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2 Overview

indel-Seq-Gen is a tool to simulate the evolutionary events of highly diverged DNA (coding and non-coding)
and protein sequences. Long-term evolution often include dynamic changes such as insertions and deletions
(indels), but some subsequences, such as domains and motifs, retain their original sequences and structures
better than less functionally important regions. indel-Seq-Gen allows for the simulation of many different
evolutionary patterns over different regions of a sequence, in the end outputting the “true” multiple alignment
of the sequences. indel-Seq-Gen also has multiple unique features, including input a multiple alignment for
the root sequence1, placing functional constraints on sequence sites, tracing mutations along the simulation
and noting their positions in the true multiple alignment, changing evolution parameters and site conservation
between subtrees (i.e., lineages), and more. In addition iSGv2 fixes a fundamental flaw in representing in
representing insertions and deletions through the introduction of evolving along the guide tree in discrete
steps. Finally, iSGv2 also introduces a novel method of representing conservation patterns with respect to
insertions versus deletions versus substitutions. These features can be used in many evolutionary studies,
such as to test the accuracy of multiple alignment methods, phylogenetic methods, evolutionary hypotheses,
ancestral sequence reconstruction methods, and superfamily classification methods.

3 Getting Started

indel-Seq-Gen version 2.0 (iSGv2) is freely downloadable at http://bioinfolab.unl.edu/∼cstrope/iSG/.
iSGv2 has been tested MacOS X (versions 10.4.7 and Leopard). You will need g++ compiler if the provided
executables do not run on your system.

1. Download the indel-seq-gen-2.0.tar.gz source archive, open the archive by typing the two com-
mands:

gunzip indel-seq-gen-2.0.tar.gz, and then

tar -xvf indel-seq-gen-2.0.tar

2. This creates a directory indel-seq-gen-2.0with all of the files. Go to this directory cd indel-seq-gen-2.0.
Make the executables of indel-seq-gen by typing the command “./configure”, followed by the com-
mand “make”. For further installation instructions, refer to the file INSTALL.

3. After making the executables, type the command “cp src/indel-seq-gen data/”. This copies the
executable into the data directory.

4. Go to the data directory using the command “cd data/”.

5. In the data directory, there are sample files that can be used to run indel-seq-gen. The following
commands will execute indel-seq-gen using various capabilities. Cut-and-paste (or type) these examples
to run the simulations. After each run, you can examine the output of these runs by opening the
filenames that begin with the name following the --outfile or -e flags:

./indel-seq-gen --matrix HKY --outfile DNA_out < simple_nuc.tree

./indel-seq-gen --matrix HKY --codon_rates 0.2,0.05,0.75 --outfile DNA_out < simple_nuc.tree

./indel-seq-gen -m HKY -e mid_noncoding --num_runs 5 < mid_nuc_noncoding.tree

./indel-seq-gen -m HKY -e mid_noncoding -n 5 -c 2,1,8 --invar 0.02 < mid_nuc_coding.tree

./indel-seq-gen -m HKY -c 2,1,8 -e exon_intron --step_type trs < exon_intron.tree

./indel-seq-gen -m HKY --lineage exon_intron_lineage.spec --alpha 1.3 < exon_intron_lineage.tree

./indel-seq-gen -m JTT -k lipocalin.spec -w a < lipocalin.tree

./indel-seq-gen -m JTT -k lipocalin_ma.spec < lipocalin_ma.tree

For further understanding of these examples, refer to Section 7.

1This can be used to create different but related ancestral sequences in each run
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4 iSGv2 Parameters

Creating realistic sequences requires many parameters. Because of this, iSGv2 has many options, both for
the global simulation run and for subsequences, called partitions.

4.1 Global Options

To run indel-Seq-Gen from the command prompt, type the following line:

./indel-seq-gen -m <matrix> [-options] < tree_file > outfile

The “tree file” is described in Section 4.2. “> outfile” is to save all the messages indel-Seq-Gen generates
in the file. If “> outfile” is not added to the command, everything will be simply displayed on the screen
(but not saved in any file).

indel-Seq-Gen has many options. We suggest that you first run some of the examples shown in Section 7.
All necessary files are included in the provided indel-seq-gen-2.0 directory. If you get any error message
and the program does not run, please make sure if you followed the steps explained in the previous section.
If you still cannot run the program, please contact us. The contact information is found in the first page.

Table 1: Global options (entered at the command line) and their
effects for the indel-Seq-Gen run. Subsequence options (described
in the next Section) will override the global options if there are
conflicts. For input type {list}, do not use spaces to separate list
items.

Option Long Option Type Effect

-a --alpha {float} Shape (alpha) for gamma rate heterogeneity.

-b --option width {int} The number of residues per line on the multiple
alignment output [default = 60].

-c --codon rates {list} #1, #2, #3 = rates for codon position hetero-
geneity. Example: -c 0.15,0.05,0.8. Numbers are
not required to sum to 1, as iSGv2 will normalize
them.

-d --tree scale {+float} Total tree scale, multiplies each branch length by
scale / tree length [default = tree length].

-e --outfile {string} Filename for output. Files <filename>.root,
<filename>.seq, <filename>.ma,
<filename>.trace and <filename.verb> will
be created holding the root sequences, sequence
files, multiple alignments, traced events, and
verbose output from the run.

Continued on next page...
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Table 1: (continued)

Option Long Option Type Effect

-f --frequencies {list} amino acid (20, ARNDCQEGHILKMFPST-
WYV) or nucleotide (4, ACGT) frequencies, sep-
arated by commas, or e to use equal frequencies
(0.05 or 0.25 for each state, respectively) [default
= use frequencies based on the substitution ma-
trix]. Example: -f 0.2,0.2,0.3,0.3 for 20% A and
20% C.

-g --num gamma cats {int} Number of categories for the discrete gamma-
distribution rate heterogeneity. Must be between
2 and 32 [default = none]. Higher numbers of dis-
crete categories severely affect the speed of iSGv2.

-h --help Output the usage instructions

-i --invar {float} Proportion of invariable sites [default = none].

-k --lineage {filename } Subtree specification file name. See Section 4.3.

-j --step type {des, trs} des = discrete evolutionary steps [default], trs =
time relative steps. These are described below, in
Section 4.1.1.

-l --length {int} Deprecated. This is no longer necessary to input.
Sequence length.

-m --matrix {string} Substitution matrix: HKY, F84, GTR for nu-
cleotides, PAM, JTT, MTREV, CPREV, GEN-
ERAL for amino acids.

-n --num runs {int} The number of datasets to simulate for each tree
[default = 1].

-o --outfile format {char} Output format: either Phylip (p), NEXUS (n), or
FASTA (f) [default = Phylip].

-q --quiet Quiet mode: only the root sequence, resultant se-
quences, and multiple alignment are printed.

-r --rel rates {list} Six comma-separated numbers specifying general
rate matrix.

-s --branch scale {float} Branch scale factor [default = 1.0].

-t --tstv {float} Transition-transversion ratio.

Continued on next page...
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Table 1: (continued)

Option Long Option Type Effect

-u --indel fill {string} Indel fill model, based on neighbor effects [5]: xia
= original from [5], built on the E. coli K-12 pro-
teins, sp = swiss-prot, ran = no neighbor effect
[default = ran].

-w --write anc Write ancestral sequences.

-z --rng seed {int} Manually set the random number seed.
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4.1.1 Discrete steps and Trace file

One of the most radical changes introduced by iSGv2 is the idea of using discrete steps during the evolution
process. The rationale is twofold: (i) There is currently no continuous model for indel evolution (refer to the
as yet unwritten paper for the reasoning), and thus most current simulation methods simulate with a flawed
indel representation, and (ii) discrete steps allow for concrete tracking of events during the simulation, as
described below.

Discrete Evolutionary Steps: The DES model simply calculates ǫ, and simulates sequences along the
guide tree in ǫ step sizes. It is also possible to relate event occurrence times along the simulation guide tree
(called the time relative steps, or TRS, model), as long as two assumptions are met: (1) The input guide
trees cover a single period of time, such that the roots of the guide trees (i.e., partitions) start at one time
point, and the set of all taxa end at the same time, and (2) mutations occur uniformly at random throughout
the simulation run. If these are true, iSGv2 scales the branch lengths of the guide trees and branch-specific
ǫ’s so that all mutation events that occur in simulation run are ordered with respect to the relative time of
the run (i.e., the simulation starts at relative time point 0.0, and all taxa end at time point 1.0).

Event Tracking

A benefit introduced by the discrete step method is the ability to track indel and substitution events by:

1. ID

2. Time of occurrance (for the TRS model),

3. Set of taxa affected by change (i.e., subtree of occurrence),

4. Event type (substitution/insertion/deletion),

5. Indel length, and

6. Positions in the MSA that reflect the event.

The time of occurrance for events is listed in different ways depending on whether the user is using DES or
TRS. For DES, events are listed by partition, whereas for TRS, events are reported as an ordered list based on
the relative time that they occurred. As an example, observe the multiple alignment in Figure 7. Assuming
a phylogeny that groups (Taxon1,Taxon2) and (Taxon3,Taxon4), positions 16–18 could have occurred in two
ways, shown in Figure 1.

4.2 Partition Options

Specifications for each partition are given in the tree file. Specifications for each subsequence are separated
by ‘;’. Refer to the Examples section (Section 7) for some sample tree files.

Partition options allow the user to create subsequence-specific effects by overriding the global parameters
that are set as in Table 1. These options are shown in Table 2.

Table 2: Subsequence options.

Options Command Styles Description

label “Partition Label” This option, when present, will label the bound-
aries of the subsequence in the multiple alignment
in the *.verb file with the name given.

Continued on next page...
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Table 2: (continued)

Options Command Styles Description

subseq #i<% invariable>,
b<branch scale>,
f<AA frequency file>,
m<substitution matrix>,
r#

These options modify (b) or replace (i,f,m,r) the
global options given at the command line. Option
b will modify the default branch length scale by
the value given. Option r is a flag that specifies
that no rates are used for this partition. This is
helpful for specifying introns in coding region se-
quences, as shown in 7.3. Multiple options should
be separated by commas.

rootseq [:<root sequence file> ] or
[:<root sequence file>, #] or
[:<mult align file> (1, 2, 3)] or
[:<mult align file> (1, 2, 3), #] or
[length] or
[length, #]

This option specifies the root sequence parame-
ters. The first two formats specify the root se-
quence file. The third and fourth format specify
the multiple alignment file, where ‘1’ is the range
of the multiple alignment to use, ‘2’ is the number
of sequences to select from the alignment, and ‘3’
is the method of creating the consensus root se-
quence. For further details, see Section 5. The
last two formats, a numeric value (not preceded
by ‘:’), is to generate a random sequence of the
given length and use as the root sequence. When
using the options with ‘#’, relative rates will be
assigned to each partition. Using the ‘#’ option
should be done only when the trees for each par-
tition are the same.

indel Format:
{#1, #2, <file1 >/<file2 >}
#1: Max indel size
#2: Indel probability distribution

If #2 = 0: Use Chang & Benner
If #2 > 0: P(ins)=P(del)=#2

If #2/#3: P(ins)=#2, P(del)=#3

These options specify the different indel models
and parameters. Only #1 and #2 are required.
<file1>/<file2> can be used to specify the two
file names, which provide the user defined inser-
tion length distribution (file1) and deletion length
distribution (file2). If no distribution file is pro-
vided, the distributions given by Chang and Ben-
ner (2004) will be used2. If only one distribution
file is given, it will be used for both insertions and
deletions.

tree Newick Format The rooted evolutionary tree for this subsequence.
For all subsequences, their trees must have the
same number of taxa, with each taxon named the
same in all trees. The branching pattern as well
as branch lengths, however, may vary. Branch
lengths are assumed to be the expected number
of substitutions per site. Taxon names should

not begin with a number.

2For the moment, both DNA and protein. Future versions may include a DNA-specific model
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bit(0) = Taxon1

bit(1) = Taxon2

bit(3) = Taxon3

bit(4) = Taxon4

[X,I,,1100,3,16:17:18]

OR

[X,D,,0011,3,16:17:18]

OR

[X,D,,0011,1,17]

[Y,I,,1100,2,16:18]

Figure 1: Three different ways that the events in Figure 7 could have occurred, as shown by the trace file
using the discrete evolutionary steps (des) paradigm, where X is the unique event number describing the
change. Since this is using des, note that the relative time field is left empty.

4.3 Lineage-specific and Motif Options

Lineages and motifs are input to iSGv2 through the use of the global option “-k” or “--lineage”. This file
consists of two parts:

1. LINEAGES, which change the conditions under which a subtree evolves, and

2. MOTIFS, which impose site-specific functional constraints on specific sequence positions for a specific
subtree.

The basic outline of this file is:

LINEAGES =

{

subtree_list: "lineage_name"#subseq#{indel};

.

.

.

}

MOTIFS =

{

subtree:

MARKER=<marker>;

NAME=<motif_description>;

PATTERN=<modified_PROSITE_motif>;

.

.

.

}

Lineages and motifs both work along subtrees of the input guide tree. To make a lineage or motif effective
for the entire guide tree, set subtree: to root:. In order to specify subtrees, however, it is required to label
clades in the Newick Format, as discussed below.

10



(

(

(Taxon1:0.1,Taxon2:0.1

)Clade2:0.1,Taxon3:0.1

)Clade1:0.1,

(

(Taxon4:0.1,Taxon5:0.1

)Clade4:0.1,Taxon6:0.1

)Clade3:0.1

);

Clade2

Clade1

Clade4

Clade3

Figure 2: The subtree-labelled Newick format tree (left) and the resulting tree, which is colored to show the
branches affected by the subtree label.

4.3.1 Specifying Subtrees in Newick Format

To specify subtrees for lineages and motifs, the Newick Tree Format must be clade-labelled, as shown in
Figure 2. For multi-partition simulation runs, note that internal node clade labels can be named arbitrar-
ily, thus for a particular subtree, each partition can have a unique lineage-specific parameterization (e.g.,
Clade1 1 for partition 1, Clade1 2, for partition 2, . . . ). However, since taxon labels must be consistant be-
tween partitions, unique subtree parameters cannot be made. To specify partition-specific taxon subsequence
parameters, refer to Figure 2 for the method of specifying subtrees for taxon subtrees.

Node Type Specification
Internal Node <clade list> : options;
Taxon <Taxon name> : options;
Taxon <Taxon name> (partition list) : options;

Figure 3: The format of subtree specification in iSGv2.

4.3.2 LINEAGES

Lineages allow for a specific subtree to evolve under different conditions as specified for partitions in the
tree file. iSGv2 does not allow condition changes that are not realistic, while adding options specific to
lineages. Subsequence options (##) are the only set of options affected by these restrictions, shown in
Table 3. Labelling (“”) and indel ({}) options are no different than in partitions. Note: In order to remove
indels from a lineage, include the option {0,0} in the lineage.
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Table 3: Novel functions and restrictions imposed for lineage-specific subsequence options (##).

Option: Restrictions Novel function
Site rates:

a Partition must be either gamma, discrete
gamma, or uniform rates.

Change α parameter for gamma site rates.

c Partition must be codon rates. Change codon position frequencies.
g Partition must be discrete gamma or uni-

form rates.
Change the number of discrete categories.

r Partition must be gamma, discrete, or
uniform rates.

Remove site rates (i.e., assign uniform
rates).

Other:
b Cannot change branch scale. None.
f None. Change character frequencies.
i Only affects random input sequence (i.e.,

[100])
Change percentage invariable.

m Must be a matrix used for specifiec char-
acter set (nucleotides vs. amino acid),
cannot take value GENERAL or GTR.

Change substitution matrix.

p None. Removes all constraints (e.g., invariable
sites, motifs, site rates) from a lineage, ef-
fectively making all changes in the lineage
entirely stochastic.

4.3.3 MOTIFS

As with lineages, motifs are specified in the subtree file, and are specified to take effect along subtrees. Since
motifs are site-specific, it is required to mark the sites on the root sequence.

Motif types: iSGv2 allows two sub-types of motifs: PROSITE-like motifs and sequence template motifs.
PROSITE-like motifs specify any length of motif that follows the PROSITE regular expression pattern.
Sequence template motifs are required to cover the entire sequence, and are used to place minimum and
maximum length parameters on subsequences.

Specifying sites on root sequence: Marking sites is done in the root sequence input file, below the
input root sequence or input multiple alignment. To begin marking the sequence, place a ‘*’ corresponding
to the first position in the root sequence. This must be present for motifs to be correctly parsed. All other
positions in the input root sequence must have a corresponding ‘*’ or motif label (anything but ‘*’). Motif
specification characters also must be contiguous, i.e., after specifying the positions that are in a motif, the rest
of the motif specification line must be ‘*’s. As a regular expression, the PROSITE-like motif specification is:
*+x+*∗, where x is the character for the motif specification. For template-like motifs, the regular expression
is *[0 − 9]n3, where n is the length of the root sequence input. There is no limit to the number of motifs
that can be specified on a root sequence. Figure 4 shows some errors that can be made in specifying motifs.

Specifying motif constraints: After the motif-participating sites are labelled in the root sequence, spec-
ify the conditions that apply to each site in the lineage file. The fields for specifying motifs are shown in
Table 4.

Note that when marking motifs, the marked positions must be the same size as the PATTERN specified.
In the case of variable positions, iSGv2 requires that the maximum size of the motif (i.e., n in x(m, n)) are

3For multiple sequence alignment input, the regular expression is *[[0 − 9], .]n, see Section 5.2 for details.
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Motif specification Error Fix
aaaaa*************** Motif specification must begin with ‘*’

*aaaaaa******aaaaa** Motif specification must be contiguous split motif into 2 motifs, specifying each
area, or make entire motif contiguous.

*******aaaaaabbbbb** Can only use one motif marker per motif
specification

split motif into 2 motifs, specifying each
area, or make entire motif contiguous.

Figure 4: Erroneous motif specifications for a root sequence of length 20, with the assumption that the motif
is labelled by ‘a’.

Table 4: List of the options for specifying motifs. See Figure 5 for an example of a motif specification.

Field Description Motif type
MARKER A single character, value can be anything except

for the character ‘*’ (see Section 5 for specifying
sites for motif). This is the ID of the motif as
specified in the root sequence input.

Prosite-like, template (0-
9 only).

NAME Not required. This is the description of the motif. Prosite-like, template

PATTERN Regular expression patterns, as below.
[list] A list of acceptable amino acids or nucleotides for

a site, site can take value of list.
Prosite-like

{list} A list of unacceptable amino acids or nucleotides
for a site, site can take any value not in list.

Prosite-like

char Invariable site, takes value of char. Prosite-like

x Site can take any amino acid or nucleotide value. Prosite-like, template

x(l) Next n sites can take any amino acid or nucleotide
value.

Prosite-like, template

x(min, max) Variable length motif sequence. Cannot start a
motif with a variable length motif position. This
specifies that length of the motif positions can
vary between m to n sites (variance caused by in-
dels). Variable sites cannot overlap between dif-
ferent motifs.

Prosite-like, template

13



In root sequence specification file

50

00000000000000000000000000000000000000000000000000

ASPISTIQAATVPDSS--EVAGKWYIVALASNTSFLREKGKMKMVMARIL

*************bbbbbbbbbbbbbb***********************

In motif specification file

<subtreei >:
MARKER=b;

NAME=PS00213: Lipocalin signature, ALL;

PATTERN=[DENG]-{A}-[DENQGSTARK]-x(0,2)-[DENQARK]-[LIVFY]-{CP}-G-{C}-W-[FYWLRH]-{A}-[LIVMTA];

Figure 5: An example of the specifying the lipocalin motif in the single root sequence input. The sites
corresponding to x(0,2) in this instance is specified as 0 sites, with the ‘-’ placeholder being used to fill the
maximum possible number of sites (2) that could occupy the “variable-length site”.

represented in the root sequence. To make this possible, you may need to place ‘-’ in the root sequence or
root MSA, as shown in Figure 5. If a character is placed in the variable motif instead of ‘-’, iSGv2 will
assume that this position is part of the variable motif in the root sequence.

5 Root Sequence Input

The root sequence is specified by the square brackets ([ ]) in the tree file.
There are three options for root sequence input:

1. Specifying the length of root sequence. indel-Seq-Gen will randomly generate a root sequence of the
specified length. For example [40] calls for a root sequence of length 40 characterss.

2. Root sequence input.

3. Multiple alignment input.

Make sure that the input file is in the same directory when using a root sequence input file (options 2
and 3).

5.1 Root Sequence Input

This option specifies that the user has a root sequence in a file for a partition.
In the tree file, the root sequence input is specified as:

[:<rootseq_file>]

The format of the file <rootseq_file> is:

<length of sequence>

<invariable array>

<sequence>

<motif_spec>

Figure 6 gives an example of a root sequence for conserving a Thioredoxin-fold protein sequence motif.

14



20 20

00003223100000000000 00000000100000000000

LARDCVLCSTWVTIALACLK LARDCVLCSTWVTIALACLK

****aaaa************

In motif specification file

root:
MARKER=a;

NAME=Trx-like;

PATTERN=C-[GATPLVE]-[PHYWSTA]-C;

Figure 6: Thioredoxin-fold proteins have a characteristic “CXXC” motif that is conserved for all proteins in
the family. (Left): This root sequence input requires the CXXC motif to remain constant for all sequences
created through the use of the invariable array (described later), listed above the root sequence. The serine in
position 9 will also be held invariable, though insertions are allowed to occur between itself and the previous
cysteine. Finally, the length of the root sequence is given by the first line. Note that this sequence is not truly
a Trx-fold sequence, but an example to show the usage of the invariable array. (Right): Motif specification of
the Thioredoxin active site. Motif specifications preserve both the length dependence and character subsets.
Note also that the invariable array is no longer used to preserve the motif; it is recommended that when
using motif specification, all non-motif positions in invariable array should be set to 0.

5.2 Multiple Alignment Input

This option specifies that the user has a multiple alignment of their sequence set, and wants a root sequence
created from the multiple alignment.

In the tree file, the root sequence input is specified as:

[:<ma_file>(1,2,3)]

Where options 1, 2, and 3 stand for:

1. The range of the multiple alignment to use, where the format is beginning:end. An input of 21:67
specifies the range from the 21st to the 67th spot (inclusive) of the input multiple alignment. Default
for this option is the entire range of the multiple alignment.

2. The number of sequences to choose from the multiple alignment. indel-Seq-Gen randomly with replace-
ment selects the specified number of sequences from the multiple alignment. Default for this option is
to use all sequences.

3. Method for collapsing the multiple alignment into a root sequence, either random ‘r’ or consensus
‘c’. Consensus is a majority-rule method, using a coin flip to break ties. Random uses a weighted coin
toss based on the character composition at the site to choose the representative character, except for
invariable positions, which will be chosen by consensus. For an example of the weighted coin toss, look
at the first column in Figure 7 in which all sequences emit an amino acid, column 6. In this column,
there are 2 T’s, 1 V, and 1 C. A weighted coin toss on this column will be a T 50% of the time, a V
25% of the time, and a C 25% of the time. The default for this option is consensus.

When specifying the multiple alignment in the tree file, a blank field specifies that the default entry for
the field is desired. For example, [:input_MA(,,r)] indicates that the entire range and all sequences from
input MA will be used, but that the character that will represent the column will be chosen by a weighted
coin toss based on the characters that appear in that column. Note that the size of the root sequence can
fluctuate between simulation runs. For example, using the option [:input_MA(,1,)] will randomly choose
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Input MA, using invariable array

0000000000000000000000000000000100322300010000

Taxon1 -----TKEDF-----TSDQTNPIGQDSATRLILKGEELTCNYKLFD

Taxon2 RNSCNVVPKIVQVNGDFRIRFTALRD-----IKAGEELFFNYGENF

Taxon3 -----TGVSNNQFGG---YDFVALGD-----IEVGEELTWBYETTE

Taxon4 -----CELVQLTEFS---LGVVAICN-----IEAGEELSFDYAWEA

Input MA, using motif specification

0000000000000000000000000000000100000000010000

Taxon1 -----TKEDF-----TSDQTNPIGQDSATRLILKGEELTCNYKLFD

Taxon2 RNSCNVVPKIVQVNGDFRIRFTALRD-----IKAGEELFFNYGENF

Taxon3 -----TGVSNNQFGG---YDFVALGD-----IEVGEELTWBYETTE

Taxon4 -----CELVQLTEFS---LGVVAICN-----IEAGEELSFDYAWEA

**********************************bbbb********

*....000000000000000000000000..000000000000000

In motif specification

<subtree>:
MARKER=b;

PATTERN=G-x(2)-L;

<subtree′ >:
MARKER=0;

NAME=Multiple alignment template example;

PATTERN=x(10,22)-x(2,6)-x(5)-x(3,8);

Figure 7: input MA: (Top) An example of a 4 sequence multiple alignment from the SET-domain family
of sequences using the invariable array. The GXXL motif is conserved in both the invariable array, along
with the tyrosine and isoleucine. (middle, bottom) The motif specification input and root sequence file. The
motif will be conserved in the same manner as the invariable array on the top. However, specifying this
subsequence as a motif allows the user to conserve the motif on a subtree, rather than over the entire guide
tree as is done with the invariable array.

a single sequence to create root sequence, thus the sequence that indel-Seq-Gen chooses will be the length
of the root sequence for that subsequence.

Format:

<invariable array>

<sequence 1>

<sequence 2>

. .

. .

. .

<sequence n>

<motifs>

Figure 7 is an example of an input multiple alignment of the SET-C region of the SET-domain family.
Note that the ‘-’ is the only character that will be accepted for the gap character. Irregular characters
(“YRUN” in nucleotides, “BZJX” in amino acids) cause each character for which they stand for to be
counted as the 1 over the number of characters they represent (e.g., ‘B’ increments both ‘N’ and ‘D’ by 0.5).
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Table 5: Representation of positions in the invariable array, and effects on the sequence. Invariable sites (1
and 3) block both deletion and substitution of the corresponding position in the sequence array. No-indel
sites (2 and 3) block deletion of the sequence array, but also block insertion events from occurring between
consecutive no-indel positions (between 2-2, 2-3, 3-2, and 3-3) in the invariable array.

# Effects
0 None
1 Invariable
2 No-indel
3 Invariable + No-indel

Accepting Positions:

Invariable Array: 0 0 1 2 3 0

Insertion (any size): 1 1 1 1 0 1 1

Invariable Array: 0 0 1 2 3 0

Deletion (size 1): 1 1 0 0 0 1

Deletion (size 2): 1 0 0 0 0 0

Deletion (size 3): 0 0 0 0 0 0

Figure 8: The invariable array and accepting positions for insertion and deletion events. For insertions,
the accepting positions (denoted by ‘1’ and ‘0’ above) are located in between consecutive positions in the
invariable array, while deletion accepting positions correspond exactly those in the invariable array. In the
accepting positions, the site with ‘1’ is allowed to have indels. In the rare case that an accepting position
cannot be found (as in the size 3 deletion example above), indel-Seq-Gen will output an error, but continue
the simulation run.

5.2.1 Multiple alignment root sequence input for template motifs

Note that the multiple alignment root sequence input will have variable length, depending on the number
of columns in the multiple alignment that are inferred to be gap columns (> 50% ‘-’ in a column). When
specifying template motifs, all sites, except the first, must belong to a position in the template. For this
reason, when specifying a template motif, iSGv2 also allows the character ‘.’ on a position in the motif spec-
ification. The ‘.’ character specifies that this site should be excluded from the template sites. For example,
in Figure 7, 6 positions of the multiple sequence alignment are excluded from the template specification.

5.3 Invariable Array

The invariable array in indel-Seq-Gen is a quaternary array that specifies how a region is allowed to evolve,
and is specified in the root sequence input. Table 5 shows the effect of each numerical entry in the invariable
array, and Figure 8 shows an example of how the algorithm finds possible positions for indels based on the
invariable array.
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6 Other Input Files

6.1 Character Frequencies #ffreq file#

Protein and nucleotide subsequences often evolve under different functional constraints, causing them to
display different character frequencies. For this, a file containing 20 amino acid frequencies (order: ARND-
CQEGHILKMFPSTWYV) or 4 nucleotide frequencies (order: ACGT) separated by commas can be entered
for each subsequence with the option: #f<freq_file>#. Values from the input file are read and normal-
ized to create a distribution, where the number of values is specified by the maximum indel size of the
subsequence. For an example, see the file aaf.freq included with all iSG .tar.gz archive downloads.

6.2 Indel Probabilities {#1,#2,indel file(s)}

Insertion and deletion frequencies can be provided for each subsequence. The format of the file is shown in
Figure 9. This example is for the indel probabilities of sizes 1–10 of the Zipfian distribution described in
Chang and Benner [1]. indel-Seq-Gen will read in the number of values corresponding to the max indel size

(#1) specified for the subsequence (for Figure 9, the maximum indel size of a subsequence using this file can
be up to size 10), and then normalize the values to create a distribution. This means that the frequencies
can be given in absolute numbers or in any scale (as shown in Figure 9). If the maximum indel size is greater
than the number of indel positions in the length distribution file, indel-Seq-Gen will output a message that
it is unable to read the input distribution file.

2628,743.8,355.5,210.5,140.2,100.6,76,59.6,48.1,39.7

Figure 9: An example length distribution input file. This has the frequencies of indels with lengths from 1
to 10 amino acids, taken from the first 10 values of the Zipfian distribution. The number of values in this
file should not be smaller than the given max indel size.

7 Examples

7.1 Basic coding and non-coding

Despite the complexity that exists in iSGv2, the main goal of the simulation method is to be an all-purpose
sequence simulator. Therefore, included in the distribution is a file called “simple nuc.tree”, shown in
Figure 10.

Given this example, assume the usage of the Hasegawa, Kishino, and Yano [2] substitution matrix. The
following two commands will create non-coding and coding simulation runs, respectively:

./indel-seq-gen --matrix HKY --outfile DNA_out < simple_nuc.tree

./indel-seq-gen --matrix HKY --codon_rates 0.2,0.05,0.75 --outfile DNA_out < simple_nuc.tree

This will also create five outfiles: DNA out.ma, DNA out.seq, DNA out.root, DNA out.trace, and DNA out.verb.
In the first examples, the sites are mutated uniformly as is non-coding DNA. In the second example, the
third coding mutates 75% of the time, while the first and second codn mutate 20% and 5% of the time,
respectively, mimicking codon position rates.

[999]((Taxon1:0.3,Taxon2:0.14):0.5,(Taxon3:0.34, Taxon4:0.5):0.12);

Figure 10: A simple example of a nucleotide simulation partition file. This simulates a 999 nucleotide
sequence with no indels, along a guide tree of 4 taxa.
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mid nuc coding.tree

[999]{9,0.1/0.3,codonLD}((Taxon1:0.3,Taxon2:0.14):0.5,(Taxon3:0.34, Taxon4:0.5):0.12);

codonLD
0,0,3222,0,0,233, 0,0, 0.23

mid nuc noncoding.tree

[999]{9,0.1/0.3,idLD}((Taxon1:0.3,Taxon2:0.14):0.5,(Taxon3:0.34, Taxon4:0.5):0.12);

idLD
2628,743.8,355.5,210.5,140.2,100.6,76,59.6,48.1,39.7

Figure 11: The specification files for a simulation run with indels, and the associated files, codonLD and
idLD.

7.2 Including indels

A little more complex example including indels is shown in Figure 12. Notice that we now need to two trees
to represent coding or non-coding sequences, since indel sizes that are not a multiple of three would cause a
nonsense mutation.

The commands:

./indel-seq-gen -m HKY -e mid_noncoding --num_runs 5 < mid_nuc_noncoding.tree

./indel-seq-gen -m HKY -e mid_noncoding -n 5 -c 2,1,8 --invar 0.02 < mid_nuc_coding.tree

In this example, the previously introduced options --matrix, --outfile, and --codon rates have been
replaced by their short options. The --num runs (-n) option has also been included, so that five runs will be
simulated. The multiple alignments of this example is very gappy, since in the indel options, the maximum
indel size is 9 nucleotides, and an insertion occurs once for every 10 substitutions, a deletion once every 3.3
substitutions. Finally, the option --invar sets 2 percent of the sites to be invariable. Codon rate input also
does not need to add up to 1, as iSGv2 will normalize the values.

7.3 Coding and non-coding together

iSGv2 has the unique ability to simulate exons and introns in a single run. This adds yet more complexity,
as you can see by the necessary files, as listed in Figure 11. Files that remain the same as previous examples
are excluded from this figure.

The command:

./indel-seq-gen -m HKY -c 2,1,8 -e exon_intron --step_type trs < exon_intron.tree

There are many interesting things to note:

1. Codon rates are input at the command line. The subsequence option #r# in the intron sequence resets
the rates to uniform rates in the intron. The additional subsequence options #b1.2# multiplies all
branch lengths in the tree by a factor of 1.2.

2. The file intron conserves the nuclear-like spliceosomal sites (GU at beginning, G in the middle, and
AG at the end).
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exon intron.tree
[:exon(,,)]{9,0.031/0.01,codonLD}((Taxon1:0.3,Taxon2:0.14):0.5,(Taxon3:0.34, Taxon4:0.5):0.12);

[:intron]#r,b1.2#{9,0.1,idLD}((Taxon1:0.3,Taxon2:0.14):0.5,(Taxon3:0.34, Taxon4:0.5):0.12);

exon
000000000000000000000000000000000000000000

Taxon1 TTACTTT---TTCCTAACCGG---C---CCGAGCT---AATG

Taxon2 TTAGTTTTTAATCCCAACCTG---C---CCCATCT---GATA

Taxon3 CGAAATC------TTACCGGAGGTAATACGCGGCGC---ATC

Taxon4 CTGCATT------CAACCTGT---T---AGCATCGC---ATC

intron
30

330000000000001000000000000033

GUTTCAGGTAAAATGCANNGACTTAGRYAG

Figure 12: The specification files for a simulation run of one exon partition and one intron partition with
indels, and the associated root sequence files, exon and intron.

3. The option --step type sets the simulation run to be in time relative steps. The output file exon intron.trace

will contain where each indel event occurred and the relative time of the event, as explained in Sec-
tion 4.1.1.

7.4 Lineage Introduction

Lineages are one of the unique abilities of iSGv2, paricularly the ability to cause a lineage to evolve under
no specifications, which we call “pseudogene” evolution (the p option in subsequence options ##). To add
lineages to the previous example, we need to specify clades in the partition file, create the lineage file and
specify this file on the command line. Figure 13 shows the file changes, and Figure 14 shows the output of
the command:

./indel-seq-gen -m HKY --lineage exon_intron_lineage.spec --alpha 1.3 < exon_intron_lineage.tree

No output files are given, thus the output is printed to the screen. Note that the file outfile.verb will
still be created.

Some finer points:

1. The global parameter --alpha specifies that, unless otherwise specified in clades, all branches in all
trees will evolve with site rates, where the gamma parameter α = 1.3. However, Clade1 1 and Clade1 2
both become pseudogene lineages, which releases site rates from them. Taxon3 in the first tree also
does not evolve with this gamma, since the lineage file specifies it to evolve with α = 0.7 (#a 0.7#).

2. Taxon3, partition 1, evolves without indels ({0,0}).

7.5 Prosite-like motif

To create Prosite-like motifs, a root sequence input is necessary. In this example, the lipocalin root sequence
and motif specification in Figure 5 is used, along with lipocalin.tree, shown in Figure 7.5.

indel-seq-gen -m JTT -k lipocalin.spec -w a < lipocalin.tree

Figure 15 shows the output of this command.
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exon intron lineage.tree

[:exon(,,)]{9,0.031/0.01,codonLD}

(

(Taxon1:0.3,Taxon2:0.14

)Clade1_1:0.5,

(Taxon3:0.34, Taxon4:0.5

):0.12

);

[:intron]#r,b0.5#{9,0.1,idLD}

(

(Taxon1:0.3,Taxon2:0.14

)Clade1_2:0.5,

(Taxon3:0.34, Taxon4:0.5

):0.12

);

exon intron lineage.spec

LINEAGES =

{

Clade1_1:#fpse.freq,p#{5,0.08,idLD};

Clade1_2:#p#{8,0.08,idLD};

Taxon3(1):#a 0.7#{0,0};

}

pse.freq

10,23,15,6

Figure 13: The specification of subtrees in exon intron lineage.tree and the corresponding specifications
in exon intron lineage.spec. Subtrees on internal nodes can be uniquely named, thus the convention
Clade <partition number>. Taxa cannot be uniquely specified between partitions, since they are required
to be the same for all partitions. Thus, the taxon lineage (Taxon3) contains the list of partitions it is active
in in parentheses. In this case, the lineage specifications for Taxon3 are active only for the first partition.
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>Dataset_0__partition_1

[0,D,,1100,4,16:17:18:19]

[1,I,,1100,1,23]

[2,D,,1100,4,30:31:32:33]

[3,D,,1000,1,15]

[4,I,,1000,2,21:22]

[5,I,,0011,3,12:13:14]

>Dataset_0__partition_2

[6,D,,1000,2,59:60]

[7,I,,1000,4,39:40:41:42]

[8,D,,1000,6,61:62:63:64:65:66]

[9,D,,0001,1,62]

CTACATTATCCTAACCGGCCCCAGCGCAATCGTTTCAGGTAAAATGCACAGACTTAGACAG

4 61

Taxon1 CTACAGCAGCCACCGACCACCCGCCGCCGTTGTCAGTTGGTCTGCAGCCAG

Taxon2 CTACAGCAGCCTAGGCAAGAACCCGTGTCAGTTGAACTGCAAAGACTCAGCCAG

Taxon3 ATACTGTCTCCCAATACCCAGCGCTATAGCAAATGTATAAGGTAAAATGGACAGACTTTGACAG

Taxon4 TTATCTTAGGACAGTACCCAGACCCCGGGCAATCGTGTGAACTAGAACGCAGAGCATAGCCAG

4 61

Taxon1 CTACAGCAGCC--------ACCGACCACC----CGCCGCCGTTGTCAGTTGGTCTGCA--

Taxon2 CTACAGCAGCC---T----A--GGCAAGA----ACCCG----TGTCAGTTGAACTGCAAA

Taxon3 ATACTGTCTCCCAATACCCA---GCGCTATAGCAAATG----TATAAGGTAAAATGGACA

Taxon4 TTATCTTAGGACAGTACCCA---GACCCCGGGCAATCG----TGTGAACTAGAACGCAGA

Taxon1 ------GCCAG

Taxon2 GACTCAGCCAG

Taxon3 GACTTTGACAG

Taxon4 G-CATAGCCAG

Figure 14: The output for a lineage simulation, consisting of event tracing, root sequence, sequences, and
multiple alignment. Taxon1 and Taxon2 are “pseudogenes”.

lipocalin.tree

[:lipocalin]

{5,0.1,idLD}

(((Taxon1:0.4,Taxon2:0.14):0.5,Taxon3:0.34):0.1, Taxon4:0.5);
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>Dataset_0__partition_1

[0,D,,1100,1,10]

[1,D,,1100,2,9:11]

[2,I,,1000,5,44:45:46:47:48]

[3,D,,1000,5,50:51:52:53:54]

[4,D,,1000,2,8:12]

[5,D,,1000,2,35:36]

[6,D,,1000,1,42]

[7,D,,1000,2,39:40]

[8,I,,0100,2,18:19]

[9,D,,0001,1,42]

[10,D,,0001,1,52]

[11,D,,0001,2,55:56]

[12,I,,0001,1,4]

ASPISTIQAATVPDSSEVAGKWYIVALASNTSFLREKGKMKMVMARIL

7 48

5 ASPISTIQAATVPDSSEVAGKWYIVALASNTSFLREKGKMKMVMARIL

6 DSPIDTIWAAVVPDSSDIAGRWYLMALVSDTSFLREKAKLKMVVAGVL

7 DRPVDMSVVGDSSAVDGTWLFMQYVTEVSFVRQRLKFKMLVSTKL

Taxon1 EGPLDTAVEEEQISGNWLGMRSTYHVVSLFNQGILQEV

Taxon2 ERSLEMTVVGDSSGDAIDGVWLFLQYINEVGFLRQRLKFAALGTIKL

Taxon3 DGPIDTIQTNIVLDSSDIAGRWYVMDLIGDAMFRRTMKGLKNVLSGPL

Taxon4 PFPNLATKLIGVQPDQDEIIGQWYELSHHSKSAIFGDTSMKLVTK

7 48

5 ASP-ISTIQAATVPDSS--EVAGKWYIVALASNTSFLREKGKM-----KMVMARIL

6 DSP-IDTIWAAVVPDSS--DIAGRWYLMALVSDTSFLREKAKL-----KMVVAGVL

7 DRP-VDMS---VVGDSS--AVDGTWLFMQYVTEVSFVRQRLKF-----KMLVSTKL

Taxon1 EGP-LDT-----AVEEE--QISGNWLGMRSTYHV--VS--L-FNQGILQ-----EV

Taxon2 ERS-LEMT---VVGDSSGDAIDGVWLFLQYINEVGFLRQRLKF-----AALGTIKL

Taxon3 DGP-IDTIQTNIVLDSS--DIAGRWYVMDLIGDAMFRRTMKGL-----KNVLSGPL

Taxon4 PFPNLATKLIGVQPDQD--EIIGQWYELSHHSKSAIFGDTS-M-----KLV-TK--

Figure 15: The output for a lipocalin simulation, consisting of event tracing, root sequence, sequences, and
multiple alignment.
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7.6 Template motif

To set up a run with a template, we will using the true multiple alignment sequences output in Figure 15 as
the input root sequence. The resultant file and template specifications are given in Figure 7.6, and we use
lipocalin ma.tree, a tree similar in Figure 7.5, where [:lipocalin] is replaced by [:lipocalin ma(,,)].

lipocalin ma

00000000000000000000000000000000000000000000000000000000

Taxon1 EGP-LDT-----AVEEE--QISGNWLGMRSTYHV--VS--L-FNQGILQ-----EV

Taxon2 ERS-LEMT---VVGDSSGDAIDGVWLFLQYINEVGFLRQRLKF-----AALGTIKL

Taxon3 DGP-IDTIQTNIVLDSS--DIAGRWYVMDLIGDAMFRRTMKGL-----KNVLSGPL

Taxon4 PFPNLATKLIGVQPDQD--EIIGQWYELSHHSKSAIFGDTS-M-----KLV-TK--

PS00213 **************bbbbbbbbbbbbbb****************************

lipo_ma *777777777777777777777777777777777777777777.....77777777

lipocalin ma.spec

MOTIFS =

+
{

root:

MARKER=b;

NAME=PS00213: Lipocalin signature;

PATTERN=[DENG]-{A}-[DENQGSTARK]-x(0,2)-[DENQARK]-[LIVFY]-{CP}-G-{C}-W-[FYWLRH]-{A}-[LIVMTA];

root:

MARKER=7;

NAME=lipo_ma: Lipocalin partial template;

PATTERN=x(5,20)-x(10,30);

}

Note that in this example, there is a very tight restriction on the number of insertions, while deletions
are more acceptable. Figure 16 shows these restrictions based on the input root sequence. Note that the
sites marked by ‘.’ are removed consideration when building the root sequence.

To run this example, simply type:

./indel-seq-gen -m JTT -k lipocalin_ma.spec < lipocalin_ma.tree

Note that this example incorporates both a motif and template, and that they do not need to coincide.
This is often the case for real protein evolution, such as the lipocalins in this example, where the lipocalin
signature begins in a coil region and ends in a beta strand. A good use of the template for this type of
protein sequences is to make each x(min, max) match with the coil regions and beta strands, as is done in
the published work [4].

24



template: ---- x(5,20), 17 --- -------- x(10,30), 30 --------

positions: 12345678911111111112 123456789111111111122222222223

01234567890 012345678901234567890

* **

Taxon1 EGP-LDT-----AVEEE--QI SGNWLGMRSTYHV--VS--L-FQ-----EV

Taxon2 ERS-LEMT---VVGDSSGDAI DGVWLFLQYINEVGFLRQRLKFAALGTIKL

Taxon3 DGP-IDTIQTNIVLDSS--DI AGRWYVMDLIGDAMFRRTMKGLKNVLSGPL

Taxon4 PFPNLATKLIGVQPDQD--EI IGQWYELSHHSKSAIFGDTS-MKLV-TK--

lipo_ma *77777777777777777777 777777777777777777777777777777

Figure 16: The input multiple alignment lipocalin ma from Figure 7.6 as iSGv2 reads it in. Above the
alignment is the placement of the template sites as iSGv2 places them; template: Gives the template spec
(e.g., x(5,20)) and the current number of sites residing in the template as iSGv2 reads the root sequence,
positions: the position in the template. Numbers with a ‘*’ below them are positions that are not included
in the root sequence built. A space has been placed between templates to make it easier to read.
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