
indel-Seq-Gen v2.0.3 Manual

Cory L. Strope∗, Computer Science and Engineering,

Kevin Abel, Computer Science and Engineering,

Stephen D. Scott, Computer Science and Engineering,

Etsuko N. Moriyama, School of Biological Sciences and the Center for Plant Science Innovation

University of Nebraska – Lincoln

March 1, 2010

Contents

1 Acknowledgments 3

2 Introduction 4

3 Getting Started 4

4 Overview 5

5 iSGv2.0.3 Parameters 6
5.1 Global Options . 6

5.1.1 Discrete steps and Trace file . 11
5.2 Partition Options . 11

5.2.1 Specifying Subtrees in Newick Format . 13
5.3 Lineage and Motif Options . 15

5.3.1 LINEAGES . 15
5.3.2 MOTIFS . 16

6 Root Sequence Input 17
6.1 Root Sequence Input . 19
6.2 Multiple Alignment Input . 19

6.2.1 Multiple alignment root sequence input for template motifs 20
6.3 Invariable Array . 20

7 Other Input Files 22
7.1 Character Frequencies #ffreq file# . 22
7.2 Indel Probabilities {#1,#2,indel file(s)} . 22

∗Corresponding Author, University of Nebraska, email: corystrope@gmail.com

1

8 Examples 23
8.1 Basic coding and non-coding . 23
8.2 Including indels . 23
8.3 Coding and non-coding together . 24
8.4 Lineage Introduction . 24
8.5 Prosite-like motif . 27
8.6 Template motif . 28

2

1 Acknowledgments

We would like to thank the authors of Seq-Gen, Drs. Andrew Rambaut and Nick Grassly, which provided the
starting point for the development of iSG. As such, when citing indel-Seq-Gen, please note that Seq-Gen [4]
should also be cited. The bibtex citation is:

@ARTICLE{Rambaut97,

AUTHOR = "A. Rambaut and N.C. Grassly",

TITLE = "{Seq-Gen}: an application for the {Monte Carlo} simulation of

{DNA} sequence evolution along phylogenetic trees",

JOURNAL = "{CABIOS}",

VOLUME = 13,

NUMBER = 3,

YEAR = 1997,

PAGES = "235-238" }

We are also grateful for the NSF AToL grant 0732863 and Department of Education grant P200A040150
for funding this work.

3

2 Introduction

indel-Seq-Gen is a tool to simulate the evolutionary events of highly diverged DNA (coding and non-coding)
and protein sequences. Long-term evolution often include dynamic changes such as insertions and deletions
(indels), but some subsequences, such as domains and motifs, retain their original sequences and structures
better than less functionally important regions. indel-Seq-Gen allows for the simulation of many different
evolutionary patterns over different regions of a sequence, in the end outputting the “true” multiple alignment
of the sequences. indel-Seq-Gen also has multiple unique features, including input a multiple alignment for
the root sequence1, placing functional constraints on sequence sites, tracing mutations along the simulation
and noting their positions in the true multiple alignment, changing evolution parameters and site conservation
between subtrees (i.e., lineages), and more. In addition iSGv2.0.3 fixes a fundamental flaw in representing
in representing insertions and deletions through the introduction of evolving along the guide tree in discrete
steps. Finally, iSGv2.0.3 also introduces a novel method of representing conservation patterns with respect
to insertions versus deletions versus substitutions. These features can be used in many evolutionary studies,
such as to test the accuracy of multiple alignment methods, phylogenetic methods, evolutionary hypotheses,
ancestral sequence reconstruction methods, and superfamily classification methods.

3 Getting Started

indel-Seq-Gen v2.0.3 (iSGv2.0.3) is freely downloadable at http://bioinfolab.unl.edu/∼cstrope/iSG/.
iSGv2.0.3 has been tested MacOS X (versions 10.4.7 and Leopard). You will need g++ compiler if the
provided executables do not run on your system.

1. Download the indel-seq-gen-2.0.3.tar.gz source archive, open the archive by typing the two com-
mands:

gunzip indel-seq-gen-2.0.3.tar.gz, and then

tar -xvf indel-seq-gen-2.0.3.tar

2. This creates a directory indel-seq-gen-2.0.3with all of the files. Go to this directory cd indel-seq-gen-2.0.3.
Make the executables of indel-seq-gen by typing the command “./configure”, followed by the com-
mand “make”. For further installation instructions, refer to the file INSTALL.

3. After making the executables, type the command “cp src/indel-seq-gen data/”. This copies the
executable into the data directory.

4. Go to the data directory using the command “cd data/”.

5. In the data directory, there are sample files that can be used to run indel-seq-gen. The following
commands will execute indel-seq-gen using various capabilities. Cut-and-paste (or type) these examples
to run the simulations. After each run, you can examine the output of these runs by opening the
filenames that begin with the name following the --outfile or -e flags:

./indel-seq-gen --matrix HKY --outfile DNA_out < simple_nuc.tree

./indel-seq-gen --matrix HKY --codon_rates 0.2,0.05,0.75 --outfile DNA_out < simple_nuc.tree

./indel-seq-gen -m HKY -e mid_noncoding --num_runs 5 < mid_nuc_noncoding.tree

./indel-seq-gen -m HKY -e mid_noncoding -n 5 -c 2,1,8 --invar 0.02 < mid_nuc_coding.tree

./indel-seq-gen -m HKY -c 2,1,8 -e exon_intron --step_type trs < exon_intron.tree

./indel-seq-gen -m HKY -c 2,1,8 --lineage exon_intron_lineage.spec < exon_intron_lineage.tree

./indel-seq-gen -m JTT -k lipocalin.spec -w a --alpha 1.3 < lipocalin.tree

./indel-seq-gen -m JTT -k lipocalin_ma.spec < lipocalin_ma.tree

For further understanding of these examples, refer to Section 8.

1This can be used to create different but related ancestral sequences in each run

4

Table 1: Listing of the precedences of environments and the sections in which environments are explained.

Precedence
Environment Set in Θ Λ Section
Global Command line Low N/A 5.1
Partition Guide tree file Middle Low 5.2
Subtree Specification file High High 5.3
Motif Specification file N/A N/A 5.3

4 Overview

In order to simulate heterogeneous sequences and lineage- and site-specific iSGv2.0.3 uses enviroments. The
environment of simulation is comprised of substitution parameters (Θ; four components: θm → substitution
matrix , θf → character frequencies, θr → site rates, and θi → percent invariable sites) and indel parameters
(Λ; three components: λp → probability of an indel occurring as the number of indels per subsitution, λl →
length distribution, and λm → maximum length). iSGv2.0.3 implements four environments:

1. Global environment : Sets the default substitution parameters for the simulation run (indel parameters
cannot be specified globally).

2. Partition environment : Defines the partition-specific simulation parameters.

3. Subtree environment : Defines the lineage-specific simulation parameters.

4. Motif environment : Defines site-specific simulation parameters.

Besides the motif environment, these environments define the same sets of parameters. For this reason,
iSGv2.0.3 implements precedence for each variable, where the precedence, from lowest to highest, is global,
partition, subtree. If any components of the substitution or indel parameter ar not changed in a higher
precedence environment, that component inherits the settings from the next lower precedence environment.
The motif environment does not conflict with the substitution and indel settings of the other environments,
as it works specifically on sites. Precedence and settings can be found in Table 1, and an example simulation
run using the precedence rules is shown in Figure 1.

Table 2 gives the precedence overriding options for each of the environments.

5

Table 2: Environment options and the options that override them for the different input files
to iSGv2.0.3 .

Lowest ←− Precedence −→ Highest
Global1 Subtree2 Lineage3

Θ: θf -f (--frequencies) <float list> #<filename># #f<filename>#

θm -m (--matrix) <matrix> #m<matrix># #m<matrix>#

θr -g (--num gamma cats) <int> #r# #r# OR

#g<int>#

-a (--alpha) <float> #r# #r# OR

#a<float>#

-c (--codon rates) <float list> #r# #r# OR

#c<float list>#

θi -i (--invariable) <float> #r# OR #r# OR

#i<float># #i<float>#

Λ4: λm N/A { * , - , - } { * , - , - }
λp N/A { - , * , - } { - , * , - }
λl N/A { - , - , * } { - , - , * }

1 Global options are set at the command line. For the complete list of global options, see
Table 3.

2 Subtree options are set in the guide tree file, explained in Section 5.2. For a complete list
of options for the guide tree file, see Table 4.

3 Lineage options are set in the specification file, explained in Section 5.3. For a complete
list of options for the specification file, see Table 4 for indel options (Λ) and Table 5 for
substitution options (Θ).

4 Setting indel parameters is the same for both the subtree file and the specification file.
The ‘*’ indicates where the option is set. For formatting options, see Table 4.

5 iSGv2.0.3 Parameters

Creating realistic sequences requires many parameters. Because of this, iSGv2.0.3 has many options. This
section begins by describing both for the global simulation run and for subsequences, called partitions.

5.1 Global Options

To run indel-Seq-Gen from the command prompt, type the following line:

indel-seq-gen -m <matrix> [-options] < guide_tree_file > outfile

This assumes that the executable is in a directory list in the system PATH variable and that the data files
required for the simulation are in the data subdirectory. The guide tree file is described in Section 5.2.
The “> outfile” portion of the command specifies that all non-error messages generated by indel-Seq-Gen

will be saved in outfile. Otherwise, messages will be displayed on the screen.
indel-Seq-Gen has many options. We suggest that you first run some of the examples shown in Section 8.
All necessary files are included in the provided indel-seq-gen-2.0.3/data directory. If you get any error
message and the program does not run, please make sure if you followed the steps explained in the previous

6

30

330000000000001000000000000033

GUTTCAGGTAAAATGCANNGACTTAGRYAG

 000000000000000000000000000000000000000

Taxon1 TTACTT---TTTCCTAACCGG------CCCGAGCTAATG

Taxon2 TTAGTTTTTAATCCCAACCTG------CCCCATCTGATA

Taxon3 CGAAAT------CTTACCGGAGGTAATACGCGGCGCATC

Taxon4 CTGCAT------TCAACCTGT------TAGCATCGCATC

Θ
G
 = {θ

G
m , θ

G
f , θ

G
r , θ

G
i } Λ

G
 = {}

P
a

r
t

it
io

n
 1

C
l

a
d

e
1

_
1

Θ
P
 = {θ

G
m,θ

G
f, θ

G
r,θ

G
i}

Λ
P
 = {λ

P
m, λ

P
p ,λ

P
l}

0.5

0.3

0.14

0.5

0.34

0.12

T
a

x
o

n
3

(2
)

P
a

r
t

it
io

n
 2

C
l

a
d

e
1

_
2

Θ
P
 = {θ

G
m, θ

G
f, θ

P
r,θ

P
i}

Λ
P
 = {λ

P
m, λ

P
P ,λ

P
l}

0.25

0.06

0.25

0.17

0.07
0.15

LINEAGES =

{

 Clade1_1:#fpse.freq,r#{5,0.08,idLD};

 Clade1_2:#p#{8,0.08,idLD};

 Taxon3(2):#a 0.7#{0,0};

}

[:exon(,,)]”Partition_1”{9,0.031/0.01,codonLD}

(

 (Taxon1:0.3,Taxon2:0.14

)Clade1_1:0.5,

 (Taxon3:0.34, Taxon4:0.5

):0.12

);

[:intron]”Partition_2”#r,b0.5#{9,0.1,idLD}

(

 (Taxon1:0.3,Taxon2:0.14

)Clade1_2:0.5,

 (Taxon3:0.34, Taxon4:0.5

):0.12

);
Rootseq: CTACAT TATCCTAACCGG CCCCAGCGCATC

Θ
S
 = {θ

G
m ,θ

S
f ,θ

S
r ,θ

S
i }

Λ
S
 = {λ

S
m, λ

S
p ,λ

S
l}

Θ
S
 = {θ

G
m ,θ

G
f ,θ

S
r ,θ

S
i }

Λ
S
 = {λ

S
m, λ

S
p ,λ

S
l}

Root sequence from (C) Root sequence from (D)

Θ
S
 =

 {
θ

G
m

 ,θ
G

f
,θ

S
r
,θ

P
i }

Λ
S
 =

 {
λ

S
m
, λ

S
p
 ,λ

S
l }

(A) (B)

(C)

(D)

(E)

Figure 1: Depiction of simulation parameters and environments using the exon intron lineage
example above, “./indel-seq-gen -m HKY -c 2,1,8 --lineage exon intron lineage.spec <

exon intron lineage.tree”. (A) The exon intron lineage.tree file specifies two partitions, “Partition
1” and “Partition 2”. (B) The exon intron lineage.spec file specifies environment changes for the
subtrees in (E). (C) The file exon, a multiple alignment input for partition 1. The final root sequence is
shown below the alignment in italics. (D) The file intron, a root sequence input for partition 2. (E) The
simulation run, showing the substitution (ΘX) and indel (ΛX) settings, where X specifies which environment
the settings come from: G→ global, P → partition, and S → subtree.

7

section. If you still cannot run the program, please contact us. The contact information is found in the first
page.

Table 3: Global options (entered at the command line) and their
effects for the indel-Seq-Gen run. Subsequence options (described
in the next Section) will override the global options if there are
conflicts. For input type {list}, do not use spaces to separate list
items.

Option Long Option Type Effect EVa

-a --alpha {float} Shape (alpha) for gamma rate heterogeneity.
Used only for DNA sequences.

θr

-b --branch scale {float} Scaling factor for all branch lengths in simu-
lation guide tree [default = 1.0].

-c --codon rates {list} #1, #2, #3 = rates for codon position het-
erogeneity. Example: -c 0.15,0.05,0.8. Num-
bers are not required to sum to 1, as iSGv2.0.3
will normalize them. Used only for DNA se-
quences.

θr

-e --outfile {string} Base filename for output files:
<filename>.root, <filename>.seq,
<filename>.ma, and <filename>.trace.
These files will be created to hold the root
sequences, sequence files, multiple align-
ments, and traced events output from the
run, respectively.

-f --frequencies {list} Frequencies for individual amino acids (20,
ARNDCQEGHILKMFPSTWYV) or nu-
cleotides (4, ACGT), separated by commas,
with no spaces between. Use “e” to for
equal frequencies (0.05 or 0.25 for each state,
respectively) [default = use frequencies based
on the substitution matrix]. Example: -f
0.2,0.2,0.3,0.3 for 20% A and 20% C.

θf

-g --num gamma cats {int} Number of categories for the discrete gamma-
distribution rate heterogeneity. Must be be-
tween 2 and 32 [default = none]. Higher num-
bers of discrete categories severely affect the
speed of iSGv2.

θr

-h --help Output the usage instructions

-i --invar {float} Proportion of invariable sites [default = none]. θi

Continued on next page...

8

Table 3: (continued)

Option Long Option Type Effect EVa

-k --lineage {filename } Subtree specification file name. See Sec-
tion 5.3.

-j --step type {des, trs, gil} des = discrete evolutionary steps [default], trs
= time relative steps, gil = Gillespie algorithm
used for indel creation (fast). These are de-
scribed below, in Section 5.1.1.

-m --matrix {string} Substitution matrix: HKY, F84, GTR for
nucleotides, PAM, JTT, MTREV, CPREV,
GENERAL for amino acids.

θm

-n --num runs {int} The number of datasets to simulate for each
tree [default = 1].

-o --outfile format {char} Output format: either Phylip (p), NEXUS
(n), or FASTA (f) [default = Phylip].

-q --quiet Quiet mode: only the root sequence, resultant
sequences, and multiple alignment are printed.

-r --rel rates {list} Six comma-separated numbers specifying gen-
eral rate matrix, in the following order: A to
C, A to G, A to T, C to G, C to T and G to
T. DNA only.

θm b

-s --option width {int} The number of residues per line on the multi-
ple alignment output [default = 60].

-t --tstv {float} Transition-transversion ratio.

-u --indel fill {string} Indel fill model, based on neighbor effects
(preferring certain amino acids based on the
neighboring amino acids): xia = original
from [6], built on the E. coli K-12 proteins,
sp = swiss-prot, ran = no neighbor effect [de-
fault = ran].

-w --write anc Write ancestral sequences.

-z --rng seed {int} Manually set the random number seed.

-1 --proportion motif {float} The proportion of a random root sequence to
be set as PROSITE regular expression motifs
(as of PROSITE v20.60, 1038 patterns).

Continued on next page...

9

Table 3: (continued)

Option Long Option Type Effect EVa

a EV refers to the environment variable of which the global option is categorized. If left
unspecified, the option does not refer to any of the environment variables. Environment
variables are explained in Section 4.

b Relative rates apply to the GTR matrix, not site rates.

10

5.1.1 Discrete steps and Trace file

iSGv2.0.3 has two discrete-stepping methods and one non-discrete stepping method. Discrete stepping
methods are implemented because (i) There is currently no continuous model for indel evolution, and thus
most current simulation methods simulate with a flawed indel representation, and (ii) discrete steps allow
for concrete tracking of events during the simulation (refer to [5]). However, such methods are slow, and
impractical for very large simulation runs. Thus, iSGv2.0.3 also includes a new non-discrete stepping method
that also fixes the flaw in indel representations. These methods are described below.

Discrete Stepping Methods: The Discrete Evolutionary Steps (DES) model simply calculates ǫ, and
simulates sequences along the guide tree in ǫ step sizes. Event occurrence times can be related along the
simulation guide tree with the time relative steps, or TRS, representation. iSGv2.0.3 scales the branch
lengths of the guide trees and branch-specific ǫ’s so that all mutation events that occur in simulation run
are ordered with respect to the relative time of the run (i.e., the simulation starts at relative time point 0.0,
and all taxa end at time point 1.0). The last option of running iSGv2.0.3 is to make the step size the same
as the length of the branch to be simulated, using the “old” option.

Non-Discrete Steps: The DES and TRS methods of simulation are computationally intensive, and can
take a very long time for large datasets. For this reason, indel-Seq-Gen also allows the user to choose an
indel creation procedure that utilizes the Gillespie algorithm (GIL), as described by Cartwright [1]. Using the
GIL of indel creation greatly speeds up the the simulation time, and the output of such runs is comparable
to the TRS method (i.e., the indel events are still traced). WARNING: If you choose to change the
amino acid/nucleotide frequencies along lineages, DO NOT use this option. Use either DES or
TRS. The DES and TRS options will immediately begin shifting the amino acid/nucleotide distributions,
while the GIL option will shift the distributions gradually.

Event Tracking

A benefit introduced by the above methods is the ability to track indel events by the following properties:

1. ID

2. Relative time of occurrence (from 0.0 (root of guide tree) to 1.0 (tips of guide tree); for the TRS
model),

3. Set of taxa affected by change (i.e., subtree of occurrence),

4. Event type (insertion/deletion),

5. Indel length, and

6. Locations (columns) in the output MSA that reflect the event.

The time of occurrence for events is listed in different ways for each model: DES reports events by
sequence partition (specified in the guide tree file in the order they occur. TRS and GIL reports events
by the relative time they occur in the guide tree.

5.2 Partition Options

Specifications for each partition are given in the guide tree file. Specifications for each subsequence are
separated by ‘;’. Refer to the Examples section (Section 8) for some sample tree files.

Partition options allow the user to create subsequence-specific effects by overriding the global parameters
for specific subsequences. Partition options are shown in Table 4.

11

Partition-specific Parameters

Root Sequence Name Substitution Indel Guide Tree

Partition 1 [Root Sequence 1] “ Label 1 ” # Substitution 1 # { Indel 1 } (Tree 1);

... [
...] “

... ” #
... # {

... } (
...);

Partition n [Root Sequence n] “ Label n ” # Substitution n # { Indel n } (Tree n);

Figure 2: A template of the guide tree file for a sequence with n partitions/subsequences. Parameters in bold
are required, non-bold are optional. Parameter values are listed in Table 4.

Table 4: Partition options.

Options Command Styles EVa Description

rootseq [:<root sequence file>] or
[:<root sequence file>, #] or
[:<mult align file> (1, 2, 3)] or
[:<mult align file> (1, 2, 3), #] or
[length] or
[length, #]

This option specifies the root sequence parame-
ters. Six formats are allowed: The first two for-
mats specify the root sequence file, in which a
single root sequence along with the quaternary in-
variable array and any motifs/lineages are speci-
fied. The third and fourth format specify that the
root sequence will be created from a file containing
an input the multiple alignment file, with the qua-
ternary invariable array and motifs/lineages speci-
fied. Sub-options ‘1’, ‘2’, and ‘3’ specify the range
of the multiple alignment to use, the number of
sequences to select from the alignment, and the
method of creating the consensus root sequence,
respectively (for further details, see Section 6).
The last two formats take as input a numeric value
(not preceded by ‘:’), and generate a random se-
quence of the given length to use as the root se-
quence. When using the options with ‘#’, relative
rates will be assigned to each partition. Using the
‘#’ option should be done only when the trees for
each partition are the same.

label “Partition Label” This option, when present, will label the bound-
aries of the subsequence in the multiple alignment
in the *.verb file with the name given.

Continued on next page...

12

Table 4: (continued)

Options Command Styles EVa Description

subseq #i<% invariable>,
b<branch scale>,
f<AA frequency file>,
m<substitution matrix>,
r#

θi

θf

θm

θr b

Option ‘b’ modifies and options ‘i’,‘f’,‘m’,‘r’ re-
places the global options given at the command
line, respectively. Option ‘b’ will modify the
default branch length scale by the value given.
Option ‘r’ is a flag that specifies that no site-
specific rates are used for this partition (i.e.,
codon, gamma, and discrete gamma rates are re-
set to uniform rates). This is helpful for specify-
ing introns in coding region sequences, as shown
in 8.3. Multiple options should be separated by
commas.

indel Format:
{#1, #2, <file1 >/<file2 >}
#1: Max indel size
#2: Indel probability distribution

If #2 = 0: Use Chang & Benner
If #2 > 0: P(ins)=P(del)=#2

If #2/#3: P(ins)=#2, P(del)=#3

<file1 >/<file2 >

λm

λp

λl

These options specify the different indel models
and parameters. Only the first two parameters are
required. The last parameter, <file1>/<file2 >,
can be used to specify the two file names, which
provide the user defined insertion length distribu-
tion (file1) and deletion length distribution (file2).
If no distribution file is provided, the distributions
given by Chang and Benner (2004) will be used.
If only one distribution file is given, it will be used
for both insertions and deletions.

Guide tree Modified Newick Format The rooted evolutionary tree for the partition.
Trees must have the same number of taxa, with
each taxon named the same in all trees for all par-
titions. The branching pattern as well as branch
lengths, however, may vary. Branch lengths are
assumed to be the expected number of substi-
tutions per site. Taxon names cannot begin
with a number. Subtrees can be named inside
of the tree, as shown in Figure 3.

a EV refers to the environment variable of which the global option is categorized. If left unspecified,
the option does not refer to any of the environment variables. Environment variables are explained
in Section 4.

b This option is used to specify an intron from an exon. This assumes that the global option ‘-c’
(i.e., ‘--codon rates’) is set. This flag sets the codon rates back to uniform rates.

5.2.1 Specifying Subtrees in Newick Format

To specify subtrees for lineages and motifs, the Newick Tree Format must be clade-labelled, as shown in
Figure 3. For multi-partition simulation runs, note that internal node clade labels can be named arbitrar-
ily, thus for a particular subtree, each partition can have a unique lineage-specific parameterization (e.g.,
Clade1 1 for partition 1, Clade1 2, for partition 2, . . .). However, since taxon labels must be consistant
between partitions, unique subtree parameters cannot be made (e.g., specifying Taxon1 is ambiguous if more
than one partition is used). To specify partition-specific taxon subsequence parameters, refer to Figure 3 for
the method of specifying subtrees for taxon subtrees.

13

(

(

(Taxon1:0.1,Taxon2:0.1

)Clade2:0.1,Taxon3:0.1

)Clade1:0.1,

(

(Taxon4:0.1,Taxon5:0.1

)Clade4:0.1,Taxon6:0.1

)Clade3:0.1

);

Clade2

Clade1

Clade4

Clade3

Figure 3: The subtree-labelled Newick format tree (left) and the resulting tree, which is colored to show the
branches affected by the subtree label.

Node Type Specification
Internal Node <clade list> : options;
Taxon <Taxon name> : options;
Taxon <Taxon name> (partition list) : options;

Figure 4: The format of subtree specification in iSGv2.0.3 .

14

5.3 Lineage and Motif Options

Lineages and motifs are input to iSGv2.0.3 through the use of the global option “-k” or “--lineage”
accompanied by the name of the lineage/motif file. This file consists of two parts:

1. LINEAGES, which change the conditions under which a subtree evolves, and

2. MOTIFS, which impose site-specific functional constraints on specific sequence positions for a specific
subtree.

The basic outline of this file is:

LINEAGES =

{

subtree_list: "lineage_name"#subseq#{indel};

.

.

.

}

MOTIFS =

{

subtree:

MARKER=<marker>;

NAME=<motif_description>;

PATTERN=<modified_PROSITE_motif>;

.

.

.

}

Lineages and motifs both work on subtrees (internal nodes named in input guide tree). To make a lineage
or motif effective from the root of the guide tree, name subtree list in LINEAGES or subtree in MOTIFS
as subtree: to root:, respectively.

5.3.1 LINEAGES

Lineages allow for a specific subtree to evolve under different conditions as specified for partitions in the tree
file. Subsequence options (##) are the only set of options affected by these restrictions, shown in Table 5.
Labelling (“”) and indel ({}) options are no different than in partitions. Note: In order to remove indels
from a lineage, include the option {0,0} in the lineage. iSGv2.0.3 prohibits unrealistic changes, e.g. when
changing site rates (gamma rates (γ), discrete gamma rates, codon rates, and uniform rates), iSGv2.0.3
only allows a subset of ancestor→descendant category changes: γ →{γ, uniform}, discrete γ →{discrete γ,
uniform}, codon→{codon, uniform}, and uniform→{γ, discrete γ, uniform}.

15

Table 5: Novel functions and restrictions imposed for lineage-specific subsequence options (##).

Option: Restrictions Function EVa

Site rates:
a Partition must be either gamma, dis-

crete gamma, or uniform rates.
Change α parameter for gamma site
rates.

θr

c Partition must be codon rates. Change codon position frequencies. θr

g Partition must be discrete gamma or
uniform rates.

Change the number of discrete cate-
gories.

θr

Other:
b Cannot change branch scale. None.
f None. Change character frequencies. θf

i Only affects random input sequence
(i.e., [100])

Change percentage invariable. θi

m Must be a matrix used for specifiec
character set (nucleotides vs. amino
acid), cannot take value GENERAL
or GTR.

Change substitution matrix. θm

r None. Removes all constraints (e.g., invari-
able sites, motifs, site rates) from a
lineage, effectively making all changes
in the lineage occur using uniform
rates.

θr, θi

a EV refers to the environment variable of which the global option is categorized. If left unspecified,
the option does not refer to any of the environment variables. Environment variables are explained in
Section 4.

5.3.2 MOTIFS

Two steps are required to specify a motif: (1) Marking the root sequence in the rootseq file (as in Table 4,
formats 1–4), and (2) Specifying constraints in the lineage file.

Motif types: iSGv2.0.3 allows two formats for motifs: PROSITE-like motif format and sequence template
motif format. PROSITE-like motif format specifies any length of motif that follows the PROSITE regular
expression pattern. Sequence template motif format is required to cover the entire sequence, and are used
to place minimum and maximum length parameters on subsequences.

Specifying sites on root sequence: Marking sites is done in the root sequence input file, below the
input root sequence or input multiple alignment. To begin marking the sequence, place a ‘*’ corresponding
to the first position in the root sequence. This must be present for motifs to be correctly parsed. All other
positions in the input root sequence must have a corresponding ‘*’ or motif label (anything but ‘*’). Motif
specification characters also must be contiguous, i.e., after specifying the positions that are in a motif, the rest
of the motif specification line must be ‘*’s. As a regular expression, the PROSITE-like motif specification is:
+x+∗, where x is the character for the motif specification. For template-like motifs, the regular expression
is *[0 − 9]n2, where n is the length of the root sequence input. There is no limit to the number of motifs
that can be specified on a root sequence. Figure 5 shows some errors that can be made in specifying motifs.

Specifying motif constraints: After the motif-participating sites are labelled in the root sequence, spec-
ify the conditions that apply to each site in the lineage file. The fields for specifying motifs are shown in

2For multiple sequence alignment input, the regular expression is *[[0 − 9], .]n, see Section 6.2 for details.

16

Motif specification Error Fix
aaaaa*************** Motif specification must begin with ‘*’

*aaaaaa******aaaaa** Motif specification must be contiguous split motif into 2 motifs, specifying each
area, or make entire motif contiguous.

*******aaaaaabbbbb** Can only use one motif marker per motif
specification

split motif into 2 motifs, specifying each
area, or make entire motif contiguous.

Figure 5: Erroneous motif specifications for a root sequence of length 20, with the assumption that the motif
is labelled by ‘a’.

In root sequence specification file

50

00

ASPISTIQAATVPDSS--EVAGKWYIVALASNTSFLREKGKMKMVMARIL

*************bbbbbbbbbbbbbb***********************

In motif specification file

<subtreei >:
MARKER=b;

NAME=PS00213: Lipocalin signature, ALL;

PATTERN=[DENG]-{A}-[DENQGSTARK]-x(0,2)-[DENQARK]-[LIVFY]-{CP}-G-{C}-W-[FYWLRH]-{A}-[LIVMTA];

Figure 6: An example of the specifying the lipocalin motif in the single root sequence input. The pattern in
the motif specification file corresponds to the marked sites in the last line of the root sequence file. The sites
corresponding to x(0,2) in this instance is specified as 0 sites, with the ‘-’ placeholder being used to fill the
maximum possible number of sites (2) that could occupy the “variable-length site”.

Table 6.
Note that when marking motifs, the marked positions must be the same size as the PATTERN specified.

In the case of variable positions, iSGv2.0.3 requires that the maximum size of the motif (i.e., n in x(m, n))
are represented in the root sequence. To make this possible, you may need to place ‘-’ in the root sequence
or root MSA, as shown in Figure 6. If a character is placed in the variable motif instead of ‘-’, iSGv2.0.3
will assume that this position is part of the variable motif in the root sequence.

6 Root Sequence Input

The root sequence is specified by the square brackets ([]) in the guide tree file. There are three parameters,
if used, for root sequence input:

1. Specifying the length of root sequence. indel-Seq-Gen will randomly generate a root sequence of the
specified length. For example [40] calls for a root sequence of length 40 characterss.

2. Root sequence input.

3. Multiple alignment input.

17

Table 6: List of the options for specifying motifs. See Figure 6 for an example of a motif specification.

Field Description Motif type
MARKER A single character, value can be anything except

for the character ‘*’ (see Section 6 for specifying
sites for motif). This is the ID of the motif as
specified in the root sequence input.

Prosite-like, template (0-
9 only).

NAME Not required. This is the description of the motif. Prosite-like, template

PATTERN Regular expression patterns, as below.
[list] A list of acceptable amino acids or nucleotides for

a site, site can take value of list.
Prosite-like

{list} A list of unacceptable amino acids or nucleotides
for a site, site can take any value not in list.

Prosite-like

char Invariable site, takes value of char. Prosite-like

x Site can take any amino acid or nucleotide value. Prosite-like, template

x(l) Next n sites can take any amino acid or nucleotide
value.

Prosite-like, template

x(min, max) Variable length motif sequence. Cannot start a
motif with a variable length motif position. This
specifies that length of the motif positions can
vary between m to n sites (variance caused by in-
dels). Variable sites cannot overlap between dif-
ferent motifs.

Prosite-like, template

18

Each of these options is explained in the following subsection. Make sure that the input file is in the
same directory when using a root sequence input file (options 2 and 3).

6.1 Root Sequence Input

This option specifies that the user has a root sequence in a file for a partition.
In the tree file, the root sequence input is specified as:

[:<rootseq_file>]

The format of the file <rootseq_file> is:

<length of sequence>

<invariable array>

<sequence>

<motif_spec>

Figure 7 gives an example of a root sequence for conserving a Thioredoxin-fold protein sequence motif.

20 20

00003223100000000000 00000000100000000000

LARDCVLCSTWVTIALACLK LARDCVLCSTWVTIALACLK

****aaaa************

In motif specification file

root:
MARKER=a;

NAME=Trx-like;

PATTERN=C-[GATPLVE]-[PHYWSTA]-C;

Figure 7: Thioredoxin-fold (Trx-fold) proteins have a characteristic “CXXC” motif that is conserved for all
proteins in the family. (Left): This root sequence input requires the CXXC motif to remain constant for
all sequences created through the use of the invariable array (described later), listed above the root sequence.
The serine in position 9 will also be held invariable, though insertions are allowed to occur between itself
and the previous cysteine. Finally, the length of the root sequence is given by the first line. Note that this
sequence is not truly a Trx-fold sequence, but an example to show the usage of the invariable array. (Right):
Motif specification of the Thioredoxin active site. Motif specifications preserve both the length dependence
and character subsets. Note also that the invariable array is no longer used to preserve the motif; it is
recommended that when using motif specification, all non-motif positions in invariable array should be set to
0.

6.2 Multiple Alignment Input

This option specifies that the user has a multiple alignment of their sequence set, and wants a root sequence
created from the multiple alignment. In the guide tree file, the root sequence input is specified as:

[:<ma_file>(1,2,3)]

Where options 1, 2, and 3 stand for:

1. The range of the multiple alignment to use, where the format is beginning:end. An input of 21:67
specifies the range from the 21st to the 67th spot (inclusive) of the input multiple alignment. Default
for this option is the entire range of the multiple alignment.

19

2. The number of sequences to choose from the multiple alignment. indel-Seq-Gen randomly with replace-
ment selects the specified number of sequences from the multiple alignment. Default for this option is
to use all sequences.

3. Method for collapsing the multiple alignment into a root sequence, either random ‘r’ or consensus
‘c’. Consensus is a majority-rule method, using a coin flip to break ties. Random uses a weighted coin
toss based on the character composition at the site to choose the representative character, except for
invariable positions, which will be chosen by consensus. For an example of the weighted coin toss, look
at the first column in Figure 8 in which all sequences emit an amino acid, column 6. In this column,
there are 2 T’s, 1 V, and 1 C. A weighted coin toss on this column will be a T 50% of the time, a V
25% of the time, and a C 25% of the time. The default for this option is consensus.

When specifying the multiple alignment in the tree file, a blank field specifies that the default entry for
the field is desired. For example, [:input_MA(,,r)] indicates that the entire range and all sequences from
input MA will be used, but that the character that will represent the column will be chosen by a weighted
coin toss based on the characters that appear in that column. Note that the size of the root sequence can
fluctuate between simulation runs. For example, using the option [:input_MA(,1,)] will randomly choose
a single sequence to create root sequence, thus the sequence that indel-Seq-Gen chooses will be the length
of the root sequence for that subsequence.

Format:

<invariable array>

<sequence 1>

<sequence 2>

. .

. .

. .

<sequence n>

<motifs>

Figure 8 is an example of an input multiple alignment of the SET-C region of the SET-domain family.
The ‘-’ is the only character that will be accepted for the gap character. Irregular characters (“YRUN” in
nucleotides, “BZJX” in amino acids) cause each character for which they stand for to be counted as the 1
over the number of characters they represent (e.g., ‘B’ increments both ‘N’ and ‘D’ by 0.5). All ‘.’s in the
template must also be ‘.’s in all motifs coinciding with the same site. The reverse, however, is fine, as shown
in this example, in the position just before the GxxL motif.

6.2.1 Multiple alignment root sequence input for template motifs

Note that the multiple alignment root sequence input will have variable length, depending on the number
of columns in the multiple alignment that are inferred to be gap columns (> 50% ‘-’ in a column). When
specifying template motifs, all sites, except the first, must belong to a position in the template. For this
reason, when specifying a template motif, iSGv2.0.3 also allows the character ‘.’ on a position in the
motif specification. The ‘.’ character specifies that this site should be excluded from the template sites.
For example, in Figure 8, 6 positions of the multiple sequence alignment are excluded from the template
specification.

6.3 Invariable Array

The invariable array in indel-Seq-Gen is a quaternary array that specifies how a region is allowed to evolve,
and is specified in the root sequence input. Table 7 shows the effect of each numerical entry in the invariable
array, and Figure 9 shows an example of how the algorithm finds possible positions for indels based on the
invariable array.

20

Input MA, using invariable array

0000000000000000000000000000000100322300010000

Taxon1 -----TKEDF-----TSDQTNPIGQDSATRLILKGEELTCNYKLFD

Taxon2 RNSCNVVPKIVQVNGDFRIRFTALRD-----IK-GEELFFNYGENF

Taxon3 -----TGVSNNQFGG---YDFVALGD-----IE-GEELTWBYETTE

Taxon4 -----CELVQLTEFS---LGVVAICN-----IE-GEELSFDYAWEA

Input MA, using motif specification

00010000

Taxon1 -----TKEDF-----TSDQTNPIGQDSATRLILKGEELTCNYKLFD

Taxon2 RNSCNVVPKIVQVNGDFRIRFTALRD-----IK-GEELFFNYGENF

Taxon3 -----TGVSNNQFGG---YDFVALGD-----IE-GEELTWBYETTE

Taxon4 -----CELVQLTEFS---LGVVAICN-----IE-GEELSFDYAWEA

*******************************bb.bbbb********

*....000000000000000000000..000000000000000000

In motif specification

<subtree>:
MARKER=b;

PATTERN=I-x-G-x(2)-L;

<subtree′ >:
MARKER=0;

NAME=Multiple alignment template example;

PATTERN=x(10,22)-x(2,6)-x(5)-x(3,8);

Figure 8: input MA: (Top) An example of a 4 sequence multiple alignment from the SET-domain family
of sequences using the invariable array. The GXXL motif is conserved in both the invariable array, along
with the tyrosine and isoleucine. (middle, bottom) The motif specification input and root sequence file. The
motif will be conserved in the same manner as the invariable array on the top. However, specifying this
subsequence as a motif allows the user to conserve the motif on a subtree, rather than over the entire guide
tree as is done with the invariable array.

Table 7: Representation of positions in the invariable array, and effects on the sequence. Invariable sites
(1 and 3) block both deletion and substitution of the corresponding position in the sequence array. No-indel
sites (2 and 3) block deletion of the sequence array, but also block insertion events from occurring between
consecutive no-indel positions (between 2-2, 2-3, 3-2, and 3-3) in the invariable array.

Effects
0 None
1 Invariable
2 No-indel
3 Invariable + No-indel

21

Accepting Positions:

Invariable Array: 0 0 1 2 3 0

Insertion (any size): 1 1 1 1 0 1 1

Invariable Array: 0 0 1 2 3 0

Deletion (size 1): 1 1 0 0 0 1

Deletion (size 2): 1 0 0 0 0 0

Deletion (size 3): 0 0 0 0 0 0

Figure 9: The invariable array and accepting positions for insertion and deletion events. For insertions,
the accepting positions (denoted by ‘1’ and ‘0’ above) are located in between consecutive positions in the
invariable array, while deletion accepting positions correspond exactly those in the invariable array. In the
accepting positions, the site with ‘1’ is allowed to have indels. In the rare case that an accepting position
cannot be found (as in the size 3 deletion example above), indel-Seq-Gen will output an error, but continue
the simulation run.

7 Other Input Files

7.1 Character Frequencies #ffreq file#

Protein and nucleotide subsequences often evolve under different functional constraints, causing them to
display different character frequencies. For this, a file containing 20 amino acid frequencies (order: ARND-
CQEGHILKMFPSTWYV) or 4 nucleotide frequencies (order: ACGT) separated by commas can be entered
for each subsequence with the option: #f<freq_file>#. Values from the input file are read and normal-
ized to create a distribution, where the number of values is specified by the maximum indel size of the
subsequence. For an example, see the file aaf.freq included with all iSG .tar.gz archive downloads.

7.2 Indel Probabilities {#1,#2,indel file(s)}

Insertion and deletion frequencies can be provided for each subsequence. The format of the file is shown in
Figure 10. This example is for the indel probabilities of sizes 1–10 of the Zipfian distribution described in
Chang and Benner [2]. indel-Seq-Gen will read in the number of values corresponding to the max indel size

(#1) specified for the subsequence (for Figure 10, the maximum indel size of a subsequence using this file can
be up to size 10), and then normalize the values to create a distribution. This means that the frequencies can
be given in absolute numbers or in any scale (as shown in Figure 10). If the maximum indel size is greater
than the number of indel positions in the length distribution file, indel-Seq-Gen will output a message that
it is unable to read the input distribution file.

2628,743.8,355.5,210.5,140.2,100.6,76,59.6,48.1,39.7

Figure 10: An example length distribution input file. This has the frequencies of indels with lengths from 1
to 10 amino acids, taken from the first 10 values of the Zipfian distribution. The number of values in this
file should not be smaller than the given max indel size.

22

[999]((Taxon1:0.3,Taxon2:0.14):0.5,(Taxon3:0.34, Taxon4:0.5):0.12);

Figure 11: A simple example of a nucleotide simulation partition file. This simulates a 999 nucleotide
sequence with no indels, along a guide tree of 4 taxa.

mid nuc coding.tree

[999]{9,0.1/0.3,codonLD}((Taxon1:0.3,Taxon2:0.14):0.5,(Taxon3:0.34, Taxon4:0.5):0.12);

codonLD
0,0,3222,0,0,233, 0,0, 0.23

mid nuc noncoding.tree

[999]{9,0.1/0.3,idLD}((Taxon1:0.3,Taxon2:0.14):0.5,(Taxon3:0.34, Taxon4:0.5):0.12);

idLD
2628,743.8,355.5,210.5,140.2,100.6,76,59.6,48.1,39.7

Figure 12: The specification files for a simulation run with indels, and the associated files, codonLD and
idLD.

8 Examples

8.1 Basic coding and non-coding

Despite the complexity that exists in iSGv2, the main goal of the simulation method is to be an all-purpose
sequence simulator. Therefore, included in the distribution is a file called “simple nuc.tree”, shown in
Figure 11.

Given this example, assume the usage of the Hasegawa, Kishino, and Yano [3] substitution matrix. The
following two commands will create non-coding and coding simulation runs, respectively:

./indel-seq-gen --matrix HKY --outfile DNA_out < simple_nuc.tree

./indel-seq-gen --matrix HKY --codon_rates 0.2,0.05,0.75 --outfile DNA_out < simple_nuc.tree

This will also create five outfiles: DNA out.ma, DNA out.seq, DNA out.root, DNA out.trace, and DNA out.verb.
In the first examples, the sites are mutated uniformly as is non-coding DNA. In the second example, the
third coding mutates 75% of the time, while the first and second codn mutate 20% and 5% of the time,
respectively, mimicking codon position rates.

8.2 Including indels

A little more complex example including indels is shown in Figure 13. Notice that we now need to two trees
to represent coding or non-coding sequences, since indel sizes that are not a multiple of three would cause a
nonsense mutation.

The commands:

./indel-seq-gen -m HKY -e mid_noncoding --num_runs 5 < mid_nuc_noncoding.tree

./indel-seq-gen -m HKY -e mid_noncoding -n 5 -c 2,1,8 --invar 0.02 < mid_nuc_coding.tree

23

exon intron.tree
[:exon(,,)]{9,0.031/0.01,codonLD}((Taxon1:0.3,Taxon2:0.14):0.5,(Taxon3:0.34, Taxon4:0.5):0.12);

[:intron]#r,b1.2#{9,0.1,idLD}((Taxon1:0.3,Taxon2:0.14):0.5,(Taxon3:0.34, Taxon4:0.5):0.12);

exon
00

Taxon1 TTACTTT---TTCCTAACCGG---C---CCGAGCT---AATG

Taxon2 TTAGTTTTTAATCCCAACCTG---C---CCCATCT---GATA

Taxon3 CGAAATC------TTACCGGAGGTAATACGCGGCGC---ATC

Taxon4 CTGCATT------CAACCTGT---T---AGCATCGC---ATC

intron
30

330000000000001000000000000033

GUTTCAGGTAAAATGCANNGACTTAGRYAG

Figure 13: The specification files for a simulation run of one exon partition and one intron partition with
indels, and the associated root sequence files, exon and intron.

In this example, the previously introduced options --matrix, --outfile, and --codon rates have been
replaced by their short options. The --num runs (-n) option has also been included, so that five runs will be
simulated. The multiple alignments of this example is very gappy, since in the indel options, the maximum
indel size is 9 nucleotides, and an insertion occurs once for every 10 substitutions, a deletion once every 3.3
substitutions. Finally, the option --invar sets 2 percent of the sites to be invariable. Codon rate input also
does not need to add up to 1, as iSGv2.0.3 will normalize the values.

8.3 Coding and non-coding together

iSGv2.0.3 has the unique ability to simulate exons and introns in a single run. This adds yet more complexity,
as you can see by the necessary files, as listed in Figure 12. Files that remain the same as previous examples
are excluded from this figure.

The command:

./indel-seq-gen -m HKY -c 2,1,8 -e exon_intron --step_type trs < exon_intron.tree

There are many interesting things to note:

1. Codon rates are input at the command line. The subsequence option #r# in the intron sequence resets
the rates to uniform rates in the intron. The additional subsequence options #b1.2# multiplies all
branch lengths in the tree by a factor of 1.2.

2. The file intron conserves the nuclear-like spliceosomal sites (GU at beginning, G in the middle, and
AG at the end).

3. The option --step type sets the simulation run to be in time relative steps. The output file exon intron.trace

will contain where each indel event occurred and the relative time of the event, as explained in Sec-
tion 5.1.1.

8.4 Lineage Introduction

Lineages are one of the unique abilities of iSGv2, paricularly the ability to cause a lineage to evolve under
no specifications, which we call “pseudogene” evolution (the p option in subsequence options ##). To add

24

exon intron lineage.tree

[:exon(,,)]{9,0.031/0.01,codonLD}

(

(Taxon1:0.3,Taxon2:0.14

)Clade1_1:0.5,

(Taxon3:0.34, Taxon4:0.5

):0.12

);

[:intron]#r,b0.5#{9,0.1,idLD}

(

(Taxon1:0.3,Taxon2:0.14

)Clade1_2:0.5,

(Taxon3:0.34, Taxon4:0.5

):0.12

);

exon intron lineage.spec

LINEAGES =

{

Clade1_1:#fpse.freq,p#{5,0.08,idLD};

Clade1_2:#p#{8,0.08,idLD};

Taxon3(1):#a 0.7#{0,0};

}

pse.freq

10,23,15,6

Figure 14: The specification of subtrees in exon intron lineage.tree and the corresponding specifications
in exon intron lineage.spec. Subtrees on internal nodes can be uniquely named, thus the convention
Clade <partition number>. Taxa cannot be uniquely specified between partitions, since they are required
to be the same for all partitions. Thus, the taxon lineage (Taxon3) contains the list of partitions it is active
in in parentheses. In this case, the lineage specifications for Taxon3 are active only for the first partition.

lineages to the previous example, we need to specify clades in the partition file, create the lineage file and
specify this file on the command line. Figure 14 shows the file changes, and Figure 15 shows the output of
the command:

./indel-seq-gen -m HKY --lineage exon_intron_lineage.spec --alpha 1.3 < exon_intron_lineage.tree

No output files are given, thus the output is printed to the screen. Note that the file outfile.verb will
still be created.

Some finer points:

1. The global parameter --alpha specifies that, unless otherwise specified in clades, all branches in all
trees will evolve with site rates, where the gamma parameter α = 1.3. However, Clade1 1 and Clade1 2
both become pseudogene lineages, which releases site rates from them. Taxon3 in the first tree also
does not evolve with this gamma, since the lineage file specifies it to evolve with α = 0.7 (#a 0.7#).

2. Taxon3, partition 1, evolves without indels ({0,0}).

25

>Dataset_0__partition_1

[0,D,,1100,4,16:17:18:19]

[1,I,,1100,1,23]

[2,D,,1100,4,30:31:32:33]

[3,D,,1000,1,15]

[4,I,,1000,2,21:22]

[5,I,,0011,3,12:13:14]

>Dataset_0__partition_2

[6,D,,1000,2,59:60]

[7,I,,1000,4,39:40:41:42]

[8,D,,1000,6,61:62:63:64:65:66]

[9,D,,0001,1,62]

CTACATTATCCTAACCGGCCCCAGCGCAATCGTTTCAGGTAAAATGCACAGACTTAGACAG

4 61

Taxon1 CTACAGCAGCCACCGACCACCCGCCGCCGTTGTCAGTTGGTCTGCAGCCAG

Taxon2 CTACAGCAGCCTAGGCAAGAACCCGTGTCAGTTGAACTGCAAAGACTCAGCCAG

Taxon3 ATACTGTCTCCCAATACCCAGCGCTATAGCAAATGTATAAGGTAAAATGGACAGACTTTGACAG

Taxon4 TTATCTTAGGACAGTACCCAGACCCCGGGCAATCGTGTGAACTAGAACGCAGAGCATAGCCAG

4 61

Taxon1 CTACAGCAGCC--------ACCGACCACC----CGCCGCCGTTGTCAGTTGGTCTGCA--

Taxon2 CTACAGCAGCC---T----A--GGCAAGA----ACCCG----TGTCAGTTGAACTGCAAA

Taxon3 ATACTGTCTCCCAATACCCA---GCGCTATAGCAAATG----TATAAGGTAAAATGGACA

Taxon4 TTATCTTAGGACAGTACCCA---GACCCCGGGCAATCG----TGTGAACTAGAACGCAGA

Taxon1 ------GCCAG

Taxon2 GACTCAGCCAG

Taxon3 GACTTTGACAG

Taxon4 G-CATAGCCAG

Figure 15: The output for a lineage simulation, consisting of event tracing, root sequence, sequences, and
multiple alignment. Taxon1 and Taxon2 are “pseudogenes”.

26

8.5 Prosite-like motif

To create Prosite-like motifs, a root sequence input is necessary. In this example, the lipocalin root sequence
and motif specification in Figure 6 is used, along with lipocalin.tree, shown in Figure 8.5.

indel-seq-gen -m JTT -k lipocalin.spec -w a < lipocalin.tree

lipocalin.tree

[:lipocalin]

{5,0.1,idLD}

(((Taxon1:0.4,Taxon2:0.14):0.5,Taxon3:0.34):0.1, Taxon4:0.5);

Figure 16 shows the output of this command.

>Dataset_0__partition_1

[0,D,,1100,1,10]

[1,D,,1100,2,9:11]

[2,I,,1000,5,44:45:46:47:48]

[3,D,,1000,5,50:51:52:53:54]

[4,D,,1000,2,8:12]

[5,D,,1000,2,35:36]

[6,D,,1000,1,42]

[7,D,,1000,2,39:40]

[8,I,,0100,2,18:19]

[9,D,,0001,1,42]

[10,D,,0001,1,52]

[11,D,,0001,2,55:56]

[12,I,,0001,1,4]

ASPISTIQAATVPDSSEVAGKWYIVALASNTSFLREKGKMKMVMARIL

7 48

5 ASPISTIQAATVPDSSEVAGKWYIVALASNTSFLREKGKMKMVMARIL

6 DSPIDTIWAAVVPDSSDIAGRWYLMALVSDTSFLREKAKLKMVVAGVL

7 DRPVDMSVVGDSSAVDGTWLFMQYVTEVSFVRQRLKFKMLVSTKL

Taxon1 EGPLDTAVEEEQISGNWLGMRSTYHVVSLFNQGILQEV

Taxon2 ERSLEMTVVGDSSGDAIDGVWLFLQYINEVGFLRQRLKFAALGTIKL

Taxon3 DGPIDTIQTNIVLDSSDIAGRWYVMDLIGDAMFRRTMKGLKNVLSGPL

Taxon4 PFPNLATKLIGVQPDQDEIIGQWYELSHHSKSAIFGDTSMKLVTK

7 48

5 ASP-ISTIQAATVPDSS--EVAGKWYIVALASNTSFLREKGKM-----KMVMARIL

6 DSP-IDTIWAAVVPDSS--DIAGRWYLMALVSDTSFLREKAKL-----KMVVAGVL

7 DRP-VDMS---VVGDSS--AVDGTWLFMQYVTEVSFVRQRLKF-----KMLVSTKL

Taxon1 EGP-LDT-----AVEEE--QISGNWLGMRSTYHV--VS--L-FNQGILQ-----EV

Taxon2 ERS-LEMT---VVGDSSGDAIDGVWLFLQYINEVGFLRQRLKF-----AALGTIKL

Taxon3 DGP-IDTIQTNIVLDSS--DIAGRWYVMDLIGDAMFRRTMKGL-----KNVLSGPL

Taxon4 PFPNLATKLIGVQPDQD--EIIGQWYELSHHSKSAIFGDTS-M-----KLV-TK--

Figure 16: The output for a lipocalin simulation, consisting of event tracing, root sequence, sequences, and
multiple alignment.

27

8.6 Template motif

To set up a run with a template, we will using the true multiple alignment sequences output in Figure 16 as
the input root sequence. The resultant file and template specifications are given in Figure 8.6, and we use
lipocalin ma.tree, a tree similar in Figure 8.5, where [:lipocalin] is replaced by [:lipocalin ma(,,)].

lipocalin ma

00

Taxon1 EGP-LDT-----AVEEE--QISGNWLGMRSTYHV--VS--L-FNQGILQ-----EV

Taxon2 ERS-LEMT---VVGDSSGDAIDGVWLFLQYINEVGFLRQRLKF-----AALGTIKL

Taxon3 DGP-IDTIQTNIVLDSS--DIAGRWYVMDLIGDAMFRRTMKGL-----KNVLSGPL

Taxon4 PFPNLATKLIGVQPDQD--EIIGQWYELSHHSKSAIFGDTS-M-----KLV-TK--

PS00213 **************bbbbbbbbbbbbbb****************************

lipo_ma *77.....77777777

lipocalin ma.spec

MOTIFS =

+
{

root:

MARKER=b;

NAME=PS00213: Lipocalin signature;

PATTERN=[DENG]-{A}-[DENQGSTARK]-x(0,2)-[DENQARK]-[LIVFY]-{CP}-G-{C}-W-[FYWLRH]-{A}-[LIVMTA];

root:

MARKER=7;

NAME=lipo_ma: Lipocalin partial template;

PATTERN=x(5,20)-x(10,30);

}

Note that in this example, there is a very tight restriction on the number of insertions, while deletions
are more acceptable. Figure 17 shows these restrictions based on the input root sequence. Note that the
sites marked by ‘.’ are removed consideration when building the root sequence.

To run this example, simply type:

./indel-seq-gen -m JTT -k lipocalin_ma.spec < lipocalin_ma.tree

Note that this example incorporates both a motif and template, and that they do not need to coincide.
This is often the case for real protein evolution, such as the lipocalins in this example, where the lipocalin
signature begins in a coil region and ends in a beta strand. A good use of the template for this type of
protein sequences is to make each x(min, max) match with the coil regions and beta strands, as is done in
the published work [5].

28

template: ---- x(5,20), 17 --- -------- x(10,30), 30 --------

positions: 12345678911111111112 123456789111111111122222222223

01234567890 012345678901234567890

* **

Taxon1 EGP-LDT-----AVEEE--QI SGNWLGMRSTYHV--VS--L-FQ-----EV

Taxon2 ERS-LEMT---VVGDSSGDAI DGVWLFLQYINEVGFLRQRLKFAALGTIKL

Taxon3 DGP-IDTIQTNIVLDSS--DI AGRWYVMDLIGDAMFRRTMKGLKNVLSGPL

Taxon4 PFPNLATKLIGVQPDQD--EI IGQWYELSHHSKSAIFGDTS-MKLV-TK--

lipo_ma *77777777777777777777 777777777777777777777777777777

Figure 17: The input multiple alignment lipocalin ma from Figure 8.6 as iSGv2.0.3 reads it in. Above the
alignment is the placement of the template sites as iSGv2.0.3 places them; template: Gives the template
spec (e.g., x(5,20)) and the current number of sites residing in the template as iSGv2.0.3 reads the root
sequence, positions: the position in the template. Numbers with a ‘*’ below them are positions that are
not included in the root sequence built. A space has been placed between templates to make it easier to read.

References

[1] R.A. Cartwright. DNA assembly with gaps (Dawg): simulating sequence evolution. Bioinformatics,
21:iii31–iii38, 2005.

[2] Mike S. S. Chang and S.A. Benner. Empirical analysis of protein insertions and deletions determining
parameters for the correct placement of gaps in protein sequence alignments. Journal of Molecular
Biology, 341:617–631, 2004.

[3] M. Hasegawa, H. Kishino, and T. Yano. Dating the human-ape splitting by a molecular clock of mito-
chondrial DNA. Journal of Molecular Evolution, 22:672–677, 1985.

[4] A. Rambaut and N.C. Grassly. Seq-Gen: an application for the Monte Carlo simulation of DNA sequence
evolution along phylogenetic trees. Bioinformatics, 13:235–238, 1997.

[5] C.L. Strope, K. Abel, S.D. Scott, and E.N. Moriyama. Biological sequence simulation for complex
evolutionary hypotheses with indel-Seq-Gen version 2. Molecular Biology and Evolution, 26:2581–2593,
2009.

[6] X. Xia and Z. Xie. Protein structure, neighbor effect, and a new index of amino acid dissimilarities.
Molecular Biology and Evolution, 19:58–67, 2002.

29

