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 RNA-Seq is a recently developed technology that can reveal RNA expression 

profile by taking advantage of deep sequencing. This new technology has many 

advantages over microarray technologies. Although RNA-Seq is expected to overtake 

microarray experiments due to their massive amounts of data produced, it presents many 

challenges to bioinformatics research regarding efficient data processing and storage, and 

accuracy in data interpretation. One of the challenges and also an important aspect of 

expression profiling is to detect differentially expressed genes between different 

experimental conditions. Several statistical methods have been developed over the past 

few years. In this study, we chose two representative methods: one parametric method, 

DESeq, and one nonparametric method, NOISeq. We compared the performance of these 

two methods using simulated and real datasets. We showed that both DESeq and NOISeq 

identified over-expressed genes more correctly than under-expressed ones. While DESeq 

was more likely to call longer genes as differentially expressed, NOISeq did not show 

such bias. When the underlying variation increased, both methods showed higher false-

positive rates at the same threshold. When replicates were not available, both methods 



 

 

 

 

showed lower true-positive and higher false-positive rates. Finally, we explored a 

strategy to combine the results from DESeq and NOISeq when replicates are available. 

We showed that it is possible to improve differential gene-calling results by combining 

the results obtained from the two methods. NOISeq is recommended when no replicate is 

available. 
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1 Introduction 

 

1.1 Gene Expression Analysis 
 

Gene expression analysis has long been of interest to molecular biologists. It is 

done, for example, to identify genes differentially expressed among tissues or among 

different experimental conditions, to discriminate heterogeneous diseases such as cancer, 

or to elucidate the relationship between gene expression and covariates such as survival 

or tumor grade (Barry, et al., 2005). The transcriptome is the complete set of transcripts 

in a cell and a summary of all gene expressions. It is essential to construct and understand 

the transcriptome accurately in order to interpret the functional elements of the genome, 

molecular constituents of cells, development of organisms, and mechanism of diseases 

(Wang, et al., 2009).  

Various technologies have been developed to quantify and analyze transcriptomes 

over the years. Early technologies such as labor-intensive and expensive cDNA cloning 

and expressed sequence tag (EST) provided only a limited insight to the complexity and 

intricacy of transcriptomes (Garber, et al., 2011). Microarray technology was then 

developed to overcome such limitations for its high throughput and relatively low cost. It 

is a hybridization-based approach that incubates fluorescently labeled cDNA with either 

custom-made microarrays or commercial oligo-based microarrays. Microarray provided 

more comprehension to the transcriptome analysis since it can generate the expression 

data for thousands of genes simultaneously. Limitations, however, exist also in 

microarray, e.g., requiring prior knowledge about the genome sequence, high background 
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noise due to cross-hybridization, and a limited dynamic range of detection owing to 

background noise and saturation of signals (Wang, et al., 2009). 

 

1.2 Next-Generation Sequencing and RNA-Seq 
 

Next-generation sequencing technologies have been developed in recent years. It 

is significantly different from the traditional Sanger sequencing technology. First of all, 

next-generation sequencing is ultra high-throughput, which processes millions of 

sequence reads in a parallel fashion instead of sequentially. Secondly, the workflow to 

produce next-generation sequencing libraries is different. Instead of using vector-based 

cloning and Escherichia coli based amplification, next-generation sequencing workflow 

is to ligate specific adaptor oligos to both ends of each DNA fragment and then sequence 

these DNA fragments. Moreover, next-generation sequencers produce shorter reads in 

length compared to Sanger sequencing. Depending on different technologies or platforms 

(e.g., Illumina
1
, SOLiD

2
, Roche 454

3
, Ion Torrent

4
, and PacBio

5
), reads can vary in 

length between around 30bp and 400bp (or ~1,000bp for PacBio), which can be ~20 

times shorter than those from Sanger sequencing.  

With the massive amount of short reads produced by next-generation sequencers, 

traditional alignment programs, e.g., BLAST (Altschul, et al., 1990), are too slow and not 

suitable for mapping all short reads to reference genomes. Various programs have been 

                                                        
1http://www.illumina.com/ 
2http://www.appliedbiosystems.com/absite/us/en/home.html 
3http://www.my454.com/ 
4http://www.iontorrent.com/ 
5http://www.pacificbiosciences.com/ 
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developed to resolve the issue. Some examples include Bowtie (Langmead, et al., 2009), 

TopHat (Trapnell, et al., 2009), BWA (Li and Durbin, 2009), and SOAP2 (Li, et al., 

2009). Unlike regular pairwise-alignment methods based on dynamic programming such 

as the Smith-Waterman algorithm (Smith and Waterman, 1981) or a heuristic algorithm 

as BLAST, these short-read aligners use algorithms based on hash tables or Burrows-

Wheeler transform (Burrows and Wheeler, 1994). Ruffalo et al. (2011) compared seven 

popular short-read alignment programs: Bowtie, BWA, SOAP2, mrFAST (Alkan, et al., 

2009), mrsFAST (Hach, et al., 2010), Novoalign
6
, and SHRiMP (Rumble, et al., 2009). 

They reported that among these programs, SOAP2 performed quite well and had a 

consistently high accuracy (above 90%) even when the short-read error rates were as high 

as 10%. 

With these newly developed tools, next-generation sequencing are now used in 

many aspects of biological research, e.g., mutation discovery, sequencing clinical isolates 

in strain-to-reference comparisons, enabling metagenomics, defining DNA-protein 

interactions, discovering noncoding RNAs, and even de-novo assembly of transcriptomic 

and genomic sequences (Mardis, 2008). One particular use of next-generation sequencing 

technology this thesis focuses on is for quantifying gene expression, which is called 

RNA-Seq. 

RNA-Seq is a recently developed technology based on next-generation 

sequencing. It is used, for example, to obtain gene-expression profiles, transcriptional 

structure of genes, and post-transcriptional modifications. RNA-Seq measures the levels 

of transcripts and their isoforms (alternatively spliced transcripts from the same gene) 

                                                        
6http://www.novocraft.com/main/index.php 
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much more precisely than many other methods. RNA-Seq data are typically generated 

from a library of cDNA fragments made from a population of RNAs. The cDNA 

fragments are attached with adaptors on one or both ends (single or paired-end 

sequencing). Then each molecule is sequenced in a high-throughput fashion with or 

without amplification. The short reads obtained are aligned to a reference genome or 

transcriptome. They can be assembled de novo if the reference is not available. The 

number of short reads that are mapped to each reference gene region or transcript can be 

interpreted as the expression level of the gene or transcript. Illumina and SOLiD 

platforms are usually used for RNA-Seq experiments. Many different types of analyses, 

e.g., single nucleotide polymorphism discovery, alternative transcript identification, and 

gene expression profiling, can be applied on the result of short-read alignment. Compared 

with aforementioned microarray technology, RNA-Seq has many advantages, e.g., high 

resolution, low background noise, no prior knowledge of reference sequence required, 

and being able to distinguish isoforms and allelic expression (Wang, et al., 2009).  

 

1.3 RNA-Seq Data Processing and Analysis 
 

It is expected that digital gene expression (DGE) technologies (e.g., RNA-Seq) 

will overtake microarray technologies in the near future for many functional genomics 

applications (Robinson, et al., 2010). It necessitates, however, development of accurate 

and efficient methods and software to analyze DGE data. The number of short reads 

mapped onto one gene is the count that can be viewed as the expression level of the gene. 

These count data are different from those obtained from bead and array technologies. 
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DGE data are fundamentally discrete, rather than continuous as microarray data are, in 

nature (Hardcastle and Kelly, 2010). Therefore, the techniques developed for analyzing 

microarray data may not be directly applicable on these DGE data. 

Two types of variations exist in microarray as well as in RNA-Seq experiments: 

biological variation and technical variation. Biological variation is the normal stochastic 

variation in gene expression between biological samples. Technical variation is the 

inherent variation of the experimental process. For example, in microarray experiments, 

technical variation is produced as different signals in different runs of microarray for a 

same biological sample. In RNA-Seq experiments, different numbers of short reads are 

produced in different runs of sequencing for a same biological sample. For continuous 

data obtained by microarray, a normal distribution is usually used to model biological and 

technical variations after log transformation (Smyth, et al., 2005). However, as mentioned 

previously, since RNA-Seq count data are not continuous but discrete, the techniques 

developed for analyzing microarray data are not applicable on RNA-Seq data. Since 

Poisson distribution cannot model the over-dispersion observed in RNA-Seq data, both 

technical and biological variations have been modeled using negative binomial (over-

dispersed Poisson) distributions (Robinson, et al., 2010). 

Since the number of reads generated from each transcript depends on the length of 

the transcript and the depth of the sequencing, Mortazavi et al. (2008) introduced RPKM 

(Reads Per Kilobase of exon model per Million mapped reads) to normalize the estimated 

expression level of each transcript based on the length. RPKM, however, has several 

drawbacks. The fact that a small number of highly expressed genes can generate a big 

portion of the total reads (Bullard, et al., 2010) complicates normalization. It also has 
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been reported that even after normalization based on length (e.g., RPKM), longer 

transcripts or genes are still more prone to be called as differentially expressed than 

shorter ones using t-test (Oshlack and Wakefield, 2009). Moreover, expression levels of 

genes or transcripts cause bias in detecting differential expression; highly expressed 

genes or transcripts are more likely to be called as differentially expressed (Wu, et al., 

2010). Non-uniform read coverage as results of experimental protocols and local 

sequence context also exists and some correction methods have been developed 

(Benjamini and Speed, 2012; Hansen, et al., 2010; Li, et al., 2010). 

 

1.4 Methods Used to Analyze RNA-Seq Differential Gene Expression 
 

Despite all the challenges, several methods have been developed to analyze DGE 

data over the last few years. They include DESeq (Anders and Huber, 2010), edgeR 

(Robinson, et al., 2010), Cuffdiff (Trapnell, et al., 2010), baySeq (Hardcastle and Kelly, 

2010), TSPM (Auer and Doerge, 2011), BitSeq (Glaus, et al., 2012), and NOISeq 

(Tarazona, et al., 2011). Each of these methods is described next. 

 

1.4.1 DESeq 

 

DESeq (Anders and Huber, 2010) is a parametric statistics method based on a 

negative binomial model (an over-dispersed Poisson model; NB). It takes raw read counts 

as input. It assumes that the counts follow: 
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,        (1) 

where Kij is the number of read counts in sample j for gene i, and
 
and are the 

mean and the variance of the distribution. Since in practice, and  are unknown, 

they are estimated from the data. Since RNA-Seq experiments usually have only a small 

number of replicates, DESeq estimates the gene expression variance between replicates 

by pooling genes with similar expression levels to enhance the variance estimation. 

DESeq estimates the mean  as: 

        (2) 

where  is a condition-dependent per-gene parameter, which is proportional to the 

expected value of the unknown true concentration of fragments from gene i under the 

experimental condition  for sample j, and  is the sampling depth of sample j. 

The variance  is the sum of a shot noise (technical variation) and a raw variance 

(biological variation):  

         (3) 

The shot noise is assumed to be Poisson distributed. Thus the variance equals the mean 

. The per-gene raw variance parameter  is a smooth function of : 
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Equation (4) is used to pool the data from genes with expression levels similar to gene i 

and to estimate the variance. 

After fitting data to the model, DESeq weighs the evidence in the data for 

differential expression. Suppose that there are mA replicates in condition A and mB 

replicates in condition B. For each gene i, DESeq tests the null hypothesis qiA=qiB, where 

qiA is the expression strength parameter (see equation (2)) for the samples in condition A, 

and qiB for condition B. The total counts in each condition are defined as follows: 

     (5) 

Then the overall sum is 

         (6) 

Anders and Huber (2010) showed that, under the null hypothesis, the probabilities of the 

events  and  for any given pair of numbers a and b, denoted as p(a,b), 

can be calculated. The P value of a pair of observed count sums ( ) is calculated 

as the sum of all the probabilities less or equal to p( ) given the overall sum as 

:  
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When no replicates are available, DESeq treats gene expressions between two 

experimental conditions as replicates (method=“blind”). In this case, the determination of 

differentially expressed genes will be very conservative 

Anders and Huber (2010) tested DESeq on the simulated read-counts generated 

from a negative binomial model and also on several real RNA-Seq datasets. They 

reported that DESeq controlled type-I error properly where the observed type-I error rate 

is at or lower than the DESeq claimed type-I error rate. They also compared DESeq with 

edgeR (described next). They showed that DESeq and edgeR both controlled type-I error 

well. DESeq produced more balanced results. DESeq reported a similar level of 

differentially expressed genes for both lowly and highly expressed genes, whereas edgeR 

reported more differentially expressed genes for lowly expressed genes and less 

differentially expressed genes for highly expressed genes. 

 

1.4.2 edgeR 

 

edgeR (Robinson, et al., 2010) is another parametric statistics method, which is 

also based on a negative binomial model. It was the first statistical method developed for 

DGE data, initially developed for “serial analysis of gene expression (SAGE)” data 

(Robinson and Smyth, 2008). The model formulation is very similar to that of DESeq. 

When estimating variances, DESeq and edgeR both borrow information between genes 

but in different ways. edgeR estimates the gene-wise variance or dispersion by 

conditional maximum likelihood conditioning on the total count for that gene (Smyth and 

Verbyla, 1996). It shrinks the dispersions towards a consensus value using an empirical 
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Bayes procedure (Robinson and Smyth, 2007). Differential expression is assessed by 

using an exact test similar to that of DESeq with modification for over-dispersed data for 

each gene. edgeR requires each condition having at least one replicate for input data. 

One substantial difference between DESeq and edgeR is that, in their variance 

estimation, edgeR estimates a single common dispersion parameter for all genes, whereas 

DESeq estimates the variance using a more flexible, mean-dependent local regression. 

edgeR has the option to estimate per-gene empirical variance, which, as Anders and 

Huber (2010) pointed out, has little effect on the result; results are similar to those 

obtained using the common dispersion option. 

 

1.4.3 Cufflinks/Cuffdiff 

 

Cufflinks (v2.0.1, updated in June, 2012) (Trapnell, et al., 2012; Trapnell, et al., 

2010) takes the aligned paired-end, as well as single-end, cDNA fragment sequences as 

input. It takes advantage of spliced alignments, which allows large gaps in the alignment, 

produced by, e.g., TopHat (Trapnell, et al., 2009). It then assigns the fragments or short 

reads to different isoforms through following steps: 1) identifying short reads that must 

have originated from distinct spliced isoforms (mutually incompatible fragments), 2) 

assembling isoforms based on the mutually incompatible fragments, and 3) assigning 

compatible fragments to isoforms and estimating the isoform abundance that best 

explains the observed fragments (thus Cufflinks can align short reads that can be mapped 

to multiple isoforms). The expression estimation can be further improved by correcting 

for positional and sequence-specific biases. With positional bias, fragments (short reads) 
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are preferentially located towards either the beginning or the end of transcripts. Some 

features of sequences also affect their probability of being selected for sequencing. 

Cufflinks incorporates the method described by Roberts et al. (2011) to correct these 

biases. 

Cufflinks includes a program, Cuffdiff, for testing differentially expressed genes. 

Cuffdiff uses very similar procedure to that of DESeq. It estimates the variance based on 

a negative binomial model but uses t-test to calculate the test statistics instead. When no 

replicates are available, Cuffdiff treats two experimental conditions as if they were 

replicates just like DESeq. A unique property of Cuffdiff is that, with Cufflinks’ ability 

for assigning read counts to multiple isoforms as mentioned above, it can evaluate 

expression at the transcript level. Cuffdiff uses a beta negative binomial model (a mixture 

of several negative binomial distributions) to estimate the variance of the count data of 

transcripts to include the uncertainty of assigning short reads to individual transcripts. 

 

1.4.4 baySeq 

  

baySeq (Hardcastle and Kelly, 2010) is also a parametric statistics method using a 

negative binomial model. baySeq takes a Bayesian approach where it assumes that non-

differentially expressed genes should possess the same prior distribution on the 

underlying parameters across conditions (a model groups samples across conditions 

together), whereas differentially expressed genes should possess different parameters for 

prior distributions (a model separates different conditions). It compares the posterior 

probability of the observed data given the model that groups samples across conditions 
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together (non-differentially expressed) with the posterior probability of the observed data 

given the model that separates samples between conditions (differentially expressed). 

One of the advantages of baySeq is that it enables the analysis of experimental designs 

with multiple groups (more than two conditions). baySeq requires replicates in each 

condition for input data.  

The authors compared baySeq with DESeq and edgeR on simulated count data 

generated from a negative binomial model and real datasets. They showed that baySeq 

performed at least as well as or better (more sensitive at discovering differentially 

expressed genes at the same false discovery rate) than other methods in general. baySeq 

performed especially better when the dispersion of data was constant, the proportion of 

differentially expressed genes was high, or the differential expression was unidirectional 

(all differentially expressed genes are either over-expressed or under-expressed). 

 

1.4.5 BitSeq 

 

BitSeq (Glaus, et al., 2012) is a recently developed method based on a Bayesian 

approach. It utilizes the short-read mapping data where multiple-location information is 

available (using a program, such as Bowtie). Then, as with Cufflinks, it attempts to 

estimate transcript expression levels incorporating possibilities of having isoforms. 

BitSeq, unlike Cufflinks, estimates the distribution of transcript expression levels based 

on a probabilistic model of the read generation process and a Markov chain Monte Carlo 

(MCMC) algorithm. BitSeq estimates the variance in the transcript expression based on a 

hierarchical log-normal model and determines the probability of differential expression 
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by Bayesian model averaging. BitSeq also requires replicates for each condition for input 

data. Compared with Cufflinks/Cuffdiff, DESeq, edgeR, and baySeq, the authors showed 

that, overall, BitSeq performed slightly better than baySeq, followed by DESeq and 

edgeR, and lastly Cufflinks/Cuffdiff.  

 

1.4.6 Two-Stage Poisson Model (TSPM) 

 

TSPM (Auer and Doerge, 2011) is another parametric statistics method. A unique 

feature of this method from aforementioned parametric methods is that it assumes that 

not all gene expressions are overly dispersed across samples. Therefore, the first stage of 

this method is to determine which gene-counts follow an over-dispersed Poisson model 

and which ones follow a simple Poisson model. It then applies a different likelihood ratio 

test for differential gene calling separately on the over-dispersed group and on the non-

overdispersed group.  

The authors compared their method with edgeR. TSPM performed better than 

edgeR when the data were derived from a simple Poisson distribution, but less sensitive 

when the data had an over-dispersed distribution. TSPM was not recommended if only a 

small number of replicates are available. TSPM requires replicates in each condition for 

input data.  

Kvam et al. (2012) later compared DESeq, edgeR, and baySeq with TSPM 

methods on simulated data under various scenarios, e.g., using 2 or 4 replicates, and 

using a Poisson or negative binomial model to generate count data. They reported a 

congruous result with previously mentioned comparison results; baySeq performed 
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slightly better than DESeq and edgeR in general, and TSPM performed the poorest 

especially when only a few replicates were available. 

 

1.4.7 NOISeq 

 

NOISeq (Tarazona, et al., 2011), in contrast to aforementioned methods, is a non-

parametric statistics method. Several normalization methods for the raw read counts are 

implemented with NOISeq. It includes: the number of read counts per million reads, 

RPKM (Mortazavi, et al., 2008), TMM (Robinson and Oshlack, 2010), and UQUA 

(Bullard, et al., 2010). "Trimmed mean of M-values" (TMM) calculates a normalization 

factor based on a weighted average expression ratio of all genes after removing extremely 

high and low counts data. UQUA calculates scaling factors based on per-lane upper-

quartile (75
th

 percentile) of all the gene counts excluding those that have zero counts for 

all lanes. 

After normalization, it calculates the log-ratio (M) and the absolute value (D) of 

difference. Let be the mean or median of the expression of gene i of all replicates in an 

experimental condition g (g =1 or 2). The statistics M and D for gene i are defined as: 

       (8)
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These statistics collect the information on fold-change (M) as well as the absolute 

difference (D), which compensates the unstable behavior of M at low expression values. 

The probability of a gene being differentially expressed is the probability that both |M| 

and D are greater than the noise |M*| and D*, . M* and D* 

probability distributions are empirically computed by comparing gene expression counts 

between each pair of replicates within the same condition. The odds of differential 

expression to non-differential expression are calculated as:  

       (10) 

For example, if the odds value is 4:1, the probability of differential expression is 

equivalent to 0.8. We call this probability as PNOI in this thesis. 

When no replicates are available, NOISeq simulates replicates based on a 

multinomial distribution for read counts with parameters n (the number of replicates to be 

simulated), pnr (the number of the total reads for each replicate to be simulated expressed 

in a percentage of the total reads of the available sample), and v (the variability in the 

total read numbers of the simulated samples). 

The authors compared NOISeq with several other methods including DESeq, 

edgeR, baySeq, and Fisher’s Exact Test (FET). For both simulated count data and real 

datasets, they showed that NOISeq performed comparable to or better than other 

methods. While NOISeq found slightly fewer truly differentially expressed genes 

compared to other methods, the sensitivity of discovering differentially expressed genes 
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by NOISeq was less dependent on the sequencing depth. The sensitivity of other methods 

increased with increasing sequencing depth resulting discovering more true positives. 

However, this was at the cost of having significantly more false positives compared to 

NOISeq. 

 

1.5 Objectives of This Study 
 

The simulated count data used in all previously mentioned comparative studies 

except for the study by Glaus et al. (2012) were directly simulated from a Poisson or a 

negative binomial model. However, in the real RNA-Seq analysis, some short reads can 

be mapped to more than one gene. Such non-uniquely mapped short reads are usually 

discarded and are not counted. This practice could affect the relationship between 

expected gene expression levels and the actual read counts obtained. One objective of this 

study is to include the effect of uncertainty in short-read mapping, therefore simulation 

was done following the RNA-Seq sequencing process and data analysis procedure step-

by-step. 

Another focus of this study different from others is that we compared the 

consistency and performance (sensitivity, FDR, precision and recall) of methods when no 

replicates were available. Although it is important and highly recommended to have 

biological replicates, in practice, the majority of RNA-Seq experiments include no or 

very few replicates. By testing the method performance with and without replicates, we 

examined if these methods could recover any meaningful results even when no replicates 

were included.  
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Based on multiple simulated and real datasets, we compared the performance of a 

parametric, DESeq, and a non-parametric, NOISeq, differential gene-calling methods.  

Finally, instead of choosing one method to analyze all kinds of data, we attempted 

to develop strategies regarding how to better apply these methods or combine their results 

based on the characteristics of the data. 
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2 Materials and Methods 

 

2.1 RNA-Seq Simulation 
 

2.1.1 Overall process of the simulation 

 

Simulated read-count data have been often used for testing performance of 

differential gene-calling methods (e.g., Auer and Doerge, 2011; Glaus, et al., 2012; 

Hardcastle and Kelly, 2010; Kvam, et al., 2012). In these studies, except for Glaus et al. 

(2012), count data were simulated from a defined distribution given the expected 

expression level of each gene in each condition. However, such simulation studies cannot 

incorporate uncertainties generated during the actual RNA-Seq studies. For example, it is 

a common practice in RNA-Seq analysis to only consider short reads that can be uniquely 

mapped to the reference sequences and discard the rest that maps multiple genomic 

locations or multiple transcripts. This practice may affect the relationship between the 

expected expression level and the actual count data obtained, which may cause the count 

data not following the defined distribution. In order to examine how discarding non-

uniquely mapped reads affects the results of RNA-Seq analysis, instead of only 

simulating the count data, we simulated the entire RNA-Seq process step by step. The 

overall simulation process is summarized in Figure 1. Each process is described next. 

(1) We used the consolidated set of protein-coding sequences (CDS) gathered from the 

mouse genome as our transcriptome (see Supplementary Material section S3 for the 

description of the consolidated mouse CDS set). It included 26,017 transcripts after 

excluding alternative splicing forms. Note that the terms “gene”, “transcript”, and 
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“CDS” are used interchangeably in this thesis. They all mean the sequences that are 

used for generating short reads and used as the references to be mapped by short 

reads subsequently. 

(2) Each gene was randomly assigned an expression level from a Gamma distribution 

(described in section 2.1.2). 

(3) Short reads with their length of 36bp were generated from each gene starting at 

random positions on that gene. Note that no errors (sequencing errors) were 

introduced in this process. The number of short reads generated for each gene was set 

to be proportional to the expression level and the length of the gene (described in 

section 2.1.3). The script that generated the starting positions of short reads can be 

found in Supplementary Material section S1. 

(4) Short reads generated were mapped back to the mouse reference sequences (our 

consolidated CDS dataset) by using SOAP2 (Li, et al., 2009) allowing 2 mismatches. 

We chose SOAP2 for its good performance reported in Ruffalo et al. (2011) as 

described in section1.2. Following the common practice, we only considered short 

reads that can be uniquely mapped back to the reference sequences using the option 

“–r 0”. In this setting, short reads that were mapped more than one location were 

discarded.  

(5) These steps were repeated for each replicate of each experimental condition. 

(6) Finally, the number of short reads mapped to each gene was used as the count input 

for differential gene expression analysis. 
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Figure 1: Workflow of data simulation.  

 

2.1.2 Modeling gene expressions 

 

The expression level of each gene at the control condition was assigned randomly 

from a Gamma distribution with the shape parameter 0.15 and the scale parameter 1160. 

The parameters were chosen to produce a distribution that was similar to the distributions 

of our real RNA-Seq datasets (described in sections 2.4 and 2.5). Figure 2 shows the 

distribution of gene expression (read count) of a real mouse dataset. Figure 3 shows the 

distribution of our simulated gene expression (read count) generated based on the above 

Gamma distribution. 



28 

 

 

 

 

Figure 2: Distribution of the read counts obtained from the real mouse 

RNA-Seq dataset.  

 

 

Figure 3: Distribution of the read count generated in our simulated 

RNA-Seq dataset. 

 

Our simulation strategy is summarized in Table 1. Assuming that most genes are 

not differentially expressed, we assigned 10% of genes (type A) to be “over-expressed” 

and another 10% (type B) to be “under-expressed” in the experimental condition. For 
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both over- and under-expressed genes, the fold-changes were chosen randomly from 1.1 - 

5.0. The remaining 80% of the genes (type C) were considered to have no difference in 

expected expression levels between the control and experimental conditions. Since RNA-

Seq experiments often include only a few replicates, we included only two replicates in 

each of the experimental (“Exp1” and "Exp2") and control (“Ctr1” and "Ctr2") 

conditions.  

Another set of data was also simulated for testing experiments without replicates 

(one replicate in experimental condition and one replicate in control condition).  

 

Table 1: Simulation strategy used in this study. 

Gene 

types 

Number of 

Genes 

(26,017)a 

Gene expression levelsb 

Exp1 Exp2 Ctr1 Ctr2 

A 2,602 Over Over Normal Normal 

B 2,602 Under Under Normal Normal 

C 20,183 Normal Normal Normal Normal 
a
Total number of genes are shown in parentheses. 

b
“Over”: over-expressed, “Under”: under-expressed, and “Normal”: no-differential expression. 

 

2.1.3 Modeling technical and biological variations 

 

The biological variation between replicates within each condition group was 

modeled by a Gamma distribution. Two datasets were generated with different levels of 

variations. The dataset with a moderate variation had 0.33 of the coefficient of variation 

(CV) modeling after the Chlamydomonas reinhardtii dataset described in section 2.4.2. 

The large variation dataset had 0.67 of CV modeling the Acyrthosiphon pisum dataset 

described also in section 2.4.2. For gene I, its expression level is expressed as:  
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       (11) 

where ki is the shape parameter and θi is the scale parameter of the Gamma distribution. 

The technical variation was modeled by a Poisson distribution. Thus the expression level 

of gene i, Ei, after considering both biological and technical variations can be expressed 

as: 

       (12) 

The number of short reads generated from each gene was assumed to be proportional to 

the expression level and the length of the gene to mimic the real RNA-Seq process: 

       (13) 

where Ni is the number of short reads generated for gene I, Li is the length of gene i, and c 

is a constant to make desired amount of total reads in the experiment. We chose a value 

for c to generate the approximate total of 23 million short reads for each replicate.  

 

2.2 Differential Gene Calling Methods Compared 
 

One of our focuses in this study was to examine how different differential gene-

calling methods perform when there was no replicate as it is usually the case in many 

RNA-Seq experiments. Based on this focus, we chose a popular parametric statistics 

method DESeq (version 1.2.1) and a relatively newly introduced non-parametric statistics 

method NOISeq (R script downloaded on Feb 21, 2012 from 

http://bioinfo.cipf.es/noiseq/doku.php?id=downloads). While DESeq, edgeR, and baySeq 

),(~ θλ iii kGamma

)(~ λ ii
PoisE

LEN iii
c ××=



31 

 

 

 

are all based on negative binomial models, DESeq can handle experimental data without 

replicates with a straightforward option. The recent version of Cuffdiff and BitSeq were 

released at the time of writing; thus they were not included in the study. As mentioned 

before, Auer and Doerge (2011) reported that TSPM does not perform well when the 

number of replicates is small. TSPM also requires replicates. NOISeq represents a 

completely different approach (non-parametric) and can handle experimental data 

without replicates.  

When testing the performance of each method without replicates, for DESeq, the 

option “method” for variance estimation was set to “blind”. For NOISeq, we used the 

recommended parameter values n=5 and pnr=0.2, but for the parameter v, we used 0.2. 

This value was chosen since it produced best results for preliminary analysis. We used 

the default parameter values for DESeq and NOISeq when replicates were available. 

DESeq takes raw count data as input. We used RPKM as the normalization method for 

NOISeq input data. 

 

2.3 Test Statistics 
 

In our simulations, as shown in Table 1, type-A and -B genes were set to be 

differentially expressed (“actual positives”), and type-C genes were set to be non-

differentially expressed (“actual negatives”). We compared the list of these genes with 

those determined to be differentially expressed by DESeq and NOISeq at various 

thresholds. Results were classified as follows: 
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• True Positive (TP): genes set to be differentially expressed and called as 

differentially expressed by the method, 

• True Negative (TN): genes set to be non-differentially expressed and not called as 

differentially expressed by the method, 

• False Positive (FP): genes set to be non-differentially expressed but called as 

differentially expressed by the method, and 

• False Negative (FN): genes set to be differentially expressed but not called as 

differentially expressed by the method. 

The performance of the methods was evaluated as follows: 

      (14) 

    (15) 

  Precision = 1 – FDR =      (16) 

  Recall = Sensitivity =      (17) 

Equation (15) is used to calculate the empirical false discovery rate from the observed 

data. For simplicity, we call it as “False Discovery Rate” or FDR. 

 

2.4 Tests using the real RNA-Seq data 
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We also tested DESeq and NOISeq on three sets of real RNA-Seq data. Human 

embryonic kidney and Ramos B cells data were published by Sultan et al. (2008). Two 

unpublished RNA-Seq datasets were by courtesy of our collaborators: a green alga 

Chlamydomonas reinhardtii dataset (Cerutti et al., in preparation) and a pea aphid 

Acyrthosiphon pisum dataset (Brisson et al., unpublished). 

 

2.4.1 Sultan et al.’s dataset 

 

Sultan et al. (2008) performed differential gene expression analysis between 

human embryonic kidney- and Ramos B-cell lines using both RNA-Seq and microarray 

experiments. We extracted the short-read count data for 13,118 genes from their RNA-

Seq study considering only the hits on the exons (total read numbers ranging from around 

5 to 7 millions) (data obtained from their supplemental material Table S2). Their 

experiments included two biological replicates. However, these data were combined in 

their study due to high correlation between replicates within each cell line. In their 

analysis, they only focused on genes that were expressed in both microarray and RNA-

Seq platforms. Genes with detection score (defined as the rank of the probe bead signal 

relatively to the negative control bead signals divided by the number of negative controls 

on the chip field) greater than or equal to 0.95 in microarray experiment and at least 5 hits 

in merged data in both conditions in RNA-Seq experiment were considered expressed 

(7043 genes). Then they applied t-test to find differentially expressed genes. We followed 

their procedure and analyzed their RNA-Seq data (7043 genes) using both DESeq and 

NOISeq as if the data were without replicates due to the merge of the data. The accuracy 
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of these methods were tested against the results obtained by Sultan et al. based on their 

microarray analysis (their supplemental material Table S4; q-value = 0.01 as the cutoff) 

for the same set of genes. We considered the microarray results as bases of our 

comparison, defining the “actual” positives and negatives. Then the precision and recall 

were calculated following the equations (16) and (17). 

 

2.4.2 Chlamydomonas and pea aphid datasets 

 

The Clamydomonas dataset compared the expression of 16,865 C. reinhardtii 

genes between the control and the nitrogen-starvation experiment (144-hour time point) 

(Cerutti et al., in preparation). Each condition included 2 replicates (total read numbers 

ranging from around 20 to 30 million). As mentioned before, this dataset had a moderate 

level of variation (0.33 of CV). The pea aphid (A. pisum) dataset compared 35,884 genes 

between the control and solitary conditions (8-hour time point) (Brisson et al., 

unpublished). For this dataset, 3 replicates were included for each condition (total read 

numbers ranging from around 2 to 3 million). The level of variation was twice larger than 

that of the Clamydomonas dataset (0.67 of CV).  

We used these datasets to test “consistency” in the results obtained by DESeq and 

NOISeq between when replicates were available and not available. Differentially 

expressed genes were first identified using all replicates. These results were used as the 

“standards” for the comparative purpose. We next analyzed the RNA-Seq data assuming 

no replicate. Then the precision and recall were calculated following the equations (16) 

and (17). Since there are multiple replicates for both control and experimental conditions, 
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we took the average statistics from all pairwise comparisons and reported the “average 

precision” and the “average recall”. 

For example, suppose that both control and experimental conditions have two 

replicates: Exp1 and Exp2, and Ctr1 and Ctr2. Suppose further that using one of the 

methods (e.g., DESeq), we find 400 differentially expressed genes considering all 

replicates. These 400 genes are considered to be "actual positives". If 80 differentially 

expressed genes are identified using the comparison of “Exp1 vs. Ctr1” (without 

considering replicate) and 20 of them are overlapped with the 400 "actual positive", the 

precision from this “Exp1 vs. Ctr1” comparison is calculated as 20/80 =0.25. The recall 

from this comparison is calculated as 20/400=0.05. We repeat this procedure for all other 

no-replicate comparisons (“Exp1 vs. Ctr2”, “Exp2 vs. Ctr1”, and “Exp2 vs. Ctr2”). 

Finally, we take the average of the precisions of the total four comparisons. We calculate 

the “average recall” in a similar fashion. 

Note that these "average precision" and "average recall" were used to measure the 

consistency in the results obtained with and without having replicates. Since for these 

actual RNA-Seq data, we do not know the true positives and true negatives, these 

statistics are used by no means to indicate the accuracy of the methods. 
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3 Results and Discussion 

 

3.1 Effects of Bias on Differential Gene Calling 
 

3.1.1 Expression-level dependency 

 

We first examined if differential gene calling is dependent on gene-expression 

levels. We used the simulated dataset with the moderate variation (CV=0.33) for this 

analysis. Using ranges of thresholds, sensitivities (equation (14)) were calculated 

separately for two groups of genes: over-expressed (type A in Table 1) and under-

expressed (type B in Table 1) genes. For DESeq, q-value (FDR adjusted p-value) was 

used for the threshold. For NOISeq, PNOI (the probability of a gene being differentially 

expressed provided by NOISeq; see section 1.4.7) was used for the threshold. When both 

being used as a threshold, q-value is roughly comparable to the probability of equivalent 

expression (1- PNOI) (Kall, et al., 2008). As shown in Tables 2 and 3, we observed 

expression-level dependent results with both DESeq and NOISeq. Both methods showed 

slightly higher sensitivities for the over-expressed genes than for the under-expressed 

genes. Over-expressed genes were slightly more likely to be correctly called as 

differentially expressed than under-expressed genes. This is consistent with the results 

reported by Wu et al. (2010). 
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Table 2: Sensitivity of DESeq gene-calling and gene-expression levels. 

  q-value threshold 

Gene group 0.005 0.01 0.05 0.1 0.2 0.3 0.4 0.5 

Over-expressed 0.21 0.26 0.36 0.44 0.51 0.57 0.63 0.66 

Under-expressed 0.19 0.23 0.32 0.39 0.46 0.52 0.57 0.62 

 

Table 3: Sensitivity of NOISeq gene-calling and gene-expression levels. 

  PNOI threshold 

Gene group 0.995 0.99 0.95 0.9 0.8 0.7 0.6 0.5 

Over-expressed 0.00 0.00 0.00 0.05 0.17 0.28 0.38 0.47 

Under-expressed 0.00 0.00 0.00 0.03 0.14 0.25 0.35 0.46 

 

3.1.2 Gene-length dependency 

 

As pointed out by Oshlack and Wakefield (2009), RNA-Seq differential calling 

shows also gene-length dependency. We examined if this length-dependency was also 

present in the results calculated by DESeq and NOISeq using again our simulated dataset 

with the moderate variation. We binned the results of differential gene calling according 

to the length of the transcript sequence (100bp increment) and calculated the proportion 

of the genes being called differentially expressed for each bin. As shown in Figure 4, 

DESeq had length-dependency where longer transcripts were more likely to be called as 

differentially expressed, whereas NOISeq did not exhibit such dependency. In order to 

examine the proportion of true positives among the genes called as differentially 

expressed, in Figure 5, precisions are plotted. Precision also showed a length-dependency 

for DESeq where precision decreased with gene length. NOISeq showed a consistently 

high precision regardless the length of the gene. Figures 4 and 5 indicate that for longer 

genes, DESeq calls more genes as differentially expressed, but their results include more 
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false positives. In contrast, NOISeq calls a smaller number of genes as positives, but with 

very high accuracy, regardless of the lengths. 

 

 

Figure 4: Gene lengths and differential gene-calling. 
The transcripts are binned according to their lengths with 100bp increment. For 

each bin, the proportion of transcripts called differentially expressed by each 

method is plotted. The thresholds used are q=0.2 for DESeq and PNOI=0.8 for 

NOISeq. The same patterns were observed when different threshold values were 

used. 
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Figure 5: Gene lengths and differential gene-calling accuracy.  
The transcripts are binned according to their lengths with 100bp increment. For 

each bin, precision of calling differentially expressed genes by each method is 

plotted. The thresholds used are q=0.2 for DESeq and PNOI=0.8 for NOISeq. The 

same patterns were observed when different threshold values were used. 

  

3.2 Gene-calling Performance and Biological Variation 
 

As mentioned before (section 2.1.3), the biological variation can be quite large in 

RNA-Seq data. In order to study if and how the variation in the data affects the 

performance of differential gene calling, we analyzed two simulated datasets that 

modeled two levels of biological variation: moderate (CV= 0.33) and large (CV=0.67) 

datasets. The sensitivities and false discovery rates were calculated using the equations 

(14) and (15). 
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3.2.1 False discovery rate (FDR) control 

 

DESeq calculates a q-value (FDR adjusted p-value) for each gene and uses it as 

the threshold to identify differentially expressed genes. If the method controls FDR well, 

the q-value threshold should equal to or greater than the observed FDRs. As shown in 

Figure 6, DESeq controlled FDRs more reliably when the biological variation was 

moderate compared to when the biological variation was large. With the large variation, 

observed FDRs were significantly larger than reported q-values especially for q-values 

smaller than 0.2. This result is consistent with the one obtained by Kvam et al.(2012). 

FDR was not controlled in their "Simulation 4" where variation was large.  
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Figure 6: False discovery rate observed for DESeq at different q-value 

thresholds with moderate and large biological variation. 
The black dashed-line is where the observed FDRs equal q-value 

thresholds.  

 

 

 

Figure 7: False discovery rate observed for NOISeq at different 1-PNOI 

thresholds with moderate and large biological variation. 
The black dashed-line is where the observed FDRs equal q-value 

thresholds. 
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NOISeq calculates the probability (PNOI) to identify differentially expressed genes. 

As mentioned before, we can consider 1-PNOI to be equivalent to q-value (Kall, et al., 

2008). As shown in Figure 7, although observed FDRs were consistently larger when the 

biological variation was large, NOISeq roughly controlled the FDR regardless of the 

level of variation. In fact when the variation is moderate, the observed FDRs were much 

lower than 1-PNOI values.  DESeq and NOISeq both had much larger false discovery rates 

when the biological variation was large.  

 

3.2.2 Effect of biological variation on differential gene-calling 

 

Next we compared the effect of biological variation on the performance of 

differential gene-calling by DESeq and NOISeq. As shown in Figure 8, with the 

moderate variation, DESeq performed much better (higher sensitivity with the same FDR) 

with the q-value threshold greater than 0.005 as indicated by the large gap between the 

curves. NOISeq performed better with the PNOI threshold greater than 0.8. With the large 

variation, as shown with Figure 9, DESeq performed better with the q-value threshold 

greater than 0.3 and NOISeq performed better with the PNOI threshold greater than ~0.7. 

Both DESeq and NOISeq showed that with the same q-value or PNOI thresholds, FDRs 

were higher when the biological variation was larger. 
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  Figure 8: Gene-calling performance on the moderate dataset. 
Sensitivities are plotted against the false discovery rates calculated from the 

results obtained by DESeq (blue circles) and NOISeq (red squares) for the 

dataset with the moderate variation. DESeq and PNOI thresholds used are shown 

for some data points. 

 

 

   

  Figure 9: Gene-calling performance on the large dataset. 
Sensitivities are plotted against the false discovery rates calculated from the 

results obtained by DESeq (blue circles) and NOISeq (red squares) for the 

dataset with the large variation. DESeq and PNOI thresholds used are shown for 

some data points. 
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3.2.3 Effect of uncertain read-mapping 

 

In our simulation process, read-mapping uncertainty was naturally incorporated. 

Around 90% of short reads were mapped back to the reference sequences. The 10% reads 

that were not mapped to the reference were the reads that were mapped to multiple 

locations on the reference. We suppose more reads would be discarded if sequencing 

errors were introduced and less reads would be discarded if reads were longer. We 

compared the results obtained by DESeq and NOISeq using data from two simulation 

processes: simulating the entire RNA-Seq process and simulating count data directly as 

many previous studies have done. As shown in Tables 4-7, both DESeq and NOISeq 

showed slightly better performance (larger or at least the same sensitivity) when count 

data were simulated directly compared to when simulations were done following the 

entire process. Uncertainty in read mapping process, therefore, affected the performance 

of the program, although the differences shown with our examples were small.  

Table 4: Sensitivities and FDRs observed by DESeq using two simulation processes on 

moderate-variation data. 

  q-value threshold 

0.001a 0.005 0.01 0.05 0.1 0.2 
Entire process 0.08 (0.02) 0.14 (0.03) 0.17 (0.03) 0.24 (0.08) 0.28 (0.13) 0.36 (0.20) 
Direct count 0.09 (0.02) 0.15 (0.02) 0.18 (0.03) 0.26 (0.08) 0.31 (0.12) 0.36 (0.20) 

a
Values in parentheses are FDRs. 

 

Table 5: Sensitivities and FDRs observed by NOISeq using two simulation processes 

on moderate-variation data. 

  PNOI-threshold 

0.999a 0.995 0.99 0.95 0.9 0.8 
Entire process 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.001 (0.00) 0.03 (0.00) 0.108 (0.03) 

Direct count 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.001 (0.00) 0.03 (0.00) 0.114 (0.03) 

a
Values in parentheses are FDRs. 
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Table 6: Sensitivities and FDRs observed by DESeq using two simulation processes on 

large-variation data. 

  q-value threshold 

0.001 0.005 0.01 0.05 0.1 0.2 
Entire process 0.00 (0.00) 0.00 (0.00) 0.001 (0.36) 0.005 (0.28) 0.01 (0.27) 0.03 (0.27) 
Direct count 0.00 (0.00) 0.00 (0.50) 0.001 (0.25) 0.005 (0.29) 0.01 (0.27) 0.04 (0.26) 

a
Values in parentheses are FDRs. 

 

Table 7: Sensitivities and FDRs observed by NOISeq using two simulation processes 

on large-variation data. 

  PNOI-threshold 

0.999 0.995 0.99 0.95 0.9 0.8 
Entire 
process 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.002 (0.10) 0.01 (0.10) 0.039 (0.17) 

Direct count 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.002 (0.08) 0.01 (0.12) 0.042 (0.16) 

a
Values in parentheses are FDRs. 

 

 

3.2.4 Effect of replications on differential gene-calling 

 

We next examined the performance of DESeq and NOISeq on the simulated 

datasets where no replicates were used. Compared to the results shown in Figures 8 and 

9, when no replicates were available, as shown in Figures 10 and 11, the overall accuracy 

for both methods decreased dramatically as expected and the false discovery rates were 

very large at all thresholds. DESeq found hardly any truly differentially expressed genes 

when no replicates were available. For example, while DESeq had sensitivity about 0.25 

in Figure 8 at the q-value threshold of 0.05, in Figure 10, sensitivity was 0 at the same 

threshold. NOISeq still found truly differentially expressed genes however at a cost of 

having many false positives. For example, NOISeq had 0.1 sensitivity and FDR = 0.03 at 

the PNOI = 0.8 threshold in Figure 8, but 0.17 sensitivity and FDR = 0.23 in Figure 10 at 

the same threshold. DESeq was conservative in calling differentially expressed genes 
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when no replicates were available, whereas NOISeq was much more aggressive. Similar 

to when replicates are available, when variation was large, both methods performed 

worse as shown in Figure 11. Based on the results, it is highly recommended to have 

replicates in RNA-Seq experiments. However, if no replicates are available, NOISeq may 

serve better as a starting point of analysis. 

 

Figure 10: Gene-calling performance on the moderate-variation dataset 

and with no replicate. 
Sensitivities are plotted against the false discovery rates calculated from the results 

obtained by DESeq (blue circles) and NOISeq (red squares) for the dataset with the 

moderate variation.  
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Figure 11: Gene-calling performance on the large-variation dataset and 

with no replicate. 
Sensitivities are plotted against the false discovery rates calculated from the results 

obtained by DESeq (blue circles) and NOISeq (red squares) for the dataset with the 

large variation. 

 

 

3.2.5 Combining results of DESeq and NOISeq to improve differential gene-calling 

 

We next examined if we could improve the accuracy in identifying differentially 

expressed genes by combining the results obtained by DESeq and NOISeq. We tested 

ranges of combinations of thresholds (q-value for DESeq and PNOI for NOISeq). At each 

threshold combination, positives (differentially expressed genes) were identified for those 

called by both methods (i.e., by taking the intersection of both results). In order to find 

the best performing combination, we calculated the sensitivity to FDR ratio for the result 

at each combination. The results of the entire combination analysis are shown in 

Supplementary Material section S2. Results are summarized in Tables 8 and 9 below. For 

the moderate-variation data, as shown in Table 8, when using DESeq and NOISeq 

individually, the highest sensitivity to FDR ratios were 5.67 and 1.04, respectively.  
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Using the combination strategy, the combination with 0.005 q-value threshold for DESeq 

and 0.6 PNOI threshold for NOISeq generated the highest sensitivity to FDR ratio, 60. 

This is significantly better than individual results. Figure 12 also shows that the 

combination strategy can improve the performance by lowering FDRs significantly. For 

the large-variation data, as shown in Table 9, combination with 0.4 q-value threshold for 

DESeq and 0.5 PNOI threshold for NOISeq generated the highest sensitivity to FDR ratio 

among all combinations. Although using NOISeq with 0.5 PNOI generated 0.38 sensitivity 

to FDR ratio, the FDR is too high (0.56, see Table S2) to use in practice. Therefore, we 

still think using the combination strategy is a better choice. However, sensitivities and 

ratios are all very low with such large variation. As shown in Figure 13, combination 

strategy can still improve the performance especially at lower FDRs. Therefore, it is 

possible to produce better result by combining two methods using appropriate threshold 

combinations: e.g., (q, PNOI) = (0.005, 0.6) for moderate-variation data, or (q, PNOI) = (0.4, 

0.5) for large-variation data. We also tried combined strategy with no-replicate data. 

However, combined strategy did not improve the accuracy of calling differentially 

expressed genes when no replicates were available. 

 

Table 8: Combination strategy on moderate-variation data. 

  Threshold combination 

q-value 

0.001 

(4)a 
0.005 

(4.67) 

0.01 

(5.67) 

0.05 

(3) 

0.1 

(2.15) 

0.2 

(1.7) 

PNOI 

0.6 

(1.04) 

0.6 

(1.04) 

0.6 

(1.04) 

0.6 

(1.04) 

0.5 

(0.84) 

0.9 

(-) 

Sensitivity 0.075 0.12 0.147 0.192 0.247 0.028 

FDR 0.003 0.002 0.003 0.024 0.045 0.007 

Sensitivity/FDR 25 60 49 8 5.49 4 
a
Value in parenthesis is the sensitivity to FDR ratio when using the corresponding method along. 

‘-‘ indicates that the sensitivity or FDR is 0. 
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Table 9: Combination strategy on large-variation data. 

  Threshold combination 

q-value 

0.05 

(0.02)a 

0.1 

(0.04) 

0.2 

(0.11) 

0.3 

(0.24) 

0.4 

(0.31) 

0.5 

(0.36) 

PNOI 

0.5 

(0.38) 
0.5 

(0.38) 

0.5 

(0.38) 

0.5 

(0.38) 

0.5 

(0.38) 

0.5 

(0.38) 

Sensitivity 0.003 0.009 0.028 0.057 0.089 0.115 

FDR 0.053 0.113 0.131 0.174 0.238 0.321 

Sensitivity/FDR 0.06 0.08 0.21 0.33 0.37 0.36 
a
Value in parenthesis is the sensitivity to FDR ratio when using the corresponding method alone. 

 

 

 

Figure 12: Performance of combination strategy on the moderate-

variation dataset. 
Sensitivities are plotted against the false discovery rates calculated from the 

results obtained by DESeq (blue circles), NOISeq (red squares) and Combined 

method (black diamond). Combinations of q-value threshold and PNOI threshold 

used are shown for some data points. 
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Figure 13: Performance of combination strategy on the large-variation 

dataset. 
Sensitivities are plotted against the false discovery rates calculated from the 

results obtained by DESeq (blue circles), NOISeq (red squares) and Combined 

method (black diamond). Combinations of q-value threshold and PNOI threshold 

used are shown for some data points. 

 

 

3.3 Performance Analysis on the Real Data 
 

3.3.1 Comparing the results between RNA-Seq and microarray analyses 

 

We tested the performance of DESeq and NOISeq on the real RNA-Seq datasets 

published by Sultan et al. (2008). Since both microarray and RNA-Seq data on the same 

sample are available, we considered the microarray result as the reference defining 

“actual positives” (differentially expressed) and “actual negatives” (not differentially 

expressed). We also only considered the “expressed” genes (7043) following their 

definition. Precision and recall were calculated as described in section 2.4.1. 
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As shown in Tables 10 and 11, both methods had almost 80% or higher precision. 

However, their recall values were very low (lower than 0.03 for DESeq and lower than 

0.27 for NOISeq). At the most stringent thresholds (q-value threshold = 0.001 and PNOI 

threshold = 0.999), DESeq showed higher precision but lower recall than those of 

NOISeq. At less stringent thresholds (0.005 ≤ q-value threshold ≤ 0.05 and 0.995 ≥ PNOI 

threshold ≥ 0.95), NOISeq showed both higher precision and recall. At more relaxed 

thresholds (0.1 ≤ q-value threshold ≤ 0.2 and 0.9 ≥ PNOI threshold ≥ 0.8), NOISeq showed 

lower precision but much higher recall. It should be noted that although replicates in 

RNA-Seq data by Sultan et al. (2008) were combined, their data had a low level of 

variation (Pearson’s correlation coefficient was 0.99 for human embryonic kidney sample 

and 0.98 for B-cell sample) between original replicates. From both simulated dataset and 

real dataset analysis, NOISeq with relaxed thresholds (0.8 - 0.95) appears to be a better 

choice compared to DESeq for differential gene-calling when no replicates are available. 

 

Table 10: Performance of DESeq compared against the microarray study. 

  q-value threshold 

 0.001 0.005 0.01 0.05 0.1 0.2 

Precision 1.00 0.81 0.79 0.83 0.87 0.86 

Recall 0.001 0.005 0.007 0.015 0.02 0.03 

 

 

Table 11: Performance of NOISeq compared against the microarray study. 

  PNOI-value threshold 

 0.999 0.995 0.99 0.95 0.9 0.8 

Precision 0.91 0.85 0.86 0.84 0.82 0.76 

Recall 0.003 0.007 0.01 0.06 0.12 0.27 
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3.3.2 Consistency analysis between with and without biological replications 
 

Using the two sets of real RNA-Seq data, we tested the “consistency” in the 

results given by DESeq and NOISeq. We compared the results from DESeq and NOISeq 

using no replicate with those using replicates on the same datasets. Two datasets are: the 

Chlamydomonas datasets that have moderate variation and the pea aphid data that have 

large variation. See section 2.4.2 for more information on these datasets. The objective 

here is to see if DESeq and NOISeq can yield somewhat consistent/reliable results when 

no replicates are available. As described in section 2.4.2, we calculated the average 

precision and average recall. Note that in this section, these statistics are used to measure 

the consistency in differential gene-calling when no replicates are available compared 

against when replicates are available. They are used by no means to indicate any level of 

accuracy. 

 

Table 12: Performance consistency with DESeq on the Chlamydomonas data. 

  q-value threshold 

 0.001 0.005 0.01 0.05 0.1 0.2 

Average Precision 1.00 0.99 0.99 0.99 0.99 0.99 

Average Recall 0.03 0.04 0.05 0.07 0.07 0.08 

 

 

Table 13: Performance consistency with NOISeq on the Chlamydomonas data. 

  PNOI threshold 

 0.999 0.995 0.99 0.95 0.9 0.8 

Average Precision 0.02 0.08 0.12 0.15 0.17 0.24 

Average Recall 1.00 1.00 1.00 0.96 0.95 0.94 
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Table 14: Performance consistency with DESeq on the pea aphid data. 

  q-value threshold 

 0.001 0.005 0.01 0.05 0.1 0.2 

Average Precision 0.52 0.52 0.53 0.52 0.51 0.48 

Average Recall 0.27 0.29 0.29 0.32 0.32 0.33 

 

 

Table 15: Performance consistency with NOISeq on the pea aphid data. 

  PNOI threshold 

 0.999 0.995 0.99 0.95 0.9 0.8 

Average Precision 0.00 0.02 0.03 0.17 0.22 0.25 

Average Recall 0.00 0.33 0.33 0.38 0.39 0.43 

 

 

As shown in Table 12, DESeq was found to be very conservative in finding 

differentially expressed genes when no replicates were available. This was indicated by 

very high precision and very low recall. In other words, with no replicates, while DESeq 

found only a small number of genes as differentially expressed, many of these identified 

genes were what it would have found if there were replicates. As shown in Table 13, 

NOISeq was found to be more aggressive in finding differentially expressed genes when 

no replicates were available, indicated by relatively low precision and high recall. It 

indicated that, without replicates, NOISeq could find almost all genes that would have 

been found if there were replicates. However, it also found many genes that would not 

have been found if replicates were available (possible false positives). When the data 

included much larger variation (CV=0.67), as shown with the results with the pea aphid 

datasets in Tables 14 and 15, as expected, results obtained from single replicates were not 

consistent with those obtained when replicates were available. Interestingly, precisions of 

NOISeq do not seem to be affected by the level of variations. Thus, regardless of the 
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amount of variation, with NOISeq we expect to find the same proportion of false 

positives (inconsistently identified genes). However, the recall values were severely 

affected with the larger variation and it dropped to the level almost the same as found 

with DESeq.  

These results were consistent with what we found using simulated data in section 

3.2.4. When no replicate is available for both moderate- and large-variation datasets, 

DESeq is very conservative in finding differentially expressed genes whereas NOISeq is 

more aggressive but more error prone. 

 

3.4 Suggested Guidelines of Using DESeq and NOISeq 
 

This study clearly showed that biological variation affects significantly and 

differently how DESeq and NOISeq perform in differential gene-calling. Large variation 

will cause more false positives for both DESeq and NOISeq. We also showed that it is 

possible to improve the accuracy by combining the results of both methods. Based on the 

results we obtained in this study, following are our suggested strategies of using DESeq 

and NOISeq depending on the level of biological variation: 

(1) If the biological variation is moderate, e.g., CV 0.33, to control the FDR around 

0.05, we can take advantage of combining results by taking the intersection of 

both methods using q=0.1 threshold for DESeq and PNOI= 0.5 threshold for 

NOISeq.  

≈
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(2) If the biological variation is large, e.g., CV 0.67, it may be useful to consider a 

relaxed FDR control, e.g., around 0.2, in order to find a good number of 

differentially expressed gene candidates. We can use the combined results using q 

= 0.4 threshold for DESeq and PNOI= 0.5 threshold for NOISeq. Note that only a 

very small number of differentially expressed genes can be found in order to 

control the FDR smaller than 0.2. 

It is highly recommended to have replications in RNA-Seq experiments. As our 

results showed, when there is no replicate, DESeq finds a very small number of 

differentially expressed genes. On the contrary, NOISeq finds more candidates of 

differentially expressed genes, which, however, include a large number of false positives. 

Based on what we observed with the results on real datasets, DESeq is very conservative 

where fewer genes are identified but its results are more consistent with the results 

obtained using replicates. NOISeq is more aggressive where more genes are identified 

but its results are less consistent with the results obtained using replicates. When the 

results of DESeq and NOISeq are compared to the results of Sultan et al. (2008)'s 

microarray analysis, NOISeq performed better. Based on our no-replicate experiments, 

the recommended strategy for analyzing no-replicate datasets is to use NOISeq with PNOI 

thresholds 0.8-0.95. 

 

≈
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4 Conclusions and Future Work 
 

In this study, we presented a comparison between a parametric method DESeq 

and a non-parametric method NOISeq for differential gene-calling based on RNA-Seq 

data. Both DESeq and NOISeq performed much better on data with moderate biological 

variation than with large biological variation. They both found slightly more truly over-

expressed genes than under-expressed genes. DESeq showed length-based bias where 

longer transcripts were called more as differentially expressed, whereas NOISeq did not 

show such trend.  

Our results showed the importance of understanding the variation in the data. We 

also showed that combination strategy can be used to obtain improved differential gene-

calling. If the biological variation is moderate and if we want to control FDR around 

0.05, we can use the differentially expressed genes claimed by both programs with 0.1 q-

value threshold for DESeq and 0.5 PNOI threshold for NOISeq. If the biological variation 

is large, we need to consider a higher FDR control, e.g., 0.2 or even higher, in order to 

find a good number of differentially expressed genes. We can use the combined results 

with 0.4 q-value threshold for DESeq and 0.5 PNOI threshold for NOISeq. When no 

replicates are available, DESeq is conservative in finding differentially expressed genes, 

whereas NOISeq is aggressive. Based on the simulated data and real data analysis, we 

recommend using NOISeq with probability thresholds 0.8 ~ 0.95. 

In order to confirm our analysis of DESeq and NOISeq, for example, qRT-PCR 

confirmation results for some of the identified genes would be useful. We would like to 



57 

 

 

 

collaborate on this regard with our collaborators for further analysis of their RNA-Seq 

data. 

More different methods with more data should be tested to see if they have 

consistent performance. Especially interesting ones are those very recently developed 

RNA-Seq differential expression calling methods, e.g., new versions of 

Cufflinks/Cuffdiff (Trapnell, et al., 2012) and BitSeq (Glaus, et al., 2012). Combination 

methods should be also further explored for the most reliable results. 

It would also be interesting to consider differential expression in terms of gene 

pathways and try to find differentially expressed gene pathways in various conditions. 

We can test the performance of currently available methods of analyzing gene pathways 

using RNA-Seq data or build our own method to analyze and gain insights on the 

expression patterns on the level of gene pathways. 
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S1 The R Script Used for the Simulation  
 

We wrote the R script to generate the appropriate amount (according to the 

expression assigned) of starting positions of each transcript for producing short reads as 

shown in Figure S1. It takes the length of each transcript of a sequence file as input (input 

file has only the length for each transcript) and produces 4 sets of starting positions for 

each transcript for the entire sequence file. We then generated subsequences of length 36 

from each transcript as short reads based on these starting positions. Biological and 

technical variations are both incorporated in the script. The simulation is described in 

detail in material and methods in the main text. 

 

#Read in the length of each gene 

m<-read.table("Ref_length.txt"); 

exp1<-c(); 

exp2<-c(); 

ctr1<-c(); 

ctr2<-c(); 

#Total number of genes 

total<-26017; 

# shape and scale parameter of gamma distribution to assign expected expression for each 

gene 

shape_var<-0.15; 

scale_var<-1160; 

#biological variation parameter 

bio_var<-9; 

#max fold change allowed in experimental condition 

max_fold<-5; 

#randomize the seed 

set.seed(as.integer(as.double(Sys.time()))); 

#first 10% is differentially under-expressed genes  

for(i in 1:2602) 

{ 

   #fold chagne expected in experimental condition   

   fold<-1/(sample(11:(max_fold*10),1)/10); 

   #transcript expression level 

   level<-rgamma(1,shape_var,scale=scale_var); 

   #biological variation (constant coefficient of variation) 

   num1<-rgamma(1,bio_var,scale=level*fold/bio_var); 

   num2<-rgamma(1,bio_var,scale=level*fold/bio_var); 

   num3<-rgamma(1,bio_var,scale=level/bio_var); 

   num4<-rgamma(1,bio_var,scale=level/bio_var); 

   #technique variation assuming Poisson 

   exp1<-append(exp1,rpois(1,num1)); 

   exp2<-append(exp2,rpois(1,num2)); 

   ctr1<-append(ctr1,rpois(1,num3)); 

   ctr2<-append(ctr2,rpois(1,num4)); 

} 
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#this second 10% is differentially over expressed genes 

for(i in 2603:5204) 

{ 

   fold<-sample(11:(max_fold*10),1)/10; 

   level<-rgamma(1,shape_var,scale=scale_var); 

   num1<-rgamma(1,bio_var,scale=level*fold/bio_var); 

   num2<-rgamma(1,bio_var,scale=level*fold/bio_var); 

   num3<-rgamma(1,bio_var,scale=level/bio_var); 

   num4<-rgamma(1,bio_var,scale=level/bio_var); 

   exp1<-append(exp1,rpois(1,num1)); 

   exp2<-append(exp2,rpois(1,num2)); 

   ctr1<-append(ctr1,rpois(1,num3)); 

   ctr2<-append(ctr2,rpois(1,num4)); 

} 

#rest 80% is non-differentially expressed genes 

for(i in 5205:total) 

{ 

   level<-rgamma(1,shape_var,scale=scale_var); 

   num1<-rgamma(1,bio_var,scale=level/bio_var); 

   num2<-rgamma(1,bio_var,scale=level/bio_var); 

   num3<-rgamma(1,bio_var,scale=level/bio_var); 

   num4<-rgamma(1,bio_var,scale=level/bio_var); 

   exp1<-append(exp1,rpois(1,num1)); 

   exp2<-append(exp2,rpois(1,num2)); 

   ctr1<-append(ctr1,rpois(1,num3)); 

   ctr2<-append(ctr2,rpois(1,num4)); 

} 

 

#Now generating short reads from mouse transcripts 

#assumed short reads length 

read_length<-36; 

#initialize the length of gene that are mappable to short reads 

effe_length=0; 

sink("exp1.txt"); 

for(i in 1:total) 

{ 

   if(m[i,1]<36) 

   { 

      effe_length=0; 

   } 

   else 

   { 

      effe_length=m[i,1]-read_length; 

   } 

   cat(sample(0:effe_length,as.integer(effe_length/300*exp1[i]),replace=TRUE)); 

   cat("\n"); 

} 

sink(); 

sink("exp2.txt"); 

for(i in 1:total) 

{ 

   if(m[i,1]<36) 

   { 

      effe_length=0; 

   } 

   else 

   { 

      effe_length=m[i,1]-read_length; 

   } 

   cat(sample(0:effe_length,as.integer(effe_length/300*exp2[i]),replace=TRUE)); 

   cat("\n"); 

} 

sink(); 

sink("ctr1.txt"); 

for(i in 1:total) 

{ 

   if(m[i,1]<36) 
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   { 

      effe_length=0; 

   } 

   else 

   { 

      effe_length=m[i,1]-read_length; 

   } 

   cat(sample(0:effe_length,as.integer(effe_length/300*ctr1[i]),replace=TRUE)); 

   cat("\n"); 

} 

sink(); 

sink("ctr2.txt"); 

for(i in 1:total) 

{ 

   if(m[i,1]<36) 

   { 

      effe_length=0; 

   } 

   else 

   { 

      effe_length=m[i,1]-read_length; 

   } 

   cat(sample(0:effe_length,as.integer(effe_length/300*ctr2[i]),replace=TRUE)); 

   cat("\n"); 

} 

sink(); 

#When testing on no-replicate experiments, just use one short reads file 

#from exp and one from ctr condition. 

Figure S1: R script for generating starting positions for short reads  
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S2 Analysis of Combining DESeq and NOISeq Results with Various 

Thresholds 
  

As we described in section 3.2.5, we examined many possible combinations of 

thresholds to see if we can improve differential gene-calling performance by combining 

the results from DESeq and NOISeq (taking the intersection results). Supplemental 

Tables S1 and S2 showed the sensitivities, FDRs and sensitivity to FDR ratios from the 

combined results with all possible pairs of thresholds: DESeq q-value thresholds (1*10
-20

, 

1*10
-10

 , 0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4 and 

0.5) and NOISeq PNOI thresholds (1-1*10
-20

, 1-1*10
-10

 , 0.99999, 0.99995, 0.9999, 

0.9995, 0.999, 0.995, 0.99, 0.95, 0.9, 0.8, 0.7, 0.6 and 0.5).  

 

 

 



 

 

68 

 

 

Table S1: Analysis of combination strategy with moderate variation data.
a 

    NOISeq NOISeq NOISeq NOISeq PPPPNOINOINOINOI    thresholdthresholdthresholdthreshold    
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a
The result is formatted as sensitivity, FDR, sensitivity to FDR ratio. The ratio is shown in bold and blue fonts when it is larger than the highest 

ratio obtained by either DESeq or NOISeq, which is 5.67 (DESeq at q=0.01). The highest ratio is shown in red and bold fonts. 

b
The column and the row shows the statistics from using the single method. The highest ratio in each method is shown in bold fonts. 
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Table S2: Analysis of combination strategy with large variation data.
a 
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a
The result is formatted as sensitivity, FDR, sensitivity to FDR ratio. The ratio is shown in bold and blue fonts when it is larger than the highest 

ratio obtained by DESeq (0.36 at q=0.5). However, this is not higher than the highest ratio obtained by NOISeq, which is 0.38 (NOISeq at 

PNOI=0.5).  

b
The column and the row shows the statistics from using the single method. The highest ratio in each method is shown in bold fonts.
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S3 Development of the Consolidated Mouse Genome Annotation 
 

 Several versions of mouse genome annotations are available from different 

databases. Three prominent databases (NCBI, Ensembl, and UCSC) are listed in Table 

S3. In order to obtain a single and most inclusive, as complete as possible, annotated 

mouse genome, we decided to develop our own consolidated set of mouse protein coding 

sequences (CDS). 

 

Table S3: Three currently available mouse genome annotations.
a
 

Database Website Annotation Version Number of 

transcripts 

NCBI http://www.ncbi.nlm.nih.gov/ MGSCv37 27270 

Ensembl http://uswest.ensembl.org/in

dex.html 

M37.61 54948 

UCSC http://genome.ucsc.edu/ Downloaded the 

"knownGene" table of 

"NCBI37/mm9" build 

on Feb 7, 2011 

39481 

a
Data are available in the file “gff3.zip” found at: http://bioinfolab.unl.edu/emlab/gpcr_mouse/  

It contains “NCBI.gff3”, “Ensembl.gff3”, and “UCSC_info.txt”, each of which corresponds to 

the annotation file downloaded from NCBI, Ensembl, and UCSC, respectively. 

 

Our consolidated set of mouse protein coding sequences (CDS) was generated 

through following steps: 

Step 1: Based on the three annotations, we compared the location of CDS from each 

transcript (all coding regions on exons). If a CDS had the exact same location 

and exon-intron structure annotated by any two or all databases but named 
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differently, we retained the corresponding regions of the sequence and simply 

concatenated their entry names to make the name of the sequence in our 

consolidated set. For example, if a sequence annotated in NCBI with name 

“NM_1234” is on chromosome 1 with the coding region from position 100 

nucleotide (nt) to position 500 nt and a sequence annotated in Ensembl with 

name “ENSMUST5678” is also on chromosome 1 with its coding region from 

position 100 nt to position 500 nt and the exon-intron structure are exactly the 

same, two annotations obviously referred to the same CDS. In this case, we 

retained this CDS region of the genome and name it as 

“NM_1234|ENSMUST5678” in our consolidated set.  

Step 2: If we cannot find an exact location match, we kept all versions of the sequence as 

they were annotated in each database. For example, if the previous example had 

“NM_1234” with the coding region 100-500 nt but “ENSMUST5678” with its 

coding region 100-550 nt, we kept both versions of the CDS. In this case, 

“NM_1234” and “ENSMUST5678” became two different entries with their 

corresponding CDSs in our consolidated set.  

Step 3: For CDSs that were on not fully resolved scaffolds (no clear chromosomal 

assignment in the genome), we extracted the CDS from the scaffold and used 

BLAST (blastn) (Altschul, et al., 1990) to perform similarity search against the 

each resolved chromosome of the mouse genome. If a perfect match (100% 

identity and coverage) was found, we assumed this CDS was on the location of 

the matched chromosome, and then treated it as a CDS with the apparent position 

on the chromosome and apply steps 1 and 2 on it. 
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Step 4: We used those CDSs on unresolved scaffolds that did not have perfect matches 

after step 3 to perform BLAST (blastn) similarity search against all unresolved 

scaffolds. If a perfect match was found, we retained the CDS and concatenated 

their sequence names. For example, if a sequence named “NM_1111” was on 

“scaffold_1” and a sequence named “ENMUST2222” was on “scaffold_5”, and 

their sequences were identical, we retained the CDS and named it as 

“NM_1111|ENMUST2222” in our consolidated set.  

Step 5: We retained the CDS regions of the rest of sequences as they are annotated in 3 

databases.  

 

In essence, we extracted the CDS regions of all mouse transcripts from 3 sets of 

annotations, removed all redundant copies of CDS if it was annotated on the same 

chromosomal location in more than two databases, and kept all versions of CDS if it was 

annotated on different chromosomal locations in different databases.  

We call our consolidated mouse CDS set “Con_Mouse”. The database (in a 

FASTA format file) is available from: 

http://bioinfolab.unl.edu/emlab/gpcr_mouse/Ref_transcripts.fa 

The example entries of the Con_Mouse database are shown in Figure S2.  
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>NM_025928.2|ENSMUST00000056370|uc008pva.1 

ATGGCTGAGGTGAGCCGAGATAGCGAGGCTGCGGAAAGGGGGCCTGAGGGCTCCTCTCCGGAAGCTGTGCCA

GGGGACGCGACCATCCCCAGGGTGAAACTCCTGGACGCCATAGTAGACACTTTCCTCCAGAAGCTAGTCGCC

GACAGGAGCTACGAGAGGTTCACCACCTGCTACAAACACTTCCACCAGTTGAACCCTGAGGTGACGCAGAGG

ATCTATGACAAGTTTGTGGCTCAGTTGCAGACATCCATCCGCGAGGAAATCTCAGAAATCAAAGAGGAGGGG

AACCTAGAAGCTGTCCTGAACTCCCTGGATAAGATCATAGAAGAAGGCAGAGAGCGCGGAGAGCCAGCCTGG

CGACCCAGTGGAATCCCAGAGAAAGACCTGTGTAGTGTCATGGCACCCTACTTCCTGAAGCAACAGGATACC

CTGTGTCATCAAGTACGGAAACAGGAAGCCAAGAACCAGGAACTGGCCGACGCTGTCCTGGCCGGGCGCAGG

CAGGTGGAGGAGCTGCAGCAGCAGGTTCGGGCCCTCCAGCAAACATGGCAGGCTCTACACAGAGAGCAGAGG

GAGCTGCTGTCAGTGCTGAGGGCGCCTGAGTGA  

>ENSMUST00000150158 

ATGGAGGAACTGATACTGCAGGATGAGACCCTCCTGGAGACCATGCAGAGCTACATGGACGCCTCCCTTATA

TCCCTCATTGAGGATTTTGGAGAGAGCAGATTATCTCTGGAGGACCAGAATGAAATGTCGCTGCTCACAGCT

CTGACGGAGATCTTGGACAATGCAGATTCTGAGAACCTGTCCCCTTTTGACACCATTCCTGATTCAGAGCTG

CTCGTGTCCCCTCGGGAGAGCTCCTCTGTTGAGGTGCCTCTTGCAGACTCTCCATGGGACTTCTCTCCGCCT

CCTTTCTTGGAAACTTCTTCCCCTAAGCTGCCTAGCTGGAGACCCTCGAGACCAAGACCTCGATGGGGTCAG

TCCCCTCCTCCTCAGCAGCGCAGTGATGGGGAAGAGGAGGAGGAGGTCGCCGGTTTCAGTGGTCAGATGCTT

GCTGGC  

>NM_025868.2|ENSMUST00000053664|ENSMUST00000111665|uc008kix.1 

ATGGCTGTCCTTGCGCCTCTGATTGCTTTGGTGTACTCGGTGCCGCGGCTTTCTCGATGGCTGGCCCGACCT

TATTGCCTTCTGTCTGCTCTGCTTTCCATTGCTTTCCTCCTCGTGAGGAAACTGCCACCGATTTGCAATGGT

CTCCCCACGCAACGCGAAGATGGCAACCCGTGTGACTTTGACTGGAGAGAAGTGGAGATCCTGATGTTCCTC

AGTGCCATTGTGATGATGAAGAACCGCAGATCCATCACTGTGGAGCAACATGTAGGCAACATCTTTATGTTT

AGTAAAGTGGCCAACGCCATCCTTTTCTTCCGACTGGATATTCGAATGGGTCTGCTATACCTCACACTCTGC

ATAGTGTTCCTGATGACCTGCAAGCCCCCGCTGTACATGGGTCCTGAGTATATCAAGTACTTCAATGATAAA

ACCATTGATGAGGAGCTGGAGCGAGACAAGAGGGTCACTTGGATTGTGGAGTTCTTTGCCAACTGGTCTAAT

GATTGCCAATCCTTTGCTCCCATCTATGCGGACTTGTCCCTCAAGTACAACTGTTCAGGGCTAAATTTTGGG

AAGGTAGATGTTGGACGCTACACTGACGTTAGCACACGGTACAAAGTGAGCACATCACCCCTCACCAGACAG

CTCCCTACCCTGATTCTGTTCCAAGGCGGCAAGGAGGTCATTCGTCGGCCGCAGATTGACAAGAAAGGACGA

GCTGTCTCTTGGACCTTTTCTGAGGAGAATGTGATTCGAGAATTCAACTTGAATGAGCTATACCAACGAGCC

AAGAAGCACTCAAAGGGTGGAGACATGTCAGAAGAGAAGCCTGTGGACCCTGCTCCCACTACTGTGCCAGAT

GGGGAAAACAAGAAGGACAAATAG 

 

Figure S2: Examples of our Con_Mouse database entries. 

 

 

A summary statistics of our Con_Mouse database is presented in Table S4. It 

shows the number of sequences from each database or shared by different databases. 
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Table S4: Summary of our Con_Mouse database compared to other databases.
a
 

Total 

number of 
CDSs in 

Con_Mouse 

Shared in 
3 

databases 

Shared in 
NCBI and 
Ensembl 

Shared in 
NCBI and 
UCSC 

Shared in 
Ensembl 
and UCSC 

Unique 
in NCBI 

Unique in 
Ensembl 

Unique in 
UCSC 

67981 18587 1195 917 5363 6081 24495 11343 

a
The total number of genes is 26,017. In the simulation study, short reads are generated from 

only one transcript or CDS for one gene excluding alternative splicing forms. 

  

  



 

 

S4 Compilation of G

Genome 
 

In this section, we compiled the entire set of G

from the mouse genome using our consolidated database 

 

Figure S3: Seven

(adapted from E. N.

 

G-protein coupled receptors (GPCRs) are also known as seven

receptors (7TMRs) (Figure S3

protein (Guanine-nucleotide binding protein), which in turn activates downs

signaling pathways depending on the type of G

that are involved in many cellular signaling processes and they are common targets of 

therapeutic drugs. Members of GPCRs act as receptors for many signaling molecule

such as hormones, nucleotides, opiates, neurotransmitters and odorants, and GPCR 

families are also very divergent 

we took several steps to compile our list of GPCRs from our consolidated mouse CDS 

Compilation of G-Protein Coupled Receptors from the 

In this section, we compiled the entire set of G-protein coupled receptor proteins 

from the mouse genome using our consolidated database Con_Mouse.  

 

: Seven-transmembrane receptor model. 

(adapted from E. N. Moriyama, unpublished) 

protein coupled receptors (GPCRs) are also known as seven-transmembrane 

Figure S3). Upon binding of a ligand, the GPCR activates the G

nucleotide binding protein), which in turn activates downs

signaling pathways depending on the type of G-protein. GPCRs are important proteins 

that are involved in many cellular signaling processes and they are common targets of 

therapeutic drugs. Members of GPCRs act as receptors for many signaling molecule

such as hormones, nucleotides, opiates, neurotransmitters and odorants, and GPCR 

families are also very divergent (Kim, et al., 2000). Due to their low sequence similarity, 

we took several steps to compile our list of GPCRs from our consolidated mouse CDS 
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Protein Coupled Receptors from the Mouse 

protein coupled receptor proteins 

transmembrane 

GPCR activates the G-

nucleotide binding protein), which in turn activates downstream 

protein. GPCRs are important proteins 

that are involved in many cellular signaling processes and they are common targets of 

therapeutic drugs. Members of GPCRs act as receptors for many signaling molecules 

such as hormones, nucleotides, opiates, neurotransmitters and odorants, and GPCR 

. Due to their low sequence similarity, 

we took several steps to compile our list of GPCRs from our consolidated mouse CDS 
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dataset, including BLAST (Altschul, et al., 1990), HMMER search with Pfam (Eddy, 

1998; Punta, et al., 2012), and 7TMRmine (Lu, et al., 2009). All files mentioned hereafter 

can be found at http://bioinfolab.unl.edu/emlab/gpcr_mouse/. 

 

BLAST approach: 

First, we used mouse GPCR protein sequences that were downloaded from 

GPCRDB (Vroling, et al., 2011) in the file “GPCR_mouse.fa” (3296 GPCR sequences) 

to perform similarity search using a BLAST program tblastn against our consolidated 

mouse coding sequence (CDS) set. If the search result was better than 99% identity and 

99% alignment coverage for both query and subject sequences, we marked this subject 

sequence as “G1” in the result file, “GPCR_table_RNA-seq.xlsx”. This was a very strict 

threshold and we considered these resultant sequences (2149 sequences obtained) highly 

likely to be GPCRs. 

Second, we went through each GPCR classification leaf group alignment from 

GPCRDB (“gpcr_families.txt” and alignments downloaded from 

http://www.gpcr.org/7tm/data/), and found “representative” sequences (209 sequences 

obtained). “Representative” sequence was defined as a GPCR sequence from rat 

(“rat_query.fa”), human (“human_query.fa”), or other vertebrate (“verte_query.fa”) that 

was present in the leaf classification group where mouse GPCR was missing in this 

group. Then, we used these “representative” sequences to perform tblastn search against 

our Con_Mouse database. We used 90% identity and 95% coverage for both query and 

subject sequences as the threshold if the “representative” sequence was from rat, 70% 
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identity and 95% coverage as the threshold if it was from human, and 70% identity and 

95% coverage as the threshold if it was from one of other vertebrates. The rationale here 

was that in one GPCR classification leaf group, if there were many GPCRs of other 

vertebrates but no mouse GPCRs, then it was possible that mouse GPCR was missing in 

GPCRDB in this leaf GPCR group. We marked sequences that passed the according 

thresholds as “G2” in the result file (30 sequences obtained). 

Third, we used subject sequences from step 2 that did not pass the threshold but 

still had promising scores (in the file “possible_GPCR_query.fa”) to perform blastx 

search against the NCBI non-redundant protein database. If they returned GPCR 

sequences from some species as first hits, we considered them as GPCRs. The rationale 

here was that these sequences were more closely related to some GPCRs rather than the 

“representative” sequences we chose earlier. Only 3 sequences were added in this step, 

“XM_003086424.1”, “XM_003085563.1” and “XM_003085916.1”, and they were 

marked as “G3”. 

Fourth, we used sequences found in previous steps (G1, G2, and G3) to perform 

blastn search against our Con_Mouse database again and added those sequences that 

showed better score than GPCRs determined in G1, G2 and G3; i.e., if a sequence that 

had not been found as GPCR before but was found in this step to be more similar to a 

query from G1, G2, or G3 than another sequence determined to be in the GPCR family 

X, then this sequence is considered to be a GPCR candidate from the family the query is 

thought to belong to. The rationale here is similar to PSI-BLAST that using results from 

previous search to increase the sensitivity to search for more similar sequences. 308 
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sequences were newly identified as GPCRs in this step. We marked these sequences as 

“G4”. 

 Fifth, we marked sequences as “G5” (18 sequences) if they were the best hits in 

the BLAST search result from “G1” step but failed to pass “G1” threshold and not found 

in previous steps. In general, sequences in G2 – G5 categories were considered likely to 

be GPCRs with more relaxed thresholds comparing to G1. 

All G1 to G5 sequences are marked in the result file, GPCR_table_RNA-seq.xlsx. 

 

HMMER with Pfam approach: 

In order to find the GPCR score threshold, we first used the profile hidden 

Markov models (HMMs) of the GPCR families identified in Pfam v26 database (the file 

“pfam_list_mouse_A.txt”, including 40 Pfam families) to search against all sequences in 

Swiss-Prot database (“2011_09” release) by profile HMM search using HMMER v3.0 

program. The first threshold was determined by the highest bit score of the non-GPCR 

sequences (sequences not in “GPCR_mouse.fa”) from Swiss-Prot in the search result (T1 

column of the file “pfam_thresholds.txt”; e.g., Pfam family “PF12003” had T1 score 

threshold of 181.9 and “PF03402” had T1 score threshold of 14.8). The second threshold 

was determined by the lowest bit score of the GPCR sequences (sequences in the file 

“GPCR_mouse.fa”) in the Swiss-Prot search result even though non-GPCR sequences 

might have higher bit scores (T2 column of “pfam_thresholds.txt”; e.g., “PF12003” had 

T2 bit score threshold of 13.1 and “PF03402” had T2 bit score threshold 13). We then 

used the profile HMMs of the GPCR families from Pfam to search against the translated 
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Con_Mouse database (“Ref_proteins.fa”, translation was done using the reading frame 

information from “Ref_seq_table_RNA-seq.xlsx”) and based on the thresholds (T1 and 

T2) we just determined. Sequences from our CDS with bit scores higher than the 

corresponding thresholds of the Pfam family were considered GPCRs. If a sequence in 

our mouse database passed the relatively more relaxed T2 and/or relatively stricter 

threshold T1, we marked the sequence with “G” in Pfam-T2 and/or Pfam-T1 column in 

the result file, respectively. A total of 1125 sequences passed the T1 thresholds and 2801 

sequences passed the T2 thresholds.  

 

7TMRmine approach: 

7TMRmine (Lu, et al., 2009) includes multiple GPCR sequence prediction 

methods. Among them, we are mostly interested in the result from SAM, GPCRHMM 

and SVM. Sequence alignment and modeling system (SAM) (Karplus, et al., 1998) uses 

profile hidden Markov models (HMMs) built from sequence alignments to predict protein 

family memberships. A profile HMM is a full probabilistic model based on a sequence 

alignment. GPCRHMM is developed by Wistrand et al. (2006). It uses profile HMMs, 

distinct loop length patterns, and amino acid composition differences among different 

regions in GPCRs for prediction. We used SAM, SAM1, and SAM2 from 7TMRmine 

(they use different E-value thresholds: 0.05, 4.23, and 6.52, respectively). Support vector 

machine (SVM) makes classification based on a hyperplane separating a remapped 

instance space. We used SVM-AA (using amino acid composition) and SVM-di (using 

dipeptide frequencies) from 7TMRmine. If a method in 7TMRmine system predicted a 



 

 

 

82

sequence in our translated Con_Mouse (“Ref_proteins.fa”) to be a GPCR, we marked the 

sequence with “G” in the according method column in the result file.  

 

Results of mouse GPCR identification: 

To summarize, 2149 sequences passed BLAST strict threshold (G1 step, denoted 

as “blast_s” in Figure S4), and 2508 sequences passed BLAST relaxed threshold (G2-G5 

steps, “blast_r”). 1125 sequences passed T1 threshold of Pfam profile HMM search 

(“pfam_s”), and 2801 sequences passed T2 threshold (“pfam_r”). GPCRHMM predicted 

2566 sequences as GPCRs (“gpcrhmm”). 2246 sequences passed strict threshold we set 

for SAM (“sam”, E-value threshold 0.05) and 2580 sequences passed relaxed threshold 

(“sam2”, E-value threshold 6.52). SVM predicted 5870 sequences to be GPCRs 

(“svm_di”).  

In order to choose the most confident predictions, we looked at how prediction 

results overlap with each other (Figure S4). Numbers in the figure are the numbers of 

sequences predicted to be GPCRs using various methods. 

 



 

 

 

Figure S4: Number of GPCRs predicted by various methods and how the results 

overlap with each other 
The numbers outside the circles are the 

not GPCR. 

 

By comparing the resultant 

sequences, we decided to divide our prediction file (“GPCR_table_RNA

two parts. The first part is our most confident predictions (row 2

that consists predictions from GPCRHMM, SAM

pfam_r. The second part is the rest of the sequences that represent likely GPCR 

sequences but with less confidence (5107 sequences).

: Number of GPCRs predicted by various methods and how the results 

 
The numbers outside the circles are the numbers of sequences from Con_Mouse predicted to be 

By comparing the resultant Venn diagrams and checking some of the actual 

sequences, we decided to divide our prediction file (“GPCR_table_RNA-

parts. The first part is our most confident predictions (row 2–2759, 2758 sequences) 

that consists predictions from GPCRHMM, SAM, and the overlap between blast_r and 

pfam_r. The second part is the rest of the sequences that represent likely GPCR 

but with less confidence (5107 sequences). 
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: Number of GPCRs predicted by various methods and how the results 

numbers of sequences from Con_Mouse predicted to be 

and checking some of the actual 

-seq.xlsx”) into 

2759, 2758 sequences) 

and the overlap between blast_r and 

pfam_r. The second part is the rest of the sequences that represent likely GPCR 
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S5 Compilation of Regulators of G Protein Signaling, Nuclear 

Receptors, and Their Domain Distance Matrices 
 

 The objectives of this project were 1) to compile all mouse Regulators of G-

protein signaling (RGS) and Nuclear Receptors (NR) and 2) to construct domain distance 

matrices to see how these proteins are related through domains. Both RGS and NR are 

medically important signal-transducing protein families, similarly important as GPCRs 

described in the previous section, and both have multiple domains. 

 

Introduction 

Regulators of G-protein signaling (RGS) are critical components of many cellular 

processes and pathways, e.g., intercellular signaling and asymmetric cell division (Wilkie 

and Kinch, 2005). Most RGS proteins and several of their relatives are involved in G-

protein GTPase-activating (GAP) activity. RGS proteins also interact with many other 

proteins and lipids that may cause positive or negative regulatory functions in addition to, 

or distinct from their GAP activities. The RGS are related by a conserved RGS domain of 

~130 amino acid residues. RGS domains have been found in many species from fungi, 

Dictyostelium discoideum, and animals (Ross and Wilkie, 2000). Family and domain 

relationship are showing in Figure S5. Many RGS proteins have other domains or motifs 

coexisted on their sequences. 



 

 

Figure S5: Mammalian RGS proteins. 
Left: Phylogenetic tree showing the relationship among five subfamilies RZ, R4, R7, R12 and RA. 

Right: Domain organization of different RGS sequences (from Ross and Wilkie, 2000). 

Abbreviations: APC, adenomotous polyposis coli; GGL, Gr

interaction domains; PP2A, protein phosphatase 2A. 

 

 

: Mammalian RGS proteins.  
Left: Phylogenetic tree showing the relationship among five subfamilies RZ, R4, R7, R12 and RA. 

Right: Domain organization of different RGS sequences (from Ross and Wilkie, 2000). 

Abbreviations: APC, adenomotous polyposis coli; GGL, Gr-like; DEP, PDZ, and 

interaction domains; PP2A, protein phosphatase 2A.  
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Left: Phylogenetic tree showing the relationship among five subfamilies RZ, R4, R7, R12 and RA. 

Right: Domain organization of different RGS sequences (from Ross and Wilkie, 2000). 

like; DEP, PDZ, and PTB, protein 
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Nuclear receptors (NR) are another extremely important proteins that are involved 

in almost all aspects of normal human physiology and also associated with many human 

diseases, and thus import therapeutic targets for pharmaceuticals (Olefsky, 2001). Many 

plant and synthetic chemicals, e.g., pesticides, industrial by-products and plastics 

components, have also been found to bind to nuclear receptors to trigger or disrupt their 

natural activities (Thornton, 2003). 

Nuclear receptors are multi-domain proteins only found in metazoans that bind to 

regions on DNA to regulate the transcription of specific genes. Most of nuclear receptors 

have the same domain arrangement with DNA-binding domain (DBD) and ligand 

binding domain (LBD) connected by a hinge region. The DNA-binding domain is 

responsible for targeting the receptor to highly specific DNA sequences and the ligand-

binding domain is to recognize specific hormonal and non-hormonal ligands. Usually in 

signal transduction pathways, nuclear receptors, upon ligand binding, form homo- or 

hetero-dimers and then to target specific DNA sequences to regulate the expression of the 

gene (Bertrand, et al., 2004). NR domain structure is presented in Figure S6. 



 

 

Figure S6: Structural organization of nuclear receptors.
(adapted from http://en.wikipedia.org/wiki/File:Nuclear_Receptor_Structure.png

 

RGS and NR protein compilation

RGS sequences were found 

with default parameters from the

al., 2012)
 
v26.0 family PF00615 (RGS) and PF09128 (RGS

Con_Mouse database (“Ref_proteins”)

value calculated by HMMER to find all 

10 means that 10 expected false positive RGS sequences will be included in the resul

from the entire mouse protein set.

more RGS. 

: Structural organization of nuclear receptors. 
http://en.wikipedia.org/wiki/File:Nuclear_Receptor_Structure.png

ompilation from the mouse genome 

RGS sequences were found by profile HMM search using program hmmsearch 

with default parameters from the HMMER v3.0 package (Eddy, 1998). Pfam 

26.0 family PF00615 (RGS) and PF09128 (RGS-like) against 

database (“Ref_proteins”). We used 10 as the threshold of the domain E

value calculated by HMMER to find all potential RGS sequence candidates. E

10 means that 10 expected false positive RGS sequences will be included in the resul

from the entire mouse protein set. We used this fairly large threshold to try to include 
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http://en.wikipedia.org/wiki/File:Nuclear_Receptor_Structure.png)  

by profile HMM search using program hmmsearch 

Pfam (Punta, et 

like) against the translated 

. We used 10 as the threshold of the domain E-

RGS sequence candidates. E-value of 

10 means that 10 expected false positive RGS sequences will be included in the result 

to try to include 
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Nuclear receptor (NR) sequences were compiled in the exactly same fashion 

except that we used Pfam family PF00104 (Ligand-Binding Domain, LBD) and PF00105 

(DNA-Binding Domain, DBD) to search for NR sequences.  

In total, we obtained 154 RGS proteins (“RGS.fa”) and 156 NR proteins 

(“NR.fa”).  

 

Construction of domain distance matrices 

In order to prepare “domain evolution network” similar to the idea proposed by 

Holloway and Beiko (2010), we identified different domains co-existing in all RGS and 

NR protein sequences identified and constructed domain-to-protein distance matrices. 

This was part of a larger collaborative project. 

We used the compiled RGS sequence set to profile HMM search using HMMER 

program hmmsearch with default parameters against the Pfam database to find other 

domains on the sequences. We again used 10 as the threshold of the domain E-value 

calculated by HMMER to include more domains. This step was done to identify all other 

domains that coexist with RGS or RGS-like domain in our RGS sequences. We extracted 

the sequence of each domain from each RGS sequence. Each sequence of the domains 

found in an RGS protein was then used as the query for the similarity search using blastp 

against each sequence in the RGS sequence set. Each sequence in the RGS set was 

treated as a single database in the blastp search. The E-value was used as a distance 

measure between each domain sequence of an RGS sequence and each of RGS 

sequences. “0” or a very small E-value is expected if a domain sequence is highly similar 
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to a region of the sequence searched. A large E-value is expected, on the other hand, 

when a domain from sequence “A” is used for the search against sequence “B” where this 

domain does not exist. If a domain was not found on a sequence within the threshold E-

value of 10, we used 2870 as the maximum distance (based on the average lengths of 

query (100) and subject (700), we set the search space to be a constant number 70000, 

and the possible maximum E-value would be 2870 (based on λ=0.267 and Κ=0.041, 

using BLOSUM62)). We identified 48 domains from 154 RGS proteins, and the above 

process was repeated for every domain of every RGS sequence against all RGS 

sequences. An example of an RGS distance matrix is partially shown in Table S5. 

We identified 30 domains from 156 NR proteins, and the distance matrices were 

compiled in the same fashion. An example of an NR distance matrix is partially shown in 

Table S6. 

In total, we produced 154 (48 domains X 154 RGS protein sequences) and 156 

(30 domains X 156 NR protein sequences) distance matrices for RGS and NR proteins, 

respectively. All distance matrices can be found at: 

http://bioinfolab.unl.edu/emlab/gpcr_mouse/ 

These distance matrices serve as the input for reconstructing the domain evolution 

network. 
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Table S5: An example of an RGS domain-to-protein distance matrix.
a
 

Sequence 

 

Domain 

NM_207213.1|ENSM

UST00000041582|uc

009lpu.1 

NM_008488.1|uc009fq

v.1 

ENSMUST000000216

42 

ENSMUST000000974

60 

PF12761 3.00E-30 12 34 91 

PF06246 7.00E-22 1.9 41 2870 

PF08628 2.00E-62 5.6 39 52 

PF00787 1.00E-63 0.46 0.86 0.026 

PF02194 1.00E-92 0.81 0.099 1.6 

PF00615 3.00E-67 0.24 1.00E-06 1.00E-08 

PF09128 2870 2870 2870 2870 

PF00621 2870 2870 2870 2870 

PF00610 2870 2870 2870 2870 

PF06718 2870 2870 2870 2870 

PF00631 2870 2870 2870 2870 

PF00169 2870 2870 2870 2870 

PF00018 2870 2870 2870 2870 

PF00435 2870 2870 2870 2870 

PF04803 2870 2870 2870 2870 

PF02284 2870 2870 2870 2870 

PF08833 2870 2870 2870 2870 

PF00778 2870 2870 2870 2870 

PF02188 2870 2870 2870 2870 

PF02196 2870 2870 2870 2870 

PF11470 2870 2870 2870 2870 

PF00069 2870 2870 2870 2870 

PF07714 2870 2870 2870 2870 

PF11333 2870 2870 2870 2870 

a
This table shows the distance (BLAST E-value) between each domain sequence from the 

reference sequence (the first column) and any similar region found in each sequence. 
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Table S6: Example of an NR domain-to-protein distance matrix.
a
 

Sequence 

 

 

Domain 

ENSMUST00000110
418 

ENSMUST0000004485
8|uc008cay.1 

NM_010936.2|ENSMU
ST00000023504|uc00

7zeq.1 

NM_011934.2|ENSMU
ST00000021680|ENSM

UST00000110207|ENS

MUST00000167891|uc

007oht.1|uc007ohw.1 

PF12497 2870 2870 2870 2870 

PF00104 5.00E-04 5.00E-108 5.00E-13 4.00E-22 

PF02159 2870 2870 2870 2870 

PF03489 2870 2870 2870 2870 

PF00105 2.00E-21 1.00E-42 1.00E-19 3.00E-23 

PF11825 5.2 6.00E-20 6.8 4.9 

PF07352 2870 2870 2870 2870 

PF02166 2870 2870 2870 2870 

PF07371 2870 2870 2870 2870 

PF02161 2870 2870 2870 2870 

PF12837 2870 2870 2870 2870 

PF06600 2870 2870 2870 2870 

PF12577 2870 2870 2870 2870 

PF12782 2870 2870 2870 2870 

PF02535 2870 2870 2870 2870 

PF08143 2870 2870 2870 2870 

PF03408 2870 2870 2870 2870 

PF12390 2870 2870 2870 2870 

PF07967 2870 2870 2870 2870 

PF06827 2870 2870 2870 2870 

PF03854 2870 2870 2870 2870 

PF10080 2870 2870 2870 2870 

PF06215 2870 2870 2870 2870 

PF03468 2870 2870 2870 2870 

a
This table shows the distance (BLAST E-value) between each domain sequence from the 

reference sequence (the second column) and any similar region found in each sequence. 

 



 

 

 

92

References for Supplementary Materials 

 

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local 

alignment search tool, J Mol Biol, 215, 403-410. 

Bertrand, S., Brunet, F.G., Escriva, H., Parmentier, G., Laudet, V. and Robinson-

Rechavi, M. (2004) Evolutionary genomics of nuclear receptors: from twenty-five 

ancestral genes to derived endocrine systems, Mol Biol Evol, 21, 1923-1937. 

Eddy, S.R. (1998) Profile hidden Markov models, Bioinformatics, 14, 755-763. 

Holloway, C. and Beiko, R.G. (2010) Assembling networks of microbial genomes using 

linear programming, BMC Evol Biol, 10, 360. 

Karplus, K., Barrett, C. and Hughey, R. (1998) Hidden Markov models for detecting 

remote protein homologies, Bioinformatics, 14, 846-856. 

Kim, J., Moriyama, E.N., Warr, C.G., Clyne, P.J. and Carlson, J.R. (2000) Identification 

of novel multi-transmembrane proteins from genomic databases using quasi-

periodic structural properties, Bioinformatics, 16, 767-775. 

Lu, G., Wang, Z., Jones, A.M. and Moriyama, E.N. (2009) 7TMRmine: a Web server for 

hierarchical mining of 7TMR proteins, BMC Genomics, 10, 275. 

Olefsky, J.M. (2001) Nuclear receptor minireview series, Journal of Biological 

Chemistry, 276, 36863-36864. 

Punta, M., Coggill, P.C., Eberhardt, R.Y., Mistry, J., Tate, J., Boursnell, C., Pang, N., 

Forslund, K., Ceric, G., Clements, J., Heger, A., Holm, L., Sonnhammer, E.L., 

Eddy, S.R., Bateman, A. and Finn, R.D. (2012) The Pfam protein families 

database, Nucleic Acids Res, 40, D290-301. 

Ross, E.M. and Wilkie, T.M. (2000) GTPase-activating proteins for heterotrimeric G 

proteins: regulators of G protein signaling (RGS) and RGS-like proteins, Annu 

Rev Biochem, 69, 795-827. 

Thornton, J.W. (2003) Nonmammalian nuclear receptors: Evolution and endocrine 

disruption, Pure and Applied Chemistry, 75, 1827-1839. 

Vroling, B., Sanders, M., Baakman, C., Borrmann, A., Verhoeven, S., Klomp, J., 

Oliveira, L., de Vlieg, J. and Vriend, G. (2011) GPCRDB: information system for 

G protein-coupled receptors, Nucleic Acids Res, 39, D309-319. 

Wilkie, T.M. and Kinch, L. (2005) New roles for Galpha and RGS proteins: 

communication continues despite pulling sisters apart, Curr Biol, 15, R843-854. 

Wistrand, M., Kall, L. and Sonnhammer, E.L. (2006) A general model of G protein-

coupled receptor sequences and its application to detect remote homologs, Protein 

Sci, 15, 509-521. 

 

 

 


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	11-1-2012

	COMPARATIVE STUDIES OF DIFFERENTIAL GENE CALLING METHODS FOR RNA-SEQ DATA
	Ximeng Zheng


