
Algorithms Developing Algorithms Recursion

Basics of Computing – Chapter 5
Algorithms

Cory L. Strope

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Algorithms

Developing Algorithms

Recursion

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Overview

Motivation
Problem Solving

We have talked about multiple problem solving methodologies:

I Two’s complement � binary

I Gate construction using AND, OR, NOT

I Timesharing / Multitasking

I Fetch – Decode – Execute

I Token Ring / Bus protocols

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Overview

Motivation
Problem Solving

Sorting Problem:

I Given a list of numbers:

12 18 5 24 2

I We want to sort the list:

2 5 12 18 24

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Overview

Problem Solving
G. Polya (1945)

Given a problem:
I Four phases of problem solving:

1. Understand the problem
2. Devise plan for solving the problem
3. Carry out the plan
4. Evaluate the solution for accuracy

I Problem solving does not have to be sequential.

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Overview

Problem Solving
Computer Science

Given a problem:
I Develop an approach for solving the problem:

I Understand the problem – What are the preconditions?
Postconditions?

I Devise a solution – Preconditions → . . .→ postconditions.
I Express the solution so that even a computer can understand.
I Check solution for correctness.

I Problem Example: Make Toast!

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Overview

Problem Solving
Toast

1. Acquire bread, toaster and plate.

2. Place 1 piece of bread in toaster.

3. Push lever down.

4. Wait until toaster finishes.

5. Pick up bread

6. Place bread on plate.

7. Repeat until enough toast is made.

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Overview

Problem Solving
Toast

1. Acquire bread, toaster and
plate.

2. Place 1 piece of bread in
toaster.

3. Push lever down.

4. Wait until toaster finishes.

5. Pick up bread

6. Place bread on plate.

7. Repeat until enough toast
is made.

Potential flaws:

1. What if bread is moldy? How do
we handle the situation?

2. Is the toast done well enough?
What setting should the toaster
be on?

3. Is the plate large enough? Is the
hole for the toaster large enough?

4. How many pieces of bread do we
have? How much toast do we
want?

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Overview

Algorithm

Definition
An algorithm is an ordered set of unambiguous, executable steps
that defines a terminating process.

Informal Definition: A collection of steps that does a specific task.

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Algorithms

Developing Algorithms

Recursion

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Representing Algorithms

Methods

There are various methods for representing algorithms:

I A computer program – Algorithms understandable by a
machine.

Algorithms are abstract – They represent concepts.
How do we create physical representations of concepts?

I Programs

I A sequence of pictures

I Flow chart

I Pseudocode

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms





Algorithms Developing Algorithms Recursion

Representing Algorithms

Flow Charts

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Representing Algorithms

Pseudocode

Pseudocode is an outline of a program; an informal representation
of the algorithm with common language.

I Enables you (the “programmer”) to concentrate on the
algorithm.

I Has a structure and syntax that is similar to many modern
programming languages.

I Can be easily converted to a program.

I Is easily understandable by a human (not a machine
language).

Pseudocode will be the preferred method of writing algorithms in
this course.
I will write pseudocode using this font.

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Representing Algorithms

Pseudocode
Comments and Assignment

Comments are non-executable steps of the algorithm, but provide
the programmer with some background information.

I Syntax: // Some comments
I Everything after the // on a line is considered to be a

comment.

I Comments can take an entire line, or simply come after a
valid instructions.

The assignment operator allows us to give a value to some
variable.

I VARIABLE ← VALUE
I For example:

I y ← 32

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Primitives

Pseudocode

There are 3 common models to use in algorithm development:

1. Sequential

2. Decision Making or Selection

3. Repetition

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Primitives

Sequential

Processes happen one after
another, no decisions or
repetitions are necessary.

Syntax:

Step 1

Step 2

etc.

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Primitives

Selection Methods
if-then

There is a single process, either
do or not do.

if(condition) then {
// Perform action

}
condition has only 2
evaluations: true or false.

Note: Operations that are
related to the if statement are
indented.

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Primitives

Choice Methods
if-then-else

Choice between two processes.

if(x = 1) then {
x ← y

} else {
x ← x + 1

}

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Primitives

Choice Methods
switch

Multiple potential options exist, choose
one.

if(hours ≥ 10) then {
grade ← A

} else if(hours ≥ 5) then {

grade ← B

} else {
// No comment...

}

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Primitives

Repetition Methods

Repetition methods, or loops, allow us to execute a set of steps
multiple times. There are two main types of Repetition methods:

I Conditional Loops
I Continuously executes a set of steps while some condition is

true.

I Iterative Loops
I Executes a set of steps a predefined number of times.

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Primitives

Repetition Methods
while

Conditional loop: Repeat an
actions a (unknown) number of
times.

while(condition) do {

// steps

}
When the condition fails, we
continue with the next
sequential instruction after the
loop. Similar to JUMP.

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Primitives

Repetition Methods
for

Iterative loop: You need to repeat an
action a (known) number of times.

for VARIABLE ← BEGIN to END {
// steps

}
VARIABLE starts at BEGIN, and

I increments (for i ← 1 to n) or

I decrements (for i ← 10 to 1)

by 1 every iteration until it reaches END.

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Primitives

Repetition Methods
foreach

Related to the for loops is the foreach loop:

foreach ELEMENT in STRUCTURE {
// do steps

}
A STRUCTURE can be a list of elements. For example:

foreach xi in X {
// do steps

}
where X is a list, and xi is an element in the list.

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Primitives

Pseudocode
Primitive Variable Types

A primitive is a well-defined set of building blocks from which
algorithm representations can be constructed.

I Primitives consist of two parts:

1. Syntax: Symbolic representation
2. Semantics: Meaning of the primitive

I Each of the previous methods is a primitive:
I for, while, if-then, if-then-else, ...

The variables (VARIABLE) are ambiguous:

I y ← 32

I xi , X (i.e. foreach xi in X )

How?

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Primitives

Pseudocode
Primitive Variable Types

Recall chapter 1:

People understand a large number of
symbols:

{a–z, A–z, 0–9, &, %, #, . . .}
{a, aardvark, . . . , zulu, zygote}
Pictures

Sounds

Type and size of text
written

i.e., e.g., et al, etc,̇ etc,̇ etc.

Computers do these processes using
their symbol library:

{0, 1}

0s and 1s are ambiguous! They can be
(for pseudocode):

I Numbers:
I Floating-point (double)
I Two’s complement (int)
I Less commonly: Unsigned binary

I ASCII codes (char)

I Arrays or Lists of double, int,
char (X ).

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Primitives

Pseudocode
Other Statements

Other statements are necessary for a proper pseudocode language:

I Printing: print "Hello"

I Complex Assignment: x ← (y × z) / 2

I Return: return X from a function (next subsection).

If other operations are necessary, the statements need to be
descriptive, clear, and concise.

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Primitives

Pseudocode
Common Tasks

Searching an array for a number, call it num:

X = x[0] x[1] x[2] x[3]

for i ← 0 to 3 do {
if(X[i] = num) {

print "found number"
}

}

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Functions

Pseudocode
Function Header

Algorithms expressed in pseudocode needs to have a header, in the
form:

ALGORITHM_NAME(inputs)

I ALGORITHM_NAME should describe what the algorithm does.

I inputs are the arguments to the algorithm.

For example, given the previous list of numbers
{x1, x2, . . . , xn} ∈ X

SORT(X) {
// the steps of the sort algorithm.

}

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Functions

Pseudocode
Function Calling

The function header and associated pseudocode is called a
function or procedure.

I Functions are subprograms that accomplish a specific task

I Functions can be called within other functions by writing
down the name of the procedure and supplying the inputs.

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Functions

Pseudocode
Function Calling

Given {x0, x1, . . . , xn−1} ∈ X , A list with n elements:

FOO(X,n) {
for i ← 0 to n-1 {

if(xi > xi+1) {
SWAP(X,i,i+1)

}
}

}

SWAP(X, i, j) {

temp ← xi

xi ← xj

xj ← temp

}

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Functions

Pseudocode
Function Return Values

// Print odd numbers
// between start and end.
PRINT_ODD(start, end) {
for i ← start to end {
if(IS_ODD(i)) then {
print(i)

}
}

}

// If num is odd, return true
// otherwise, return false.
IS_ODD(num) {
isOdd ← false
if(num % 2 = 1) then {
// % is modulus
isOdd ← true

}
return isOdd

}

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Functions

Pseudocode
Insertion Sort

To get an idea of how the insertion sort works, run this program on
the list: X = {5, 3, 1, 9, 12, 4, 21, 18, 7, 9}.

INSERT SORT(X,n)

for i ← 0 to n-1 {
iOfLarj ← FIND KEY(X,i,n)

SWAP(X,i,iOfLarj)

}
}

SWAP(X,i,j) {
temp ← X[i]

X[i] ← X[j]

X[j] ← temp

}

FIND KEY(LIST,listStart,listEnd) {
index ← LIST[listStart]

for i ← listStart to listEnd {
if(LIST[i] > index) {

index ← LIST[i]

}
}
return index

}

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms



Algorithms Developing Algorithms Recursion

Programming Paradigms

Motivation
Algorithms

Cory L. Strope: Basics of Computing – Chapter 5 Algorithms


	Algorithms
	Overview

	Developing Algorithms
	Representing Algorithms
	Primitives
	Functions
	Programming Paradigms

	Recursion

