
Problem Solving and Program Design -

Chapter 3

Cory L. Strope

Chapter 3

3.1 Building Program from Existing Information

3.2 Library Functions

3.4 Functions without Arguments

3.5 Functions with Arguments

3.6 Common Programming Errors

Existing Information

• Programmers seldom start off write completely original

programs. Often the solution can be developed from
information that already exists or from the solution to another

problem.

• Following the software development method generates
important documentation before you even begin to code a
program.

• A description of a problem’s data requirements,
• A description of a problem’s solution algorithm,

• This documentation can be used as a starting point in coding
your program.

• To develop the executable statements in the main function,
first use the initial algorithm and its refinement as program
comments.

Library Functions

• Predefined Functions and Code Reuse

• Use of Color to Highlight New Constructs

• C Library Functions

• A Look at Where We Are Heading

Predefined Functions and Code Reuse

• A primary goal of software engineering is to write error-free
code.

• Code reuse, reusing program fragments that have already been
written and tested

• C promotes reuse by providing many predefined functions that
can be used to perform mathematical computations.

• Functions such as sqrt are found in the standard math library
to perform the square root computation.

• The function call in the assignment statement y = sqrt(x);

activates the code for function sqrt, passing the argument x
to the function.

• After execution, the result of the function is substituted for the
function call.

• If x is 16.0, the assignment statement above is evaluated as
follows:

√
16.0 is evaluated to 4.0, the call sqrt(x) is

replaced with 4.0, and then y takes the value 4.0.

Use of Color to Highlight New Constructs

The book will use color for the purpose to illustrate new constructs.

C Library Functions I

Function #include Description

abs(x) <stdlib.h> integer absolute value abs(-5)=5
fabs(x) <math.h> double absolute value

ceil(x) <math.h> Returns ceiling value, ceil(46.3)=47.0
floor(x) <math.h> Returns floor value, floor(46.3)=46.0

cos(x)

sin(x) <math.h> Input it radians, outputs trig func val , in angles.
tan(x)

exp(x) <math.h> Returns ex

log(x) <math.h> Natural log, x > 0
log10(x) <math.h> Log base 10, x> 0

pow(x,y) <math.h> Returns x y

sqrt(x) <math.h> Returns square root.

When using the CSE math.h library, compile your code using:

cc username_<problem #>.c -lm

Function Specifics

• abs(x) is the only function listed with an int value argument
and result.

• All others have both double as the argument and double as
the result.

• tan(x), cos(x) and sin(x) take as their input the radians

and output the angle.
• For example, sin(1.57) = 1, cos(1.57) = 0, and
tan(1.57) = ∞.

• If one of the functions in the next frame is called with an
argument that is not arguments data type, the argument
value is converted to the required data type before it is used.

• Conversion of type int to type double cause no problems, but
a conversion of type double to type int leads to the loss of
any fractional part.

• The value for sqrt, log and log10 must be positive.

A Look at Where We Are Heading

C also allows us to write our own functions. Let’s assume that we

have already written functions find area and find circum

• Function find area(r) returns the area of a circle with

radius r

• Function find circum(r) returns the circumference of a
circle with radius r

Functions without Arguments

• Function Prototypes

• Function Definitions

• Placement of Functions in a Program

Functions without Arguments

Top-Down Design: Problem-Solving method in which you break
a large problem into smaller, simpler, subproblems.

• Programmers implement top-down design in their programs is
by defining their own functions.

• Write one function (subprogram) for each subproblem
• Case Study, p. 112, Sec. 3.3

To begin, we focus on simple functions that have no

arguments and no return value.

Function Prototypes

• As with other identifiers in C, a function must be declared
before it can be referenced.

• One way to declare a function is to insert a function prototype

before the main function.

• A function prototype tells C compiler the data type of the
function, the function name, and information (number, data
type) about the arguments that the function expects.

• Data Type of the function is the type of value returned by the
function.

• Functions that return no value are of type void

• Ex: int main {· · · return 0; }

Function Definitions

• The function prototype (i.e. Declaration) does not specify the function

operation.

• The variable declaration: int c; does not tell you how c will
be used.

• To do this, you need to provide a definition for each function subprogram
(similar to the definition of the main function).

/* Draws a circle */

void draw_circle(void) {

printf(" * \n");

printf(" * *\n");

printf(" * * \n");

}

• The function heading is similar to the function prototype, but not ended
by the symbol ‘;’.

• The function body (enclosed in braces) is three calls to function printf

that cause the computer to display a circular shape.

• The return statement because draw circle does not return a result.

Example

#include <stdio.h>

/* Function prototypes */

void draw_circle(void);

void draw_triangle(void);

int main(void) {

draw_triangle();

draw_circle();

return 0;

}

/* Function Definitions below */

Function Definition

• Each function body may contain declarations for its own
variables.

• These variables are considered local to the function; in other
words, they can be referenced only within the function.

Placement of Functions in a Program

The next slide shows a complete program with function
subprograms.

• The subprogram prototype appear between the main function
any #include or #define directives.

• The subprogram definition follows the end of the main

function.

• The relative order of the function definitions does not affect
their order of execution; that is determined by the order of

execution of the function call statements.

Example

/* Function Hello, World */

#include <stdio.h>

/*Function Prototypes */

void Hello_World(void);

int main(void) {

Hello_World();

return 0;

}

/* Function Definitions */

/* Prints Hello, World */

void Hello_World() {

printf("Hello, World\n");

}

Displaying User Instructions

• Simple functions have limited capability.

• Without the ability to pass information into or out of a
function, we can use functions only to display multiple lines of

program output, such as instructions to a program user or a
title page or a special message that precedes a program’s

result.

Functions with Input Arguments

• void Functions with Input Arguments

• Functions with Input Arguments and a Single Result

• Functions with Multiple Arguments

• Argument List Correspondence

• The Function Data Area

• Testing Functions Using Drivers

Functions with Input Arguments

• Arguments of a function are used to carry information into the
function subprogram from the main function (or from another
function subprogram) or to return multiple results computed
by a function subprogram.

• Arguments that carry information into the function are called
input arguments;

• Arguments that return results are called output arguments.

• We can also return a single result from a function by
executing a return statement in the function body.

void Functions with Input Arguments

• In the last section, we used void functions like draw circle

to display several lines of program output.

• We can use a void function with an argument to “dress up”

our program output by having the function display its
argument value in a more attractive way.

• (Recall that a void function does not return a result.)

/* Displays a real number in a box. */

void print_rboxed(double rnum) {

printf("***********\n");

printf("* *\n");

printf("* %7.2f *\n", rnum);

printf("* *\n");

printf("***********\n");

}

Functions with Input Argument and a Single Result

• The most common (pre-defined) function definition returns
one result:

• sqrt(x), abs(x), pow(x,y) · · ·
• Consider the problem of finding the area and circumference of

a circle using functions with just one argument.

/* Compute the circumference of a circle with radius r */

double find_circum(double r) {

return (2.0 * PI * r);

}

/* Compute the area of a circle with radius r */

double find_area(double r) {

return (PI * pow(r,2));

}

• Each function heading begins with the reserved word double,

indicating that the function result is a “real” number.

• Both function bodies consist of a single return statement.
• When either function executes, the expression in its return

statement is evaluated and returned as the function result.

Functions with Multiple Argument

Functions find area and find circum each have a single

argument. We can also define functions with multiple arguments.

/* Multiplies its first argument by 10 raised to a power

* i.e. x * 10^y, where x is the first argument and y

* is the second argument

* Pre.: double x and int y and math.h

* Post: called value

*/

double scale(double x, int y) {

double scale_factor;

scale_factor = pow(10, y);

return (x * scale_factor);

}

Argument List Correspondence

When using multiple-argument functions, be careful to include the

correct number of arguments in the function call.

The order or the actual arguments used in the function call must

correspond to the order of the formal parameters listed in the
function prototype.

Finally, if the function is to return meaningful results, assignment
of each argument to the corresponding formal parameter (i.e.

parameter passed into the function) must not cause any loss of
information (Such as passing a double into a function where the

formal parameter is data type int).

The Function Data Area

Each time a function call is executed, an area of memory is

allocated for storage of that function’s data.

• Included in the function data area are storage cells for its
formal parameters and any local variables that may be

declared in the function.

The function data area is always lost when the function terminates;

it is recreated empty when the function is called again.

Testing Functions Using Drivers

A function is an independent program module, meaning it can be

tested separately from the program that uses it. To run such a
test, you should write a short driver function.

• A driver function defines the function arguments, calls the
functions, and displays the value returned.

Wrap-Up

• Program Style

• Order of Execution of Function Subprograms and Main
Function

• Advantages of Using Function Subprograms

• Displaying User Instructions

Program Style

Each function begins with a comment that describes its purpose.

If the function subprograms were more complex, we would include
comments on each major algorithm step just as we do in function

main.

Block comments and heading that begins each function in contain
all the information required in order to use the function.

• Block comments begin with a statement of what the function

does

• The next lines show what values the function has as Input
Arguments (preconditions).

• The last line shows what value the function returns

(postcondition).

Order or Execution

• Prototypes for the function subprograms appear before the
main function so that the compiler can process the function
prototypes before it translates the main function.

• The information in each prototype enables the compiler to
correctly translate a call to that function.

• After compiling the main function, the compiler translates
each function subprogram.

• During translation, when the compiler reaches the end of a

function body, it inserts a machine language statement that
causes a transfer of control back from the function to the
calling statement.

Advantages of Using Function Subprograms

There are many advantages to using function subprograms.

• General programming

• Procedural Abstraction

• Reuse of Function Subprograms

General Programming

• Their availability changes the way in which an individual
programmer organizes the solution to a programming problem

• For a team of programmers working together on a large

problems, each member can focus on solving a set of
subproblems.

• Simplify programming tasks by providing building blocks for

new programs.

Procedural Abstraction

• Function subprograms allow us to remove from the main
function the code that provides the detailed solution to a
subproblem.

• Because these details are provided in the function subprograms
and not in the main function, we can write the main function
as a sequence of function call statements as soon as we have
specified the initial algorithm and before we refine any of the
steps.

• We should delay writing the function for an algorithm step
until we have finished refining the previous step.

• With this approach to program design, called procedural

abstraction, we defer implementation details until we are
ready to write an individual function subprogram.

• Focusing on one function at a time is much easier than trying

to write the complete program at once.

Reuse of Function Subprograms

Another advantage of using function subprograms is that functions

can be executed more than once in a program.

Finally, once you have written and tested a function, you can use it
in other programs or functions.

Common Programming Errors

• Remember to use a #include preprocessor directives for every

standard library from which you are using functions.

• Use the -lm option when compiling code using the math.h

standard library.

• Place prototypes for your own function subprogram in the

source file (*.c) preceding the main function; place the actual
function definitions after the main function.

• The acronym not summerizes the requirements for argument
list correspondence.

• Provide the required number of arguments,
• Make sure the order of arguments is correct, and
• Each function argument is the correct type or that conversion

to the correct type will lose no information.

• Also be careful in using functions that are undefined on some

range of values.

