
Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Basics of Computing – Chapter 1.4-1.7
Data Representation

Cory L. Strope

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Overview of Computers
Symbols

People understand a large number of symbols:

{a–z, A–z, 0–9, &, %, #, . . . }
{a, aardvark, . . . , zulu, zygote}
Pictures

Sounds

Type and size of text written

i.e., e.g., et al, etc,̇ etc,̇ etc.

Computers do these processes using their symbol library:

{0, 1}
Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Overview of Computers
Binary

Binary is a base-2 number system having only 2 symbols, {0, 1}.
I Used to represent all information on a computer
I Combining binary symbols allow us to more representational

I bit: 0/1, short for binary digit
I byte: 8 bits
I kilobyte (KB): 1024 (210) bytes
I megabyte (MB): 1024 kilobytes, (220) bytes
I gigabyte (GB): 1024 megabytes, (230) bytes
I terabyte (TB): 1024 gigabytes, (240) bytes

240 = 1099 511 627 776

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Overview of Computers
Binary / Hexadecimal

Binary strings can get very long and are difficult to “read” for
people.
Hexadecimal is a base-16 number system, which works as a more
compact representation of binary:

Decimal Bin. Hex (0x)
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7

Decimal Bin. Hex (0x)
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Representing Information as Bit Patterns

The Binary System

Hexadecimal System

Storing Integers

Storing Fractions

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Representing Information as Bit Patterns
Types of Information

Computers represent 4 major types of data:

1. Text

2. Numeric Values

3. Images

4. Sound

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Text

− · − · · − − − · − · − − − − · · ·
01001000 01100101 01101100 01101100 01101111 00101110

Text is normally represented by means of a code.

I ASCII http://www.lookuptables.com/: Uses 8 bits to
encode all keyboard characters, as well as non-visible
characters, such as carriage returns (<enter>).

I Unicode http://www.unicode.org/: Uses 16 bits to
represent up to 65536 bit patterns – enough for Chinese,
Japanese, Hebrew, ...

I ISO: Uses 32 bits. Can encode billions of different symbols.

Why not use only ISO or Unicode?

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

http://www.lookuptables.com/
http://www.unicode.org/

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Text

Text Code
Hello.

I ASCII:
01010100 01101010 01101101 01100101 00100110 01010011 01110000 01100001 01100011 01100101

I Unicode:
0000000001010100 0000000001101001 0000000001101101 0000000001100101 0000000000100110

0000000001010011 0000000001110000 0000000001100001 0000000001100011 0000000001100101

I ISO: no way.

I Symbols: Time&Space

Space: ASCII is 4× smaller than ISO; 2× smaller than Unicode.
Time: Often, one needs to use multiple keystrokes to make one
symbol in larger character sets.

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Numeric Values

Representation of Numeric Values

Character encoding is inefficient when storing purely numeric
values (not to mention, inconvenient).

I Using bits is simply a different way to count. For example,
below we can match each bit pattern of a certain length to a
corresponding decimal number:

Bit pattern Decimal number

000 0
001 1
010 2
011 3

I 25 →
00110010 00110101
11001

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Numeric Values

Representation of Numeric Values
Binary numbers
 Decimal numbers?

We need to be able to represent any (positive) integer in binary,
and vice versa.

I The decimal system (base-10), representing 375:

0 3 7 5
× 103 102 101 100

= 0 + 300 + 70 + 5

I Each position is named, e.g. the 102 position is named the
hundreds position.

Binary is base-2... What changes?

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Numeric Values

Representation of Numeric Values
Binary numbers
 Decimal numbers?

1. Naming of positions:

Most significant bit → 1 0111011 1 ← Least significant bit.

2. The (unsigned) binary system (base-2), representing 25:

1 1 0 0 1
× 24 23 22 21 20

(16) (8) (4) (2) (1)

= 16 + 8 + 0 + 0 + 1

3. Number of positions: How many positions do we need to
represent a decimal number? (i.e. What is the range of values
that can be represented by n bits?)

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Numeric Values

Representation of Numeric Values
Binary numbers
 Decimal numbers?

The range of values that can be represented with n bits in the
unsigned binary system:

I n = 1: 0, 1→ 2 values, {0, 1}.
I n = 2: 00, 01, 10, 11→ 4 values, {0, 1, 2, 3}.
I n = 3: 000, 001, 010, . . . , 110, 111→ 8 values {0, 1, . . . , 7}.

In general, n bits can be used to represent 2n numbers ranging
from 0 . . . 2n − 1.

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Numeric Values

Representation of Numeric Values
Conversion of Numbers from Decimal to Binary

Converting a decimal number to binary is done by repeatedly
dividing the number by 2 and writing down the remainder, until
the number is equal to 0. Write remainders from bottom to top.

Given the number 13, convert to binary:

I 13
2 = 6 r 1

I 6
2 = 3 r 0

I 3
2 = 1 r 1

I 1
2 = 0 r 1

Thus, 13 in base-10 is 1101 in base-2.

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Images

Representation of Images

Given an image, how can we represent it in binary?

I Bitmap
I Picture is broken up into small units, called picture elements

(or pixels).
I Disadvantage: Cannot be rescaled.

I Vector
I Image is represented as a collection of lines and curves.

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Images

Representation of Images
Bitmaps – Black and White

http://www.exzooberance.com

I The smallest representation of
pictures is 1 bit / pixel.

0 0 1 1 0 0

0 1 0 0 1 0

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

I 0 (white), 1 (black).

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Images

Representation of Images
Bitmaps – Grayscale

I A more accurate representation for
images is grayscale, 1 byte / pixel:

00 00 FF FF 00 00
00 FF 00 00 FF 00
FF 00 00 00 00 FF
00 FF 00 00 FF 00
00 00 FF FF 00 00

I This is very popular for wedding
pictures!

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Images

Representation of Images
Bitmaps – Color

I Color pictures, 3 bytes / pixel:

000000 000000 FFFFFF FFFFFF 000000 000000
000000 FFFFFF 000000 000000 FFFFFF 000000
000000 FFFFFF 000000 000000 000000 FFFFFF
000000 FFFFFF 000000 000000 FFFFFF 000000
000000 000000 FFFFFF FFFFFF 000000 000000

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Images

Representation of Images
Bitmaps – Issues

Size of each image:

I width = 512 pixels,

I height = 768 pixels.

size = w × h × bits

I 512× 768× 1 = 393216 bits or 49152 bytes.

I 512× 768× 8 = 3145728 bits or 393216 bytes.

I 512× 768× 8× 3 = 9437184 bits or 1179648

bytes.

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Images

Representation of Images
Bitmaps – Issues

Bitmaps do not rescale well, giving the
image a “grainy” appearance.

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Sounds

Representation of Sound
Types of Sound

Sound (IRL) is an analog signal.

I Continuous

I Wave-like

http://www.cs.wfu.edu/∼burg/

How can we convert a wave to a binary representation?

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Sounds

Representation of Sound
Analog to Digital Conversion – Sampling

Sampling the analog signal (wave) at regular intervals.
I CD: 44100 samples / second (i.e. 44.1 kHz), 16 bits / sample
I A CD has 700 MB capacity, so the maximum playing time of

a CD should be:(
700MB× 1024 KB

MB × 1024 B
KB × 8 b

B

44100 sample
s × 16 b

sample

)
/60

s
min

= 138.7minutes.

However, CDs only hold 80 minutes of audio. This is because
CDs use 14 bits / byte.

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Representing Information as Bit Patterns

The Binary System

Hexadecimal System

Storing Integers

Storing Fractions

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Binary System
Overview

I Binary Notation

I Binary Addition

I Fractions in Binary

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Binary Notation

Binary Notation
Review

I A binary number of n bits can represent 2n numbers with
values ranging from 0 . . . 2n − 1.

I Binary Format: xi ∈ {0, 1}, for each position i
xn−1 . . . x2 x1 x0

× 2n−1 . . . 22 21 20

xn × 2n−1 + . . . + x3 × 22 + x2 × 21 + x1 × 20

I 1111
I n = 4, 2n−1 = 16
I (1× 8) + (1× 4) + (1× 2) + (1× 1) = 15

I 25
16 8 4 2 1

16 + 8 + 0 + 0 + 1 = 25

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Binary Addition

Binary Addition
Rules of Addition

There are four important rules we need for binary addition:

0
+0

0

0
+1

1

1
+0

1

1
+1

10

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Binary Addition

Binary Addition
Addition Example: 11 + 14 = 25

Binary addition proceeds much like base-10 addition:

I Proceeds from right to left (least significant bit to most
significant bit)

I Has a carry bit

1011
+1110

1

11
1011

+1110

01

111
1011

+1110

001

1111
1011

+1110

11001

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Fractions in Binary

Fractions in Binary
Conversion

110 .︸︷︷︸
∗

011

* = radix point

I The “Integer” portion of binary is to the left of the radix
point.

I Digits to the right represent the fractional part, and are
interpreted with fractional values:

1 1 0 . 0 1 1
× 22 21 20 2−1 2−2 2−3

4 + 2 + 0 + 0 + 1
4 + 1

8 = 63
8

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Representing Information as Bit Patterns

The Binary System

Hexadecimal System

Storing Integers

Storing Fractions

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Hexadecimal System

Computer representation of data often deals with long strings of
bits...

I Binary representation is
not very readable.

I To minimize the number
of symbols, binary streams
are often represented in
Hexadecimal.

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Hexadecimal System
Hexadecimal Notation

Hexadecimal (hex) is a base-16 number system → 16 symbols:

{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}

Conversion from binary to hex is simple:

I Split binary string into 4 bit segments (Starting from least
significant bit.)

I Find base-10 value of each segment

I Replace base-10 value with hex equivalent.

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Hexadecimal System
Hexadecimal Conversion

Binary↔Decimal↔Hex
0000 ↔ 0 ↔ 0
0001 ↔ 1 ↔ 1
0010 ↔ 2 ↔ 2
0011 ↔ 3 ↔ 3
0100 ↔ 4 ↔ 4
0101 ↔ 5 ↔ 5
0110 ↔ 6 ↔ 6
0111 ↔ 7 ↔ 7
1000 ↔ 8 ↔ 8
1001 ↔ 9 ↔ 9
1010 ↔ 10 ↔ A
1011 ↔ 11 ↔ B
1100 ↔ 12 ↔ C
1101 ↔ 13 ↔ D
1110 ↔ 14 ↔ E
1111 ↔ 15 ↔ F

Binary to Hex:
0010︸︷︷︸

2︸︷︷︸
2

1001︸︷︷︸
9︸︷︷︸
9

1111︸︷︷︸
15︸︷︷︸
F

0110︸︷︷︸
6︸︷︷︸
6

1101︸︷︷︸
13︸︷︷︸
D

0000︸︷︷︸
0︸︷︷︸
0

1011︸︷︷︸
11︸︷︷︸
B

Hex to Binary:
5︸︷︷︸
5︸︷︷︸

0101

A︸︷︷︸
10︸︷︷︸
1010

6︸︷︷︸
6︸︷︷︸

0110

E︸︷︷︸
14︸︷︷︸
1110

C︸︷︷︸
12︸︷︷︸
1100

1︸︷︷︸
1︸︷︷︸

0001

3︸︷︷︸
3︸︷︷︸

0011

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Representing Information as Bit Patterns

The Binary System

Hexadecimal System

Storing Integers

Storing Fractions

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Storing Numbers

I Storing Integers
I Two’s Complement
I Excess Notation

I Storing Fractions
I Floating Point Notation
I Truncation Error

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Storing Integers

To this point, we have only been concerned with positive, or
unsigned, binary integers.

How can we make negative numbers?

I In Decimal:
15

voila!−→ – 15

The minus sign can denote a negative value.

I In binary, however, we do not have a ‘−’ symbol...

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Representing Positive and Negative

Two’s Complement

Two’s Complement is one solution to this problem.

I Interpret the most significant bit as a positive or negative:

1 00101100010110

This bit is called the sign bit,
I ‘1’ denotes negative,
I ‘0’ denotes positive.

I 10110 is negative, 010110 is positive.

Are we done?

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Representing Positive and Negative

Two’s Complement

It is a little more complex than that. The actual method is:

Definition
Start at the least significant bit (right) and copy down each bit
until you reach the first ‘1’. Copy down that ‘1’ as well.
For the rest of the binary number, copy down the complement of
each bit for the remainder of the bit pattern.

The complement of a bit pattern is:

Bit Complement

1 0
0 1

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Representing Positive and Negative

Two’s Complement
The procedure for negating

Bit Value
pattern represented
0111 7
0110 6
0101 5
0100 4
0011 3
0010 2
0001 1
0000 0
1111 -1
1110 -2
1101 -3
1100 -4
1011 -5
1010 -6
1001 -7
1000 -8

Example: 0110→1010 (6→ −6)
Original Action Comp? 2’s Comp.
0110 0: Copy. N 0
0110 1: First 1, copy. N→Y 10
0110 1: Complement. Y 010
0110 0: Complement. Y 1010

Example: 0101→1011, (5→ −5)
Original Action Comp? 2’s Comp.
0111 1: First 1, copy N→Y 1
0101 0: Complement. Y 11
0101 1: Complement. Y 011
0101 0: Complement. Y 1011

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Representing Positive and Negative

Two’s Complement
Conversion from base-10

There are two cases:

1. base-10 number ≥ 0:
I Convert to unsigned binary

14 = 01110

�

2. base-10 number < 0:
I Convert to unsigned binary

−14 = −01110

I Take 2’s complement

01110
2′s comp.−→ 10010

�

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Representing Positive and Negative

Two’s Complement
Conversion to base-10

Again, two cases:

1. 2’s complement number most significant bit = 0:
I Convert to base-10 as done for unsigned binary

01101 = 13

�

2. 2’s complement number most significant bit = 1:
I Take 2’s complement

10011 = 01101

I Convert to base-10 as done for unsigned binary

01101 = 13

I Place a ‘−’ to the front of the base-10 number

−13

�

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Representing Positive and Negative

Two’s Complement
Two’s Complement vs. Unsigned Binary Notation

Given a bit pattern with n bits:

Unsigned Binary 2’s Complement

Number of
integers 2n 2n

represented

Range of
integers [0, 2n − 1] [−2n−1, 2n−1 − 1]
represented

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Representing Positive and Negative

Two’s Complement
Addition in Two’s Complement

Addition in 2’s complement is very similar to Binary addition, except that all
bit patterns (even the answer) must be the same length:

1011
+1110

1

11
1011

+1110

01

111
1011

+1110

001

1111
1011

+1110

11001

Any values beyond our range are dropped. Above: −5 +−2 = −7!

0111
+1011

0

11
0111

+1011

10

111
0111

+1011

001

1111
0111

+1011

10001

7− 5 = 2.

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Representing Positive and Negative

Two’s Complement
Overflow – Computers make mistakes.

0111
+0110

1

11
0111

+0110

01

111
0111

+0110

101

1111
0111

+0110

1101

7 + 6 = −3... What Happened???

I One problem with 2’s complement notation is the idea of overflow.

I 2’s complement can represent the range [−2n−1, 2n−1 − 1]. Any

addition/subtraction that results in a number other than that range will

cause overflow.

I Occurs when adding 2 positive or 2 negative numbers.

I Can be detected by checking the sign bit after an operation.

Fix: Use larger bit patterns.

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Representing Positive and Negative

Excess Notation

Another method for representing integer values
is excess notation.
All bit patterns must be of the same length.

I Choose a pattern length to be used.

I Write down all the different bit patterns of
that length (as done in counting)

I The pattern with a ‘1’ followed by all
zeroes is the zero value.

Two’s complement vs. Excess: Sign bits are
reversed.

Excess-8 notation:
Bit Value
pattern represented
1111 7
1110 6
1101 5
1100 4
1011 3
1010 2
1001 1
1000 0
0111 -1
0110 -2
0101 -3
0100 -4
0011 -5
0010 -6
0001 -7
0000 -8

Binary value − decimal value = 8.

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Representing Positive and Negative

Excess Notation
Excess-C

I Excess-2 → 2 bits

I Excess-4 → 3 bits

I Excess-8 → 4 bits

I Excess-16 → 5 bits

I Excess-32 → 6 bits

I and so on...

Excess-C Binary
0 value value Difference

10 2 2
100 4 4

1000 8 8
10000 16 16

100000 32 32
...

...
...

Rule: The number, ‘C’, is equal to the value of the most
significant bit in the excess-C bit pattern!

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Representing Positive and Negative

Excess Notation
Excess-C vs Two’s Complement

Given a bit pattern with n bits:

2’s Complement Excess

Number of
integers 2n 2n

represented

Range of
integers [−2n−1, 2n−1 − 1] [−2n−1, 2n−1 − 1]
represented

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Representing Positive and Negative

Excess Notation
Excess-C
 Base-10

base-10 −→ Excess-C

1. Choose appropriate length
bit pattern

2. Add the value ‘C’ to the
base-10 number

3. Convert the resulting
base-10 number to
unsigned binary.

�

Excess-C −→ base-10

1. Convert excess-C number
to base-10

2. Subtract ‘C’ from the
base-10 number.

�

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Representing Information as Bit Patterns

The Binary System

Hexadecimal System

Storing Integers

Storing Fractions

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Storing Fractions
Overview

Using integers, we only needed to represent a pattern of 1’s and
0’s. Fractions also need to represent the position of the radix point.

Floating-point notation: Based on Scientific notation (i.e.
−4.357× 10−2 = −0.04357)

I There are three parts to Scientific notation:
1. Sign: ±
2. Mantissa: Number pattern
3. Exponent: Power

−︸︷︷︸
sgn

4.357︸ ︷︷ ︸
mantissa

×10

exp︷︸︸︷
−2

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Storing Fractions in Binary

Floating Point Notation
Binary Representation

The general format of a floating point number in binary is:

sgn mantissa× 2exponent

Sign: (±)
Exponent:

I Positive or negative

I Integer

Mantissa:

I Positive number

I Where is the radix
point?!?

How can we represent each of these parts?

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Storing Fractions in Binary

Floating Point Notation
Binary Representation

We will use one byte to store fractions1:

1︸︷︷︸
sgn

1 1 1︸ ︷︷ ︸
exponent

. 1 1 1 1︸ ︷︷ ︸
mantissa

The eight bits are represented using:

I Sign: 1 bit, ‘0’ = positive, ‘1’ negative

I Exponent: 3 bits, using excess-4 notation

I Mantissa: 4 bits... Radix point is placed on the left side of the
mantissa!

1Machines often use much larger representations, 32- or 64-bit.

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Storing Fractions in Binary

Floating Point Notation
Floating-point → base-10 – 11011101

1︸︷︷︸
sgn

1 0 1︸ ︷︷ ︸
exponent

. 1 1 0 1︸ ︷︷ ︸
mantissa

Sign bit = 1 → −

Mantissa = .1101
shift−→ 1.101

1 . 1 0 1
× 20 2−1 2−2 2−3

1 + 1
2 + 0 + 1

8 = 1 5
8

Finally, adding the sign bit,

11011101 = −1
5

8

Exp val shift
111 3 3
110 2 2

101 1 1
100 0 0
011 -1 -1
010 -2 -2
001 -3 -3
000 -4 -4

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Storing Fractions in Binary

Floating-point Notation
base-10 → Floating-point – 2 1

4

21
4

binary−→ 1 0.01

Copy to mantissa, starting
from leftmost 1: (1 0.01)

0 1 0 1 . 1 0 0 1

.1001 −→ 10.01, shift = +2.
Excess-4 representation: 110
0 1 1 0 . 1 0 0 1

21
4 is non-negative:

0 1 1 0 . 1 0 0 1

2
1

4
= 0 1 1 0 . 1 0 0 1

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Storing Fractions in Binary

Floating-point Notation
base-10 → Floating-point – − 1

8

1
8

binary−→ 0.001

Copy to mantissa, starting
from leftmost 1: (0.00 1)

1 0 0 0 . 1 0 0 0

0.1000 −→ 0.001, shift = −2.
Excess-4 representation: 010
0 0 1 0 . 1 0 0 0

−1
8 is negative:

1 0 1 0 . 1 0 0 0

−1

8
= 1 0 1 0 . 1 0 0 0

Remember: Leftmost 1, NOT leftmost bit!

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Problems Storing Fractions in Binary

Floating-point Notation
Truncation Errors

25
8

binary−→ 1 0.101

Copy to mantissa, starting
from leftmost 1: (1 0.101)

0 1 0 1 . 1 0 1 0 1

0.1010 −→ 10.10, shift = +2.
Excess-4 representation: 110
0 1 1 0 . 1 0 1 0

25
8 is non-negative:

0 1 1 0 . 1 0 1 0

2
5

8
= 2

1

2
= 0 1 1 0 . 1 0 1 0

Truncation errors or round-off errors (gray box) occur when a
number is too large to represent!

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Problems Storing Fractions in Binary

Floating-point Notation
Order of operations

When adding fractions using floating-point notation, we can avoid

truncation errors. For example, adding the three numbers
{

1
8 , 1

8 , 2 1
2

}
:

10.10
+ 0.001

10.10 1

10.10
+ 0.001

10.10 1

2 1
2

+ 1
8

+ 1
8

= 2 1
2

0.001
+ 10.10

10.10 1

10.10
+ 0.001

10.10 1

1
8

+ 2 1
2

+ 1
8

= 2 1
2

0.001
+ 0.001

0.010

0.010
+ 10.10

10.11

1
8

+ 1
8

+ 2 1
2

= 2 3
4

By adding the small numbers first, we can avoid truncation errors!

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Representing Information as Bit Patterns

The Binary System

Hexadecimal System

Storing Integers

Storing Fractions

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

Representing Information as Bit Patterns The Binary System Hexadecimal System Storing Integers Storing Fractions

Questions over Chapters 1.4–1.7?

Cory L. Strope: Basics of Computing – Chapter 1.4-1.7 Data Representation

	Representing Information as Bit Patterns
	Text
	Numeric Values
	Images

