
Problem Solving and Program Design -
Chapter 2

Cory L. Strope

• C Language Elements

• Variable Declarations and Data Types

• Executable Statements

• General Form of a C Program

• Arithmetic Expressions

• Formatting Numbers in Program Output

• Interactive Mode, Batch Mode, and Data Files

• Common Programming Errors

Overview of C Programming

This chapter introduces C – a high-level programming language
developed in 1972 by Dennis Ritchie at AT&T Bell Laboratories.

This chapter describes the elements of a C program and the types
of data that can be processed by C. It also describes C statements
for performing computations, for entering data, and for displaying

results.

Mistakes in Chapter 2

• Page 35, Figure 2.1 Line 9 needs to end with */

• Page 39, 1Letter needs to say “begins with a digit”

C Language Elements

• Preprocessor Directives

• Syntax Displays for Preprocessor Directives

• “int main()” Function

• Reserved Words

• Standard Identifiers

• User-Defined Identifiers

• Uppercase and Lowercase Letters

• Program Style

Preprocessor Directives

• The C preprocessor modifies the text of the C program before

it is passed to the compiler.

• Preprocessor directives are C program lines beginning with a
that provide instructions to the C preprocessor.

• Preprocessor directives begins with a #, either #include or
#define.

• Predefined libraries are useful functions and symbols that are

predefined by the C language (standard libraries).

#include and #define

• #include <library> gives the program access to a library
• stdio.h (standard input and output) has definitions for input

and output, such as printf and scanf.

• #define NAME value associates a constant macro.
• #define KMS PER MILE 1.609

• #define PI 3.14159

Comments

Comments provide supplementary information making it easier for
us to understand the program, but comments are ignored by the C

preprocessor and complier.

• /* */ - anything between them with be considered a
comment, even if they span multiple lines.

• // - anything after this and before the end of the line is
considered a comment.

Function main

• The point at which a C program begins execution is the main

function:

int

main(void)

• Every C program must have a main function.

• The main function (and every other function) body has two
parts:

• Declarations - tell the compiler what memory cells are needed
in the function

• Executable statements - (derived from the algorithm) are
translated into machine language and later executed

Function main

• The main function contains punctuation and special symbols
• Punctuation - Commas separate items in a list, semicolons

appear at the end of each statement
• Special Symbols - * and =, braces ({, }) mark the beginning

and end of the body of function main.

Reserved Words

• A word that has special meaning in C
• int - Indicates the main function returns an integer value,
• double - Indicates the memory cells used to store these values

will store real numbers.

• Always lower case,

• Can not be used for other purposes,

• Page 819 Appendix E has a full listing of reserved words (ex:
double, int, if , else, void, return ...)

Standard Identifiers

• Standard identifiers have a special meaning in C (assigned by
standard libraries).

• Standard identifiers can be redefined and used by the
programmer for other purposes

• Not recommended If you redefine a standard identifier, C will
no longer be able to use it for its original purpose.

• Examples - printf, scanf

User-Defined Identifiers

We choose our own identifiers to name memory cells that will hold
data and program results and to name operations that we define

(more on this in Chapter 3).

• An identifier must consist only of letters, digits, and
underscores.

• An identifier cannot begin with a digit.

• A C reserved word cannot be used as an identifier.

• An identifier defined in a C standard library should not be
redefined.

User-Defined Identifiers

• Examples: letter 1, Inches, KMS PER MILE

• Some compliers will only see the first 31 characters

• Uppercase and lowercase are different (Variable 6= variable 6=

VARIABLE)

• choosing identifer names:
• Choose names that mean something,
• should be easy to read and understand,
• shorten only if possible

• Don’t use Big, big, and BIG as they are easy to confuse

• All caps are usually used for preprocessor-defined identifiers
(#define)

Program Style

A program that ”looks good” is easier to read and understand

than one that is sloppy (i.e. good spacing, well-named identifiers).

In industry, programmers spend considerably more time on
program maintenance than they do on its original design or coding.

/*
 * Converts distances from miles to kilometers.
 */
#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */

}
 return(0);

 printf("That equals %f kilometers.\n", kms);
 /* Display the distance in kilometers. */

 kms = KMS_PER_MILE * miles;
 /* Conver the distance to kilometers. */

 scanf("%lf", &miles);
 printf("Enter the distance in miles> ");

/* Get the distance in miles */

 kms; /* equivalent distance in kilometers */
 double miles, /* distance in miles */
{
main(void)
int

prepocessor
directive

constant

standard
identifier

reserved
word

punctuation

special symbol

comment

reserved word

standard header file comment

variable

special symbol

Variable Declarations and Data Types

• Variable Declaration

• Data Types

Variables Declarations

• Variables - a name associated with memory cells (miles,

kilometers) that store a programs input data. The value of
this memory cell can change.

• Variable declarations - statements that communicate to the
compiler that names of variables in the program and the kind
of information stored in each variable.

• Example: double miles, kms;
• Each declaration begins with an identifier to indicate the type

of data
• Every variable used must be declared

Data Types

• Data Types: a set of values and a set of operations that can
be used on those values. In other words, it is a classification
of a particular type of information.

• int: integers from -32767 to 32767
• double: uses a decimal point, 3.14159 or 1.23e5 = 123000.0
• char: an individual character values with single quotes around

it – a letter, a digit, or a special symbol (can do arithmetic
operations on them, but be careful) (i.e. ’a’ + ’a’ would equal

Â, 194, or 2.189514 depending on if we are outputting a
char, int, or double)

• The idea is to give semantic meaning to 0’s and 1’s.

Executable Statements

• Assignment Statements

• Input/Output Operations and Functions

• printf Function

• scanf Function

• return Statement

Assignment Statements

• Assignment statements - stores a value or a computational
result in a variable,

• Used to perform most arithmetic operations in a program.

• Form: variable = expression;

• kms = KMS PER MILE * miles;

The assignment statement above assigns a value to the variable
kms. The value assigned is the result of the multiplication of the
constant macro KMS PER MILE (1.609) by the variable miles.

Memory of Program

miles miles

Memory

kms kms

KMS_PER_MILE KMS_PER_MILE

constant

type double

?

?

10.00

16.09

1.609 1.609

Assignments Cont.

• In C, the symbol = is the assignment operator.
• Read as “becomes”, “gets”, or “takes the value of” rather

than “equals”
• In C, == tests equality.

• In C you can write assignment statements of the form

sum = sum + item;

where the variable sum appears on both sides of the

assignment operator. This is obviously not an algebraic
equation, but it illustrates a common programming practice.

This statement instructs the computer to add the current
value of sum to the value of item; the result is then stored
back into sum.

Input/Output Operations and Functions

• input operation - data transfer from the outside world into

memory.

• output operation - An instruction that displays program
results to the program user.

• input/output functions - special program units that do all
input/output operations. Common I/O functions found in

<stdio.h>

• Function call - in C, a function call is used to call or activate a
function.

• Analogous ordering food from a restaurant. You (the calling
routine) do not know all of the ingredients and procedures for
the food, but the called routine (the restaurant) provides all of
this for you.

printf Function

Included in the <stdio.h> library.

printf("That equals %f kilometers.\n", kms);

new line

print listformatting

place holderfunction name

functions arguments

Place Holder

A placeholder always begins with the symbol %. Also the newline

escape sequence \n. Format strings can have multiple placeholders.

Placeholder Variable Type Function Use

%c char printf/scanf

%d int printf/scanf
%f double printf

%lf double scanf

Displaying Prompts

When input data is needed in an interactive program, you should
use the printf function to display a prompting message, or

prompt, that tells the program user what data to enter.

printf("Do you have any questions? ");

scanf

place holderfunction name

scanf("%lf", &kms);

variable list

functions arguments

formatting

Return Statement

return 0;

This statement returns a 0 to the Operating System to signify that
the program ended in a correct position. It does not mean the

program did what it was suppose to do. It only means there was
no syntax errors. There still may have been logical errors.

Program Example

#include <stdio.h>

int main(void) {

char first, last;

printf("Enter you first and last initials");

scanf("%c %c", &first, &last);

printf("Hello %c. %c. How are you?\n", first, last);

return 0;

}

General Form of a C Program

• Program Style

• Comments in Programs

General Form of a C Program

• Programs begin with preprocessor directives that provide
information about functions from standard libraries and
definitions of necessary program constants.

• #include and #define

• Next is the main function.
• Inside the main function is the declarations and executable

statements.

General Form of a C Program

proprocessor directives

main function heading {

declarations

executable statements

}

Program Style - Spaces in Programs

The complier ignores extra blanks between words and symbols, but
you may insert space to improve the readability and style of a

program.

• You should always leave a blank space after a comma and
before and after operators such as ∗, −, and =.

• Indent the body of the main function, as well as between any
other curly brackets.

int main(void) {

{

{

{ }

} // End Level 2

} /* End Level 1 */

return 0;

} // end main

Comments in Programs

Use comments to do Program Documentation, so it help others
read and understand the program.

• The start of the program should consist of a comment that
includes programmer’s name, date of current version, and
brief description of what the program does.

• Include comments for each variable and each major step in the
program.

• For any function, make comments to briefly describe the input

to the function, the output of the function, and the use of the
function.

Comments in Programs

Style:

/*

* Multiple line comments are good

* for describing functions.

*/

/* This /* is NOT */ ok. */

/* // ok. */

/*

* Calculate and display the difference of two input vals

*)

#include <stdio.h>

int

main(void) {int X, /* first input value */ x, /* second

input value */

sum; /* sum of inputs */

scanf("%i%i"; X; x); X+x =sum;

printf("%d + %d = %d\n"; X; x; sum); return(0);}

Arithmetic Expressions

• Operators / and % (Read mod or remainder)

• Data Type of Expression

• Mixed-Type Assignment Statement

• Type Conversion through Cast

• Expressions with Multiple Operators

• Writing Mathematical Formulas in C

To solve most programming problems, you will need to write

arithmetic expressions that manipulate type int and double data.
The next slide shows all the arithmetic operators. Each operator
manipulates two operands, which may be constants, variables, or

other arithmetic expressions.

+, –, *, / can be used with integers or double, whereas % can be
used only with integers to find the remainder.

Arithmetic Operator Meaning Examples

+ addition 5 + 2 is 7
5.0 + 2.0 is 7.0

- subtraction 5 - 2 is 3

5.0 - 2.0 is 3.0
* multiplication 5 * 2 is 10

5.0 * 2.0 is 10.0
/ division 5 / 2 is 2

5.0 / 2.0 is 2.5

% remainder 5 % 2 is 1

/

• When applied to two positive integers
• The division operator (/) computes the integral part of the

result of dividing its first operand by its second.
• For example, 7 / 2 = 3.
• The reason for this is that C allows the answer to only have

the same accuracy as the operands. Thus if both operands are
integers, the result will be an integer.

• If one or both operands are double, the answer will be a
double.

• According to the book different C implementations differ on

dividing by a negative number.

• / is undefined when the second operand is 0. 4 / 0 = ??

%

The remainder operator (%) returns the integer remainder of the

result of dividing its first operand by its second.

• Similar to integer division, except instead of outputting
integral portion, outputs remainder.

• According to the book % can give different answers when the
second operand is negative.

• As with division, % is undefined when the second operand is 0.

Data Type of an Expression

The data type of each variable must be specified in its declaration,

but how does C determine the data type of an expression?

• The data type of an expression depends on the type(s) of its

operand. If both are of type int, then solution is of type int.
If either one or both is of type double, then solution is of
type double.

• An expressions that has operands of both int and double is
a mixed-type expression, and will be typed as double.

For a mixed-type assignment, be aware that the expression is

evaluated first, and then the result is converted to the correct type.

Type Conversion through Casts

C is flexible enough to allow the programmer to convert the type
of an expression by placing the desired type in parentheses before

the expression, an operation called a type cast.
For example, (double)5 / 2 is 2.5, not 2 as seen previously.

Expressions with Multiple Operators

• In expressions, we often have multiple operators
• Equations may not evaluate as we wish them to:
• Is x/y ∗ z the same as (x/y) ∗ z or x/(y ∗ z)?

• Unary operators take only one operand, i.e. -5, +3, -3.1415,
etc.

• Binary operators take two operands, i.e. 3 + 4, 7 / 5, 2 * 6,
4

Rules for Evaluating Expressions

a. Parenthese rule: All expressions in parentheses must be
evaluated separately. Nested parenthesized expressions
must be evaluated from the inside out, with the inner-

most expression evaluated first.
b. Operator precedence rule: Operators in the same ex-

pression are evaluated in the following order:
unary +,- first
*,/,& next

binary +,- last
c. Associativity rule: Unary operators in the same subex-

pression and at the same precedence level are evaluated
right to left. Binary operators in the same subexpression
and at the same precedence level are evaluated left to

right.

x = −5 ∗ 4/2 ∗ 3 + −1 ∗ 2

x = (((−5 ∗ 4)/2) ∗ 3) + (−1 ∗ 2)

x = −32

Writing Mathematical Formulas in C

You may encounter two problems in writing a mathematical
formula in C.

• Multiplication often can be implied in a formula by writing

two letters to be multiplied next to each other such as (2a).
The equivalent instruction in C is 2 ∗ a.

• When dealing with division, we often have a+b

c+d
, which should

be written (a + b)/(c + d).

Formatting Numbers in Program Output

• Formatting Values of Type int

• Formatting Values of Type double

• Program Style

C displays all numbers in its default notation unless you instruct it
to do otherwise.

Formatting Values of Type int

Specifying the format of an integer value displayed by a C program
is fairly easy. You simply add a number between the % and d of

the %d placeholder in the printf format string. This number
specifies the field width - the number of columns to use for the
display of the value.

For example

int x = 2345;

printf("6 spaces: %6d, ",x);

printf("4 spaces: %4d, ",x);

printf("2 spaces: %2d, ",x);

2345, 2345, 2345

If the field width is smaller than the number being printed, the
field width is ignored.

Formatting Values of Type double

Printing for double’s is similar for int’s, but now we also need to
specify the number of digits after the decimal that are printed.

The format is: %n.mf, where n is the field width (need to be large
enough to accomodate all digits, both before and after the decimal
point), and m is the number of digits after the decimal to be

printed.

Thus if we have 3.141592 and we had a %.2f we would get 3.14,
there is nothing in front of the . so the field width defaults to the
size of the number, the 2 after the . means to print 2 digits after

the decimal (14).

Program Style

To get rid of the leading blanks, delete the number between % and
d, and delete the number between % and .mf.

Interactive Mode, Batch Mode, and Data Files

• Input Redirection

• Program Style

• Output Redirection

• Program-Controlled Input and Output Files

Definitions

• active mode - the program user interacts with the program
and types in data while the program is running.

• batch mode - the program scans its data from a data file
prepared beforehand instead of interacting with its user.

Input Redirection

In the next frame we will see the miles-to-kilometers conversion

program rewritten as a batch program. We assume here that the
standard input device is associated with a batch data file instead of

with the keyboard. In most systems, this association can be
accomplished relatively easily through input/output redirection
using operating system commands.

Instead of calling the program such as:

c:> conversion

We would call it as:

c:> conversion < mydata

/* Converts distance from miles to kilometers */

#include <stdio.h>

#define KMS_PER_MILES 1.609

int main(void) {

double miles, kms;

scanf("%lf", &miles);

printf("The distance in miles is %.2f.\n", miles);

kms = KMS_PER_MILES * miles;

printf("That equals %.2f kilometers.\n", miles);

return 0;

}

Echo Prints vs. Prompts

In the above program, scanf gets a value for miles from the first

(and only) line of the data file. Because the program input comes
from a data file, there is no need to precede this statement with a

prompting message. Instead, we follow the call to scanf with the
statement

printf("The distance in miles is %.2f.\n",miles);

This statement echo prints or displays the value just stored in
miles and provides a record of the data manipulated by the
program. Without it, we would have no easy way of knowing what

value scanf obtained for miles. Whenever you convert an
interactive program to a batch program, make sure you replace

each prompt with an echo print after the scanf.

Output Redirection

You can also redirect the output of the program to a file instead of

the screen. Then you can send the output file to the printer to
obtain a hard copy of the program output.

The command line:

c:> conversion > outfile

sends the output of the program conversion to the outfile. Now

we can do both input and output redirection by using:

c:> conversion < input file > output file

Program-Controlled Input and Output Files

As an alternative to input/output redirection, C allows a program
to explicitly name a file from which the program will take input
and a file to which the program will send output. The steps

needed to do this are:

1. Include stdio.h

2. Declare a variable of type FILE *.

3. Open the file for reading, writing or both.

4. Read/write to/from the file.

5. Close the file.

#include <stdio.h>

#define KMS_PER_MILE 1.609

int main(void) {

double kms, miles;

FILE *inp, *outp;

inp = fopen("distance.dat","r");

outp = fopen("distance.out","w");

fscanf(inp, "%lf", &miles);

fprintf(outp, "The distance in miles is %.2f.\n", miles);

kms = KMS_PER_MILES * miles;

fprintf(outp, "That equals %.2f kilometers.\n", miles);

fclose(inp);

fclose(outp);

return 0;

}

Common Programming Errors

• Syntax Errors

• Run-Time Errors

• Undetected Errors

• Logic Errors

Errors

• Bugs - Errors in a programs code.

• Debugging - Finding and removing errors in the program.

• When the compiler detects an error, it will output an error
message.

• Difficult to interpret
• Often misleading

• Three types of errors
• Syntax error
• Run-time error
• Undetected error
• Logic error

Syntax Errors

A syntax error occurs when your code violates one or more
grammar rules of C and is detected by the compiler at it attempts

to translate your program. If a statement has a syntax error, it
cannot be translated and your program will not be executed.

Common syntax errors:

• Missing semicolon

• Undeclared variable

• Last comment is not closed

• A grouping character not closed (’(’, ’{’, ’[’)

Run-Time Errors

Run-time errors are detected and displayed by the computer during

the execution of a program. A run-time error occurs when the
program directs the computer to perform an illegal operation, such
as dividing a number by zero or opening a nonexistant file. When a

run-time errors occurs, the computer will stop executing your
program and will display a diagnostic message that indicates the

line where the error was detected.

Undetected Errors

• Many execution errors may not prevent a C program from
running to completion, but they may simply lead to incorrect

results. Therefore it is essential tat you predict the results
your program should produce and verify that the actual
output is correct.

• A very common source of incorrect results in C programs is
the input of a mixture of character and numeric data. Errors
can be avoided if the programmer always keeps in mind the

placeholders.

Logic Errors

Logic errors occur when a program follows a faulty algorithm.
Because logic errors usually do not cause run-time errors and do
not display error messages, they are difficult to detect. The only

sign of a logic error may be incorrect program output. You can
detect logic errors by testing the program thoroughly, comparing

its output to calculated results.

Pre-planning your algorithm with pseudocode or flow-charts will
also help you avoid logic errors.

End of Chapter 2, are there any questions?

