
CSE 105, Lab 7, Summer 2006
cse.unl.edu/∼cstrope/csce105su06/lab/lab7

Instructor: Cory Strope

August 2, 2006

1. Pointers

• A pointer is a variable whose value is a memory address (location).

• The format for a pointer in a printf statement is “%p”.

• Addresses are displayed in hexadecimal (base 16, a.k.a: hex)

• A 32 bit address bus requires 8 hex digits.

• Addresses are preceded by the letters0x which indicates it is being displayed in hex.

2. Declaring Pointers

• The program needs to know the data type that the pointer “points” to. This is indicated by use
of * in the declaration.

type *variableName;

• Example: the pointer namedptNumber is to be declared as pointing to anint .

int *ptNumber;

This indicates that the content of the variable namedptNumber contains the address of an
int .

• Example: the pointer namedptDecimal is to be declared as pointing to adouble .

double *ptDecimal;

This indicates that the content of the variable namedptDecimal contains the address of a
double .

1

3. Getting the content pointed to by a pointer

• To indicate that the content of the memory address containedin a pointer is wanted, * is once
again used. It is used as a unary operator which returns the content of the memory location
pointed to by the pointer following the *.

• Example: this statement requests the integer value pointedat by pointer namedptNumber
which was declared above.

int int_value = *ptNumber;

This returns the content of the variable namedptNumber , which is an integer.

4. Getting the address of a variable

• To indicate that the memory address of a specific variable is wanted, the unary operator & is
used. This operator returns the memory location of the variable following it.

• Example: these statements declare the variables and requests the address of the variablefirstVariable .

double firstVariable;
double *ptVariable;
ptVariable = &firstVariable;

This returns the address of the variable namedfirstVariable , and assigns it to the variable
ptVariable ! Compile source codepointerDemo1.c and run. Note the values printed
to screen. Open the source code file and compare the values printed out at different times.
Compile source codepointerDemo2.c and run. Note the values printed to screen. Open
the source code file and compare the values printed out at different times. How is this program
different frompointerDemo1.c ?

5. Scope: How long does a variable have meaning? A very simplified explanation of “life-time” and
visibility of a variable is as follows

2

• A variable lasts only as long as the block of code in which it was declared in is being executed.
For instance, all variables declared within a user defined function exist only during the function
call. They cease to exist after thereturn statement if the function (or after the last statement
is executed if there is noreturn value).

• Variables declared inside a loop, cease to exist when loop isexited.

• Variables in the calling function are not visable to the called function. This is why you need to
pass variables to them.

• Passing pointers to a function allows the function to alter variables back in the calling function.
These are referred to as output parameters.

• Compile source codescopeDemo3.c . OOPS! There is a bug. What is it and why? Correct
the bug, recompile, and run.

6. Practice problem:

• Write and turn in the change program from homework using onlydollars and quarters (leave
nickels, dimes, and pennies out).

• Write a program to model a simple calculator. Each data line should consist of the next oper-
ation to be performed from the list below and the right operand. Assume the left operand is
the accumulator value (initial value of 0). You need a function scan data with two output
parameters that returns the operator and right operand scanned from a data line. You need a
functiondo next op that performs the required operation.do next op has two input pa-
rameters (the operator and operand) and one input/output parameter (the accumulator). The
valid operators are:

– + add

– - subtract

– * multiply

3

– / divide

– ˆ power (raise left operand to the power of the right operand

– q quit

Your calculator should display the accumulator value aftereach operand. A sample run:

+ 5.0
result so far is 5.0
ˆ 2
result so far is 25.0
/ 2.0
result so far is 12.5
q 0
final result is 12.5

4

