multiple-alternative
format.

• C matches each else with the closest unmatched if, so be
careful so that you get the correct pairings of if and else

statements.

• In switch statements, make sure the controlling expression
and case labels are of the same permitted type.

• Remember to include the default case for switch

statements.

• Don’t for get your { and } for the switch statement.

• Don’t forget your break statement.

What we learned in Chapter 4

if (x == 0)

statement_T;

if (x == 0)

statement_T;

else

statement_F;

if (x == 0) {

statements_T;

}

if (x == 0) {

statements_T

}

else {

statements_F

}

if (x >= 0)

if (x == 0)

statement_TT

else

statement_TF

else

statement_F

switch (x) {

case 1:

true if x == 1 statement

break;

case 2:

true if x == 2 statement

break;

default:

always true

}

End Chapter 4, any questions?

