
Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Basics of Computing – Chapter 2
Data Manipulation

Cory L. Strope

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Computer Architecture

Machine Languages

Program Execution

Arithmetic/Logic Instructions

Device Communication
Data/Communication

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Computer Architecture

Machine Languages

Program Execution

Arithmetic/Logic Instructions

Device Communication
Data/Communication

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Components

The basic components that define an electronic digital computer
are:

I Central Processing Unit (CPU)

I Memory

I Input device

I Output device

Unnecessary components:

I Video card

I Modem

I Mass storage (hard drive)

An example of a basic computer is a Calculator.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation





Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Components

Central Processing Unit (CPU)

The CPU is essentially the “brain” of the computer, consisting of
two parts:

I Arithmetic/logic unit (ALU)

I Control unit

The CPU also has registers, which are memory for the immediate
future instructions.

I General purpose
I Special purpose

I Program counter
I Instruction register

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Components

Central Processing Unit (CPU)

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Components

Main Memory

Main Memory:

I A sequence of addressed cells

I Stores information that will be needed in the near future

I Not to be confused with mass storage, which holds data that
will likely not be needed in the immediate future.

There are two types of information that can be used:

I Data – Information that is manipulated

I Instructions – a list of operations for the CPU to perform

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Addition Example: 12 + 10

Setup

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Addition Example: 12 + 10

Step 1: Control Unit Fetches Number from Address Cell 0

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Addition Example: 12 + 10

Step 2: Memory Returns 12 to First Register (Register 0).

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Addition Example: 12 + 10

Step 3: Repeat Process to get Second Number.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Addition Example: 12 + 10

Step 4: Control Unit Activates Addition Circuit.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Addition Example: 12 + 10

Step 5: ALU Receives Registers 0 & 1 as Input, Writes
Result in Register 2.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Addition Example: 12 + 10

Step 6: Store Result in Register 2 to Memory.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Computer Architecture

Machine Languages

Program Execution

Arithmetic/Logic Instructions

Device Communication
Data/Communication

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Overview

1. Introduction to Computer Languages

2. Machine Language Design Issues

3. An Example of Machine Language

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Intro. to Computer Languages

Language
A Definition

From American Heritage Dictionary (Dictionary.com):

Communication of thoughts and feelings through a
system of arbitrary signals, such as voice sounds,
gestures, or written symbols.

Or, specifically for computer science:

A system of symbols and rules used for communication
with or between computers.

Symbols ∈ {0, 1}. Everything is encoded as a 0 or a 1, even rules.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Intro. to Computer Languages

Programming Language
Instructions

Languages provide a framework
for us to construct useful
statements

I These statements are
called instructions.

http://ascii.ws/

For example, instructions encoded in the symbols 0 and 1 in
machine language

1000010111010100011010101101010100

In English:

Add 7 and 12

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Intro. to Computer Languages

Machine Language

The language of computers: Machine Language

Instructions that a computer can execute directly.
Machine language statements are written in a binary
code, and each statement corresponds to one machine
action. Programs are efficient to run, but the absence of
words in commands makes for difficult programming.

We often represent binary strings in hexadecimal.

There is no uniform standard for machine languages.

I Macintosh vs. PC

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Intro. to Computer Languages

Assembly Language

but the absence of words in commands makes for difficult
programming...

Because it is difficult to understand machine language, assembly
language was created to make it easier for programmers.

Machine language: 0011010111111110 (35FE)

vs. Assembly: ST R5, price (ST = store)

Computers do not understand assembly language.

I A converter (called a compiler) reads the assembly language
code and translates the instructions to machine language.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Intro. to Computer Languages

High-Level Languages

Assembly languages also have problems:

I Machine dependent

I Difficult to understand.

High-Level Languages are the current standard for programming:

A programming language that [...] may be more abstract,
easier to use, or more portable across platforms. i.e. A
problem-oriented language requiring little knowledge of
the computer on which it will be run.

Some examples: C++, Ada, Java, Ruby, PERL, Pascal, Basic, C#,
COBOL, PHP, HTML, CGI, etc.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Intro. to Computer Languages

Languages
Comparison

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Intro. to Computer Languages

Programs

A program is a collection of instructions that do a required task.

I A program that adds two numbers and stores the result in a
specific location in memory.

I Computer games.

There are two paradigms for making programs:

1. Build hardware to do a specific task.

2. Store programs that do the specific task.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Intro. to Computer Languages

Programs
Built-in Program Approach

In the Built-in approach, the steps of the program are built into
(the program is stored in) the control unit as part of the machine.

Ms. Pacman, current WR score: 933580

I Makes the design of the machine
simple

I Faster execution time

However,

I Machine is inflexible.

To gain flexibility, we need to make the
program outside of the hardware.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Intro. to Computer Languages

Programs
Stored Program Concept

The stored-program concept came from the realization that the
program instructions can be stored in Main memory, just as data
is.

I A computer program can be changed by changing the
contents of the computer’s memory instead of reprogramming
the control unit.

The CPU deals with each instruction one after another, and keeps
track of which instruction will be executed next.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Intro. to Computer Languages

Machine Languages
A Closer Look

In order to make computers work for us, we need:

1. A set of instructions, and

2. What the computer should do for each instruction.

To apply this to the stored program concept, CPUs are designed to
recognize instructions encoded as bit patterns.

I This collection of instructions along with the encoding system
is called the machine language.

I An instruction expressed in this language is called a
machine-level instruction (machine instruction).

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Intro. to Computer Languages

Machine Language
Machine Instructions

Machine Language: Specifies the collection of instructions along
with how they are encoded in binary.

I The machine language we will consider can be found in
Appendix C.

Machine Instruction: An instruction expressed in the machine
language.

Example: The instruction below:

0001010101101100

or (156C) means: “Load register 5 with the bit pattern found in
memory location 6c.”

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Intro. to Computer Languages

Machine Language
0001010101101100 (156C)

A Machine instruction (such as the one above) needs to contain:

1. The instruction rule (Load)

2. The register number of the CPU

3. The location of the number in the memory.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Intro. to Computer Languages

Machine Language
Instruction Components

Machine language instructions are divided into two parts:

1. Op-code

2. Operand field.

0001︸︷︷︸
op−code

010101101100︸ ︷︷ ︸
operand field

I The op-code specifies the instruction type (Add, Load, etc.)

I The operand field is divided into subparts specifying memory
locations and register numbers.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language Design Issues

Overview

What makes a “good” machine language?

A good machine language should be:

1. Complete: The machine language contains all of the
instructions a program needs to perform its required task,

2. Orthogonal: The machine language does not contain
multiple instructions that accomplish the same thing.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language Design Issues

Design Issues

Three main design issues affect the stucture of any machine
language:

1. Number of Instructions: How many instructions can the
processor understand?

2. Processor Architecture: How many registers are there in the
CPU?

3. Memory Structure: How many cells in main memory?

Each of these issues affect the op-code. How?

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language Design Issues

Design Issues

The design issues may conflict with each other...
I Many instructions:

−→ Computer can do more things with fewer instructions.
but Longer op-code,

Instructions are longer,
More complex circuitry is needed (slow operation)

I Fewer instructions:

−→ Simple circuitry (fast operation)
and Short instructions,
but Need more instructions to do the same task.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language Design Issues

Design Issues
Number of Instructions

Suppose we want to build an artificial machine that adds and
multiplies. We can:

1. Implement two digital circuits, one for addition and one for
multiplication, or

2. Implement addition, and convert the multiplication process
into addition.

3× 4 = 3 + 3 + 3 + 3

Trade-off: Simplicity, speed & redundancy.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language Design Issues

Design Issues
Number of Instructions

This gives rise to two main CPU design philosophies:

1. CISC (Complex Instruction Set Computers):
The CPU has the ability to execute a large number of
complex instructions, even though many of them are
technically redundant.

Ex: Pentium and Athlon series of processors (by Intel and AMD,
respectively).

2. RISC (Reduced Instruction Set Computer):
The CPU executes a minimal set of machine instructions.

Ex: PowerPC series of processors (by Apple Computer, IBM,
Motorola).

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language Design Issues

Design Issues
Machine Instruction Types

A typical machine language should contain basic instructions that
the machine needs to process and store data.

Instruction Types =



Data Transfer =

{
Memory
I/O Devices

Arithmetic/Logic =

{
Add, etc.
AND, OR, etc.

Control =

{
JUMP
BRANCH

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language Design Issues

Virtual Computer
And a Warning...

From this point on, we will describe and make references to a
“virtual computer”.

This “computer” consists of three pieces:

1. Processor

2. Memory

3. I/O Devices

Note:

I This “computer” will serve only as a learning aid.

I Not all computers adhere to the same specifications!

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language Design Issues

Virtual Computer
Processor Architecture

I Instruction Register
(IR): The register that
holds the instruction
that the CPU is
currently executing.

I Program Counter
(PC): The register
that keeps track of the
next instruction that
the CPU should
execute.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language Design Issues

Virtual Computer
Memory Structure

I Each cell in memory can hold 8 bits.

I Each cell has an address (written in hexadecimal for
simplicity).

I Main memory contains 256 cells.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language Design Issues

Virtual Computer
Input/Output Devices

For our virtual computer:

I We assume we can view the main memory.

I We place instructions in the main memory and view the
results in either memory or in the registers.

In essence, we are the I/O devices.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language: An Example

An Illustrative Machine Language

Using the artificial machine language given in Appendix C, we
have:

1. Number of Instruction: There are only 12 instructions.
Op-code length?

2. Processor Architecture: The CPU has 16 registers,
requiring a register address of bits.

3. Memory Structure: The main memory has 256 cells. The
length of the address of each cell is bits.

The final length of each instruction is bits.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language: An Example

An Illustrative Machine Language

The instruction register can hold 16 bits, each memory cell and
general purpose register can hold 8 bits.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language: An Example

An Illustrative Machine Language
Instruction Components

We can now define an instruction:
Total Instruction Length: 16 bits (Same length as IR)

I Op-code Length: 4 bits

I Register Address Length: 4 bits (16 registers)

I Memory Address Length: 8 bits (256 memory cells)

Each of the above instruction portions has a length divisible by 4
−→ Hexadecimal notation.
Thus, for the 16 bit instruction 0001011000111111:

0001︸︷︷︸
1

0110︸︷︷︸
6

0011︸︷︷︸
3

1111︸︷︷︸
F

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language: An Example

An Illustrative Machine Language
Order of Operations

During execution, the computer goes through the following cycle:

1. Fetch – Request the instruction from main memory and place
it in the instruction register (IR).

2. Decode – The control unit decodes the instruction and sets up
the data paths in the processor to execute the instruction.

3. Execute – Execute the instruction.

4. Repeat.

Creatively, this is named the Fetch, Decode and Execute cycle.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language: An Example

Appendix C Instructions

Instruction Breakdown:
I Four data transfer instructions:

I Load, Load Immediate, Store, Move

I Six arithmetic/logic instructions:
I Add integer, Add FP, OR, AND, XOR, Rotate

I One control instruction
I JUMP

I The instruction HALT

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language: An Example

Register Transfer Notation (RTN)
Showing Machine Instructions Actions

Register Transfer Notation is a method to show the actions
taken by each step in the program.

I R[R]: Denotes a Register

I M[XY]: Denotes a Memory Cell

I <left> ← <right>: Set the Register or Memory location on
<left> to the value of the expression on <right>.

I PC: Denotes the Program Counter

I IR: Denotes the Instruction Register

For the following machine instructions, the letters R, S, and T will
be used to stand for register numbers, and X and Y will be used to
denote memory locations and numbers.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language: An Example

LOAD

I Op-code: 1

I Format: 1RXY
I LOAD the register R with the bit pattern found in the memory

cell whose address is XY.

I RTN: R[R] ← M[XY]

I Example: 14A3 (R[4] ← M[A3])
I LOAD R[4] with the contents of M[A3].

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language: An Example

LOAD Immediate

I Op-code: 2

I Format: 2RXY
I LOAD the register R with the bit pattern XY.

I RTN: R[R] ← XY

I Example: 24A3 (R[4] ← A3)
I LOAD R[4] with the hexadecimal value A3 (10100011).

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language: An Example

STORE

I Op-code: 3

I Format: 3RXY
I STORE the bit pattern found in register R in the memory cell

whose address is XY.

I RTN: M[XY] ← R[R]

I Example: 3C15 (M[15] ← R[C])
I STORE the bit pattern in R[C] in M[15].

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language: An Example

MOVE

I Op-code: 4

I Format: 40RS
I MOVE the bit pattern found in register R to register S.

I RTN: R[R] ← R[S]

I Example: 405E (R[5] ← R[E])
I MOVE the bit pattern in R[5] to R[E].

I Always has a 0 in the second hex character.

I Name is misleading. COPY would be more accurate.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language: An Example

ADD INTEGER

I Op-code: 5

I Format: 5RST
I ADD the bit patterns in registers S and T as though they were

two’s complement representations and place the result in
register R.

I RTN: R[R] ← R[S] +2 R[T]

I Example: 5423 (R[4] ← R[S] +2 R[T])
I ADD the two’s complement bit patterns in R[2] and R[3] and

place the result in R[4].

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language: An Example

ADD FP

I Op-code: 6

I Format: 6RST
I ADD the bit patterns in registers S and T as though they were

floating point representations and place the result in register R.

I RTN: R[R] ← R[S] +FP R[T]

I Example: 64AE (R[4] ← R[A] +FP R[E])
I ADD the FP bit patterns in R[A] and R[E] and place the result

in R[4].

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language: An Example

OR

I Op-code: 7

I Format: 7RST
I OR the bit patterns in registers S and T and place the result in

register R.

I RTN: R[R] ← R[S] OR R[T]

I Example: 7C26 (R[C] ← R[2] OR R[6])
I OR the bit patterns in R[2] and R[6] and place the result in

R[C].

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language: An Example

AND

I Op-code: 8

I Format: 8RST
I AND the bit patterns in registers S and T and place the result

in register R.

I RTN: R[R] ← R[S] AND R[T]

I Example: 8534 (R[5] ← R[3] AND R[4])
I AND the bit patterns in R[3] and R[4] and place the result in

R[5].

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language: An Example

XOR

I Op-code: 9

I Format: 9RST
I XOR the bit patterns in registers S and T and place the result

in register R.

I RTN: R[R] ← R[S] XOR R[T]

I Example: 9CAB (R[C] ← R[A] XOR R[B])
I XOR the bit patterns in R[A] and R[B] and place the result in

R[C].

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language: An Example

ROTATE
I Op-code: A

I Format: AR0X
I ROTATE the bit pattern in register R one bit to the right X

times. Each time, take the least significant bit and place it as
the most significant bit.

I RTN: ROTATE(R[R], X)

I Example: A301 (ROTATE(R[3], 1))
I ROTATE the bit pattern in R[3] one bit to the right 1 time.

01110001 −→ 10111000

I The third hex character will always be 0.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language: An Example

JUMP
I Op-code: B

I Format: BRXY
I If the bit patterns in registers R and 0 are the same, then

JUMP to the instruction at memory location XY. Otherwise,
continue with the normal sequence of instructions.

I RTN: If branch is true, PC = XY. If not, Nothing.

I Example: B212
I If the bit patterns in R[2] and R[0] are the same, then JUMP

to the instruction at M[12]. Otherwise, do nothing.

I The JUMP is accomplished by placing the bit pattern XY in
the Program Counter (PC).

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language: An Example

HALT

I Op-code: C

I Format: C000
I Stop execution.

I RTN: HALT

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language: An Example

Virtual Computer
Programming

We will now build machine language programs. But, before we do
so:

1. The CPU can access only the bits that are stored inside its
registers.

2. Registers in the CPU hold data temporarily. Thus, to “store”
the result of adding two numbers, the CPU should STORE
this result in main memory.

3. Every program we write should end with the HALT instruction
(C000), so the CPU knows we are done.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language: An Example

Virtual Computer
Writing a Program

Write a program in the machine language from Appendix C that
adds the two’s complement numbers located at memory addresses
6C and 6D in memory. Store the result in memory cell 6E.

Step 1: LOAD the first number from the memory cell 6C to one of the
registers in the CPU, call it register 2.

Step 2: LOAD the second number from the memory cell 6D to
another register in the CPU (R3).

Step 3: ADD the contents of the two registers and place the result in
a third register (R0).

Step 4: STORE back the result from the third register into the
memory cell 6E.

Step 5: HALT.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language: An Example

Virtual Computer
Writing a Program

Step 1: LOAD the first number from the memory cell
6C to one of the registers, call it register 2

−→126C

Step 2: LOAD the second number from the memory cell
6D to another register in the CPU, (R3).

−→136D

Step 3: ADD the contents of the two registers and place
the result in a third register, (R0).

−→ 5023

Step 4: STORE the result from the third register into
the memory cell 6E

−→306E

Step 5: HALT −→C000

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Language: An Example

Virtual Computer
Next Steps:

We have just written a small program in the
machine language from Appendix C. Now, we will
examine how the CPU executes the program we
wrote.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Computer Architecture

Machine Languages

Program Execution

Arithmetic/Logic Instructions

Device Communication
Data/Communication

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Virtual Computer

The Machine Cycle

Machine Cycle: A three-step process that the control unit in the
CPU performs every time it executes an instruction:

1. Read the instruction from memory (Fetch).

2. Translate the instruction (Decode).

3. Perform the instruction (Execute).

Note: This is done with the stored-program concept. We will
assume that we know the address of the cell that has the first
instruction of the program. Later, we will learn that the Operating
System actually does this.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Virtual Computer

The Machine Cycle

Fetch
Retrieve the

instruction from

memory (as indicated

in the PC) and

increment the PC (i.e.

point it to the next

instruction in the

program).

Decode
Decode the bit pattern

in the instruction

register.

Execute
Perform the action

requested by the

instruction in the

instruction register.

Repeat until reaching the HALT instruction.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Virtual Computer

The Machine Cycle
Comments about the Program Counter

I The CPU increments the program counter at the same time it
reads the current instruction.

I When the CPU starts a new cycle, it finds the address of the
next instruction (already in the PC).

I The architecture of the machine defines the amount by which
the PC is incremented.

I In our machine, each instruction will be stored in two cells in
the memory. Why?

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Virtual Computer

The Machine Cycle
Comments about the Program Counter

I The CPU increments the program counter at the same time it
reads the current instruction.

I When the CPU starts a new cycle, it finds the address of the
next instruction (already in the PC).

I The architecture of the machine defines the amount by which
the PC is incremented.

I In our machine, each instruction will be stored in two cells in
the memory. Why?

I Each instruction is 16 bits long, while each cell in the
memory can only hold 8 bits. Thus, to get to the next
instruction, skip 2 steps.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Virtual Computer

Load the Program to Memory

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Virtual Computer

Fetch
Step 1, Load IR

Registers are 16 bits, cells are 8 bits. Load IR with 2 memory cells.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Virtual Computer

Fetch
Step 2, Increment PC

Increment PC by 2 cells.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Virtual Computer

Decode
Control Unit Analyzes Instruction in IR for Command

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Virtual Computer

Execution
Machine LOADs Register 2 with Contents of Memory Cell at Address 6C

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Virtual Computer

Repeat Cycle: Fetch
Step 1, Load IR

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Virtual Computer

Repeat Cycle: Fetch
Step 1, Increment PC

Etc., etc., etc.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Super Machine

The Super Machine

Comments about the Super
Machine:

I Recognizes the machine
language from Appendix C

I Can Save and Load
programs (Useful for the
homework).

I “Assembly Code” is not
equivalent to RTN!

For our purposes, we would like
the Super Machine execute a
full instruction at a time.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Super Machine

The Super Machine

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Super Machine

The Super Machine
HINTS

Some hints about programming for the Super Machine:

I START EARLY!!! Leaving a programming assignment until
the last day is the surest path to getting no credit.

I Get an idea of the program. For example, 3 × 4 is the same
as 3 + 3 + 3 + 3. Seems easy? You need 4 registers to
perform this...

I Work problems on paper first! The super machine is not
intuitive, just as machine language is not intuitive. You will
solve problems much faster by doing them on paper first.

I You have 16 registers, which gives you 16 variables you can
play with. Use them.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Super Machine

The Super Machine
Examples

In the book, all of the problems will be good examples to watch.

I For example, problem 17, p. 112 (Course Documents,
Chapter Notes, Chapter 2, problem17.smo)

I 3 × 4: Same place.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Us as a Computer: Method of “Running” Program

“Running” a Program
Table view

Since we are the I/O devices, we need a method to represent the
operations that the virtual computer is running. We do this by
keeping track of the elements below in a table:

1. The Program Counter,

2. The Instruction Register, and

3. The Action taken (i.e., RTN)

Each of the above elements is one column in the table.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Us as a Computer: Method of “Running” Program

“Running” a Program
Table view

For example, in the previous program:
PC IR RTN

A0 Program Begins.
A2 126C R[2] ← M[6C]
A4 136D R[3] ← M[6D]
A6 5023 R[0] ← R[2] +2 R[3]
A8 306B M[6B] ← R[0]
AA C000 HALT

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Us as a Computer: Method of “Running” Program

“Running” a Program
Odds and Ends

In the previous program, note:

I Each row in the table is written after the
Fetch-Decode-Execute cycle has occurred.

I The first entry shows the beginning point of the program (i.e.,
where the PC begins). At this point, the IR is empty.

I The program ends with the HALT statement.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Computer Architecture

Machine Languages

Program Execution

Arithmetic/Logic Instructions

Device Communication
Data/Communication

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Instruction Types
Arithmetic/Logic Instructions

Instruction Types =



Data Transfer =

{
Memory
I/O Devices

Arithmetic/Logic =

{
Add, etc.
AND, OR, etc.

Control =

{
JUMP
BRANCH

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Machine Instruction Types
Arithmetic/Logic Instructions

Arith/Log Ops =



Logic =


AND
OR
XOR

Rotation/Shift =

{
Rotate bits left and right
Shift bits left and right

Arithmetic =

{
Add two′s complement
Add floating point format

All instructions are applied on registers only!!

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Rotation and Shift Operations

ALU

The basic idea of rotation and shift operations is to move the bit
pattern in a given register either to the left or the right.

I A Rotations operation is also known as a circular shift.

Idea:

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Rotation and Shift Operations

ALU
Rotation

Rotation is when we feedback the floating bit to the hole in the
shifted sequence.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Rotation and Shift Operations

ALU
Shift

Another shift is the logical shift, in which we always fill the hole
with a 0.

Arithmetic Shift: In cases where we care about the sign bit, we
fill the hole with whatever the previous bit was.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Logic Operations

Logic
Application

Recall that one of the steps in converting a floating-point format
number into decimal notations is to extract the exponent of the
8-bit floating-point number:

01101111

How can computers extract these three bits?

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Logic Operations

Masking

Computers can isolate bits using a process called masking:
I Masking is a process that is used to manipulate data,

involving two operands
I Data
I Mask – A bit pattern of 1s and 0s

I We have three logic operations that we can apply for masking:
AND, OR, XOR

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Logic Operations

Masking
Extracting the Exponent

We want to extract only the 2nd, 3rd, and 4th bit.

I If a bit is a 1, we want to get a 1, if a bit is 0, we want to get
a zero.

For any of the other bits:

I Regardless of the bit value, we want it to be a zero.

What logical operation does this sound like?

Using this logical operation, what should the mask be?

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Logic Operations

Masking
Extracting the Exponent

01101111←− Data
AND 01110000←− Mask

01100000←−Result

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Logic Operations

Masking
Result of Logical Operations

Using a mask with each of the logical operations produces a
unique result:

AND
I Duplicates part of a string while placing 0s in the

non-duplicated part.

OR
I Duplicates part of a string while placing 1s in the

nonduplicated part.

XOR
I Used to complement a bit string.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Logic Operations

Examples

I Page 101, number 6:
I What logical operation together with what mask can you use

to change ASCII codes of lowercase letters to uppercase?
What about uppercase to lowercase?

I Page 101, number 2,3:
I Suppose you want to isolate the middle four bits of a byte by

placing 0s in the other four bits without disturbing the middle
four bits. What mask must you use together with what
operation?

I Suppose you want to complement the four middle bits of a
byte while leaving the other four bits undisturbed. What mask
must you use together with what operation?

I Other:
I How can we multiply an 8-bit number by 2? By 16?
I How can we divide an 8-bit number by 2? By 8?

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Computer Architecture

Machine Languages

Program Execution

Arithmetic/Logic Instructions

Device Communication
Data/Communication

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Data/Communication

Definition
Device Communication: The process of sending and receiving data
between two entities.

This definition does not specify the transmission medium.

I Wireless (air),

I Wired (telephone wire),

I Optical (optical wires)

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Data/Communication

Communication Rates

A crucial property of any communication system is the rate by
which the channel can transfer bits from the sender to the receiver.

I The rate at which bits are transferred to the receiver is
measured in bits per second (bps).

I Common units:
I Kbps (1000 bps),
I Mbps (1 million bps),
I Gbps (1 billion bps)

The maximum rate that a communication channel has is often
equated to the communication channels bandwidth.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Data/Communication

Communication Channel Types
Parallel and Serial Communication

Communication in computers occur through communication
channels. There are two methods of communication:

Parallel – Several bits are transferred at the same time, each on a
separate line.

I Capable of transferring data rapidly (on the order of Mbps
and higher).

I Requires a complex communication channel.

I Examples: The computers bus.

I In general, much of the communication between the computer
and its peripheral devices is parallel.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Data/Communication

Communication Channel Types
Parallel and Serial Communication

Serial – Only one bit at a time is transferred.

I Slower transmission.

I Possible to do using a simple data channel. Bits transferred
one after another.

I Communication between computers is usually serial
(telephone wires are serial communication systems).

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Data/Communication

Communication between Computers
Digital Computer vs. Analog Phone Line

Computers are connected together using the pre-existing
technology of analog phone lines.

I The challenge, at the time, was making the digital computer
able to transfer data over an analog system.

I The modem is the interface between your computer and
phone line that takes the digital signal, and translates it to an
analog signal.

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation



Computer Architecture Machine Languages Program Execution Arithmetic/Logic Instructions Device Communication

Data/Communication

Questions over Chapter 2?

Cory L. Strope: Basics of Computing – Chapter 2 Data Manipulation


	Computer Architecture
	Components
	Addition Example: 12 + 10

	Machine Languages
	Intro. to Computer Languages
	Machine Language Design Issues
	Machine Language: An Example

	Program Execution
	Virtual Computer
	Super Machine
	Class: Method of ``Running'' Program

	Arithmetic/Logic Instructions
	Rotation and Shift Operations
	Logic Operations

	Device Communication
	Data/Communication


