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 Fungi represent one of the three major eukaryotic kingdoms with plants and 

animals. A vast number of fungi are filamentous and they have enormous health, 

economic, and ecological impacts on our human life. Multiple fungal genome projects 

have been planned and some new draft genomes have been recently completed. Multiple 

gene prediction programs are being used for identifying protein coding genes from these 

fungal genomes. However, existing gene-models built for unrelated organisms have been 

often applied to new fungal genomes because no model from specific fungal species is 

available for their optimum gene prediction.  The objectives of this thesis are to analyze 

various gene mining methods, to extract genomic variables from various fungal genomes, 

and to develop an integrated genome database system that will facilitate more efficient 

genome annotation of filamentous fungi. The results obtained by analyzing three 

filamentous fungal genomes (Neurospora crassa, Aspergillus nidulans, and Fusarium 

graminearum) showed that each possesses a surprisingly large number of predicted genes 

with no apparent homologue in any other organism, thereby highlighting the need for 

accurate gene prediction programs.  Three gene mining methods (GLIMMER, 

GLIMMERM, and GenScan) were used against the N. crassa genome and the 

performance for identifying short gene candidates specific to the species was examined.  

The results showed that GLIMMER, although it was developed primarily for prokaryotic 

genomes, as well as GLIMMERM, appeared to be useful for the fungal genome 



 iii
annotation.  More use of these gene prediction methods on fungal genomes should be 

considered. The extracted genomic variables will help us understand the genome specific 

features among fungi and other organisms. Integrating all the above information through 

a database system will help our understanding of the fungal genomes and facilitate 

optimizing gene prediction for fungal genome projects.  
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Chapter 1 Introduction 

1.1   Objectives of the thesis 

  Fungi, plants, and animals represent the three major kingdoms of eukaryotic 

organisms.  Fungi form a large eukaryotic kingdom comprising more than 100,000 

species, including yeasts and molds.  Due to their relatively small genome sizes, fungi 

have been especially suitable for genome analysis. Saccharomyces cerevisiae, the 

budding yeast, was one of the first eukaryotic species whose genome was completely 

sequenced [1].  The genome of another yeast species, Schizosaccharomyces pombe, the 

fission yeast, has been also sequenced completely and analyzed in detail [2].  However, 

the information gained from these two yeast species represents only a small fraction of 

the fungal kingdom.  This is why a large number of genome projects for non-yeast 

(filamentous) fungal species is now being planned. 

 These recent fungal genome projects require more efficient gene prediction tools.  

Due to the difference in genome organization, the methods optimized for the yeast and 

other organism genomes cannot accurately identify all of the genes in the filamentous 

fungal genomes.  There have been also only a few studies on gene prediction problems 

specific to filamentous fungal genomes. 

 The goals of this thesis are to collect genomic information that can facilitate 

optimizing various gene prediction methods especially for filamentous fungal genomes, 

and to develop a support database system.  The project has three components: 1) analysis 

of different gene mining methods, 2) extraction of genomic variables and comparative 

analysis of different fungal genomes, and 3) development of an integrated fungal genome 
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database system.  The focus was placed on a filamentous fungus, Neurospora crassa, 

genome.  The plan for the future is to extend the database to include other filamentous 

fungus species, e.g., Fusarium graminearum and Aspergillus nidulans.  The data 

extracted contain detailed information on gene structure from fungal genomes such as 

intron and exon lengths and base composition in introns and exons.  The extracted 

genomic variables will be useful to understand the genome specific features among fungi 

and other organisms.  Integrating these information through a database system will help 

our understanding of fungal genomes and improvement of existing gene prediction 

methods.  

 

1.2   Significance of fungal research 

  Fungi have spread through diverse natural habitats living on the degradation of a 

large variety of organic materials.  Fungal activities affect human, other animals, and 

plants in many ways and hence are studied in greater details.   Fungi serve as important 

models for biomedical research, and provide a wide range of evolutionary comparisons. 

 Fungi are divided into two broad groups, Ascomycetes and Basidiomycetes.  The 

main difference between these two groups is in the way which they produce their 

microscopic spores.  Basidiomycetes produce the spores externally on the end of 

specialized cells called basidia, whereas Ascomycetes produce spores internally inside of 

a sac called an ascus.  Basidiomycetes include mushrooms, bracket fungi, and several 

mold like fungi called rusts and smuts (e.g., Tremella fuciformia, Puccinia triticium).  

These fungi damage grains, food crops, and other plants. Ascomycetes include unicellular 
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yeasts, cup fungi, truffles, morrels, and mildews (e.g., Saccharomyces cerevisiae, 

Aspergillus nidulans, Neurospora crassa).  They are destructive parasites of food crops. 

 Fungi are also grouped based on their morphology: filamentous or non-

filamentous.  Filamentous fungi are unique organisms producing a wide range of natural 

products called secondary metabolites.  These compounds are very diverse in structure 

and perform functions that are not always known.   Filamentous fungi have bodies 

composed of thread-like long cells called hyphae.  The filamentous cells are connected 

end-to-end and grow in a branching fashion forming a network.  Filamentous fungi 

belong to both Ascomycetes and Basidiomycetes.  The two yeast species, Saccharomyces 

cerevisiae and Schizosaccharomyces pombe, whose complete genomic sequences are 

already available, are non-filamentous fungi, and they belong to Ascomycetes. 

 The filamentous fungi are extremely useful to synthesize a wide range of 

economically important compounds, enzymes, and secondary metabolites, including 

antibiotics.  They are the most important group of plant pathogens, causing very 

significant losses in crop yield world-wide.  And they have been used as model 

organisms for understanding broad aspects of eukaryotic cellular regulation.  

 

1.3   Fungal genome project 

 Fungal genomes are modest in size (ranging from 7 to 40 Mb) with few repeats.  

The high gene density makes them extremely cost effective for gene discovery. The 

efforts to expand genome sequencing to filamentous fungi date back to the late 1990s as 

the vast majority of fungi are filamentous.  However, there are also difficulties in 

predicting genes in filamentous fungal genomes as described later. 
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 The fungal genome project is coordinated by the Whitehead Institute.  They 

recognized that existing genomic sequences; i.e., the budding (S. cerevisiae) and fission 

yeast (S. pombe) genomes, do not provide sufficient information on the entire fungal 

diversity.  The current plan of fungal genomics is to approach in a kingdom-wide manner 

by selecting a balanced collection of fungal species maximizing the overall values for 

comparative genomics, evolutionary studies, and eukaryotic biology.  The Fungal 

Genome Initiative (http://www.broad.mit.edu/annotation/fungi/fgi/) has identified a set of 

44 new fungi as immediate targets for sequencing with an emphasis on clusters of related 

species, of which eight fungal genome assemblies have been fully released and two more 

are currently under prerelease.  Figure 1.1 is a taxonomic representation of the fungal 

species proposed by the Fungal Genome Initiative.  Table 1.1 contains the details of 

species whose complete genomes are available.  As mentioned earlier, the genome sizes 

of the fungal species are smaller in size (40 Mb or smaller) in comparison to the other 

eukaryotes (e.g., the size of the human genome is 3,200 Mb), as only a small portion of 

the fungal genomes has redundant (repeated) information and most fungal genomes have 

very short introns (between 50 and 200 bp).  
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Figure 1.1 Taxonomic relationships of fungal species whose genomes are proposed 
for complete sequencing (taken from the Whitehead website: 
http://www.broad.mit.edu/annotation/fungi/fgi/). The best-supported branches with 
current data are indicated with thick lines. The fungal species used in this study are 
marked with arrows.  Two species used in this study but not listed in the figure are 
Saccharomyces cerevisiae belonging to the Candida clade, and Magnaporthe grisea 
belonging to the Sordariomycetidae subclass. 
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Table 1.1 Complete fungal genomes available. 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Non-filamentous fungi are marked with *, others are filamentous fungi. 
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1.4   Gene prediction methods 

 Computational gene identification plays an important role in genome projects.  A 

challenge in bioinformatics is to rationally design analysis methods to interrogate the 

exponentially increasing sequence information.  Various gene prediction methods have 

been developed.  Some of these programs predict protein-coding regions in genomic 

sequences, while others predict a set of exons/introns and explicitly assemble genes.  The 

two widely used approaches for genome annotation are similarity methods (extrinsic 

methods) and gene prediction methods (intrinsic methods).  Only a half or fewer of genes 

can be annotated by searching similarities to other known genes or proteins, and 

remaining genes need predictive methods to be identified.  Many gene prediction 

programs are currently publicly available.  Some of the well-known gene prediction 

programs are GenScan, HMMGene, GeneMark, and Pombe.  The methods used in these 

programs include hidden Markov models, linear discriminant analysis, and probabilistic 

models of gene structure that rely on features such as compositional differences and 

signals [3, 4].  Some representative methods are described in detail in Chapter 3. 

 

1.5   Gene prediction problems specific to filamentous fungi 

 The problems common in these gene identification programs are that the 

algorithms must be trained using information gathered from a set of known genes and the 

quality of prediction strategies employed varies from organism to organism.  The primary 

reason is that the method depends strongly on the gene samples in the training set and 

how the training set represents the entire gene set in the genome in question.  Despite 

such limitations, gene models previously built for an organism are often applied to newly 
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sequenced unrelated organisms, for which no model or method has yet been tuned.  For 

example, most of the programs used earlier in finding genes in N. crassa, a filamentous 

fungus species, failed because of the improper model used for this organism [5].  

Recently, the German Neurospora Genome Project used gene modeling to predict genes 

in the N. crassa genome [6].  Gene modeling was based on prediction obtained with 

FGENESH [7].  FGENESH is based on hidden Markov model similar to Genie [8] and 

GenScan [9].  It is trained on 3,218 N. crassa genes.  Predictions by GeneMark, 

GenScan, and GENEFINDER as well as significant matches to sequences of Expressed 

Sequence Tags (ESTs) and known genes were incorporated for corrections where 

appropriate.  Gene predictions were restricted to open reading frames (ORFs) longer than 

100 codons (300 bp).  Prediction performance of the above methods (GeneMark and 

GenScan) was comparable to some extent to the predictions of FGENESH.  The current 

Whitehead fungal genome annotation is based on a combination of FGENESH, 

FGENESH+, and GENEWISE. 

One problem probably specific to but common among filamentous fungal 

genomes is that they contain many very short genes, shorter than 50 codons.  Usually 

these short genes are beyond the detection power of available gene prediction methods 

and many methods simply ignore such short genes.  Also several gene candidates have 

been predicted to contain extremely long introns.  They could be indeed a single coding 

region or alternatively each exon could represent a small coding sequence. 

In order to optimize gene prediction methods, more detailed information on gene 

structure, intron and exon lengths, splice site signals, base composition, codon usage bias 

and so on, needs to be collected from various fungal genomes.  However, such 
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information crucial to gene annotation is not readily available in any existing genome 

databases.  Current genome databases (e.g., Arabidopsis thaliana, yeast) focus more on 

developing data representation, visualizations, and query tools [10]. 

 

1.6  How this thesis is organized 

The remaining part of the thesis is organized as follows. Chapter 2 presents an 

overview of the project.  Chapter 3 describes the fungal genomes and datasets used.  

Chapter 3 also deals with various methods used in this study.  It includes details on the 

BLAST similarity search methods of transmembrane prediction methods and gene 

prediction programs.  In Chapter 4, the implementation of the fungal database system is 

described.  It explains the various tables that are used for designing the system.  Chapter 

5 describes how the different prediction methods were used and the results of various 

analyses.  Finally Chapter 6 concludes the thesis and presents some suggestions for the 

future work.   
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Chapter 2 Overview of the Project 

The overall process of the project is split into the following four components: 

 1) Comparative analysis of the fungal genomes.  The entire ORF sets of three 

filamentous fungal species (9,541 ORFs of Aspergillus nidulans, 11,640 ORFs of 

Fusarium graminearum, and 10,082 ORFs of Neurospora crassa; all available from the 

Whitehead genome project) were searched against the non-redundant (NR) database from 

the National Center for Biotechnology Institute (NCBI), which includes approximately 

two million sequence entries across various organisms.  The search was also performed 

against five fungal genomes including Magnaporthe grisea, Aspergillus nidulans, 

Fusarium graminearum, Saccharomyces cerevisiae, and Schizosaccharomyces pombe, 

which contain approximately 43,000 ORFs in total.  These searches can provide insights 

on how these filamentous fungal genes (or ORFs) are similar to those of other organisms 

and help identify genes/ORFs that are characteristics of these fungal genomes.  

 2) Analysis of various gene mining methods.  GenScan, GLIMMER, and 

GLIMMERM methods were compared and potential advantages of using these methods 

on fungal genomes were identified.  These methods were applied to the entire genomic 

data of N. crassa.  Their performance was compared with the existing genome annotation 

by the Whitehead genome project.  New gene candidates previously not annotated were 

identified and examined. 

 3) Extraction of genomic variables.  Various gene and genomic information 

were extracted from three fungal genomes (N. crassa, S. pombe, and S. cerevisiae).  It 

includes nucleotide frequencies (single-, di-, and trinucleotides) and lengths of introns 
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and exons.  The extracted genomic variables were compared among fungus species to 

understand the genome specific features. 

 4) Development of integrated genome database.  The database was constructed 

based on the N. crassa genomic data to compile information used in various gene 

prediction methods (described above).  The database stores, for example, entry files of N. 

crassa sequences, results of various sequence analyses (e.g., base composition), results 

from similarity search against various databases (NCBI non-redundant database and 

fungal genome databases), and the results using various gene prediction programs.  The 

stored data can be visualized using a web-based graphical interface.  This database 

system would support the development of organism specific gene prediction methods in 

the future. 

The flow chart given in Figure 2.1 explains the scheme of the entire project. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2.1 Schema of the project 
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Chapter 3 Materials and Methods 

3.1   Datasets 

3.1.1 Fungal genome databases 

 Six fungal genomes were used for this study: Neurospora crassa, Magnaporthe 

grisea, Aspergillus nidulans, Schizosaccharomyces pombe, Saccharomyces cerevisiae, 

and Fusarium graminearum.  Except S. pombe and S. cerevisiae, other four species are 

filamentous fungi.  These fungal species are marked with arrows in Figure 1.1.  The 

predicted coding sequences (CDS) and translated protein data as well as the genomic 

DNA were obtained from the Whitehead website 

(www.broad.mit.edu/annotation/fungi/fgi/) and from the National Center for 

Biotechnology Information (NCBI; www.ncbi.nlm.nih.gov).   

 

 Neurospora crassa 

 Neurospora crassa is one of the most widely studied filamentous fungi and serves 

as a model for eukaryotic organisms.  The size of the N. crassa genome is approximately 

40 Mb comprising of seven chromosomes.  The Whitehead genome project has 821 

contigs containing approximately 11,000 predicted genes/ORFs.  

 Aspergillus nidulans 

 This filamentous fungus species is one of the critical fungal systems in genetics 

and cell biology.  It is important because it is closely related to a large number of other 

Aspergillus species of industrial and medical significance; e.g., A. niger, A. oryzae, A. 

flavus, and A. fumigatus.  A. nidulans is a member of the Ascomycetes. The size of the A. 
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nidulans genome is approximately 31 Mb.  The Whitehead genome project has 248 

contigs containing estimated 9,541 protein coding genes. 

 Fusarium graminearum 

 Fungi in the genus Fusarium cause a variety of seedling disease on nearly every 

species of cultivated plants.  The size of the F. graminearum genome is approximately 40 

Mb.  The Whitehead genome project has 511 contigs containing estimated 11,640 genes.  

It is also a filamentous fungus. 

 Magnaporthe grisea 

 Magnaporthe grisea, a filamentous fungus and the causal agent of rice blast 

disease, is one of the most devastating threats to food security worldwide.  The size of the 

M. grisea genome is approximately 40 Mb contained in seven chromosomes.  The 

Whitehead genome project has 2,273 contigs containing estimated 11,109 genes.  M. 

grisea is considered to be closely related to N. crassa, and both belong to the 

Sordariomycetidae subclass (Figure 1.1). 

  Schizosaccharomyces pombe 

 Schizosaccharomyces pombe or the fission yeast is a single-celled free living 

fungus sharing many features with cells of more complicated eukaryotes.  It is a non-

filamentous fungus.  The 13.8 Mb genome of S. pombe is distributed on sixteen 

chromosomes and contains approximately 5,000 genes.  The complete genome data were 

downloaded from the NCBI website. 

  Saccharomyces cerevisiae  

 Saccharomyces cerevisiae or the budding yeast has the 12 Mb genome distributed 

over three chromosomes.  The genome contains approximately 6,000 genes.  It is also a 
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non-filamentous fungus, and the complete genomic data were downloaded from the 

NCBI website. S. cerevisiae belongs to the Candida clade (Figure 1.1). 

 

3.1.2 NCBI non-redundant database 

 The NCBI non-redundant (NR) protein database contains protein sequence entries 

compiled from a variety of sources, including SwissProt, PIR, PRF, PDB, and 

translations from annotated coding sequences in GenBank and RefSeq.  As of July 4th 

2004, the database contains 1,921,076 sequences from various organisms including fungi, 

animals, plants, and prokaryotes.  Although it is called "non-redundant" the database does 

contain multiple submissions of the same gene sequence. 

 

3.1.3 Training datasets used for gene prediction methods 

 Experimentally confirmed cDNA sequences of N. crassa, S. pombe, and S. 

cerevisiae were used for training GLIMMER, a gene prediction method.  They were 

collected from the NCBI nucleotide database. The training datasets include 120, 157, and 

613 cDNA sequences from N. crassa, S. cerevisiae, and S. pombe, respectively. 

 

All the fungal genome sequences as well as the NR database were formatted 

locally before their use.  Formatting protein or nucleotide databases is required before 

these databases can be used by BLAST similarity search programs.  The BLAST 

programs are explained in the next section. 
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3.2 Sequence analysis programs 

3.2.1 BLAST programs 

 The BLAST (Basic Local Alignment Search Tool) programs are widely used 

tools for searching protein and DNA databases for sequence similarities [1]. BLAST 

programs compare protein or DNA queries with protein or DNA databases in any 

combinations: blastp compares an amino acid query sequence against protein sequence 

databases; blastn compares a nucleotide query sequence against nucleotide sequence 

databases; blastx compares a nucleotide query sequence translated in all six reading 

frames against protein sequence databases; tblastn compares a protein query sequence 

against nucleotide sequence databases dynamically translated in all six reading frames; 

and tblastx compares the six-frame translations of a nucleotide query sequence against 

the six-frame translations of nucleotide sequence databases.  

 BLAST is a heuristic algorithm that attempts to optimize a specific similarity 

measure.  The BLAST program requires computation time proportional to the product of 

the lengths of the query sequence and database searched.  Since the rate of change in 

database sizes currently exceeds that of processor speeds, computers running BLAST are 

subjected to increasing load. 

 In this study, blastp is used for finding similar sequences in protein databases.  

Like other BLAST programs, blastp is designed to find local regions of similarity.  When 

sequence similarity spans the whole sequence, blastp will also report a global alignment, 

which is the preferred result for identifying closely related homologous proteins.  blastp 

filters out regions of low complexity from database sequences by default.  It is a fast 
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single iteration process and gives a good idea on relationships between the query and 

hit sequences. 

 

3.2.1.2 PSI-BLAST (Position-Specific Iterated BLAST) 

 PSI-BLAST is an iterative program to search databases for proteins with distant 

similarity to a query sequence [12, 13].  The basic strategy of PSI-BLAST is to first 

construct a multiple alignment from the output of a blastp protein similarity search (the 

first iteration).  A position-specific score matrix (PSSM) is generated from this multiple 

alignment, and the databases are searched again using the PSSM as a query.  The process 

may be iterated multiple times as new significant similarities are found.  The subsequent 

searches become more and more flexible (sensitive and less specific) by incorporating 

more substitution possibilities at each amino acid position.  Therefore, database searches 

using PSSMs are much better able to detect weak relationships than are those that use 

simply a sequence as the query.  

 PSI-BLAST draws its power from two sources.  The first is improved estimation 

of the probabilities with which amino acids occur at various positions, leading to a more 

sensitive scoring system.  The second is relatively precise definition of the boundaries of 

important motifs.  Each PSSM constructed has the length precisely equal to that of the 

original query sequence.  The same gap penalties are used throughout the procedure and 

there is no position specific penalty. 
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3.2.1.3 Drawbacks 

 A major potential problem of PSI-BLAST is so called "PSSM corruption."  At the 

end of each iteration, PSI-BLAST constructs a multiple alignment, from which it 

abstracts a PSSM.  If a sequence S that is unrelated to the original query sequence Q is 

included in the multiple alignments, then the resulting PSSM will produce highly 

significant alignments to sequences related to S as well as those related to Q (but not 

related to S).  Such a PSSM is said to have been corrupted, and the search results from 

further iterations are unreliable [13].  With PSI-BLAST, a single corrupted PSSM can 

yield many false positives with very low E-values.  The results of a corrupted search can 

be almost completely meaningless, and this casts considerable doubts on the reliability of 

results even if the majority of searches are uncorrupted.  A corrupted search can also 

consume a great quantity of computing time, exhaust all virtual memory causing a crash, 

or produce a huge volume of incorrect outputs, limiting the applicability of PSI-BLAST 

to large-scale, automatic annotation projects.  

 One may attempt to avoid the PSSM corruption problem by setting the parameter 

h to a sufficiently low value. The parameter h defines the maximum E-value for a similar 

sequence to be included in the multiple alignments.  For most queries, the threshold h = 

0.001 is sufficient to avoid the corruption.  However, even at this or much lower values 

of h, still a small percentage could yield corrupted PSSMs.  In this project, the E-value of 

0.005 was used as the maximum threshold to avoid this problem but not to make the 

search too restrictive. 

 E-values for a given database sequence do not remain constant between PSI-

BLAST search iterations.  This is particularly the case between the first and subsequent 
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search iterations.  In the first search round, matches between query and database 

sequences are scored using a static scoring matrix (e.g., BLOSUM62).  In contrast, 

successive search rounds determine scores by comparing database sequences to the 

PSSM created based on the multiple alignment obtained in the previous round of search.  

As more sequences are added to build PSSMs as the search iterates, the scores for 

matching sequences will change.  In general, the scores tend to increase (and the E-values 

tend to decrease) in the later iterations as the PSSMs become more flexible (match with 

more less similar sequences); the opposite changes are also possible.  Therefore, only the 

scores (or E-values) from the first iteration represent the actual similarities between the 

query sequence and hits.  In this project, therefore, the E-values from the first PSI-

BLAST iteration were used to represent the similarity level between the N. crassa ORFs 

and hit sequences. 

  

3.2.1.4 Usage 

All BLAST programs were run locally with the following command lines:  

 blastall –p blastp –d <db> -i <query> -o <output> -e <expectation value> 

 blastpgp –d <db> -i <query> -j <iterations> -o <output> -e <expectation value>    

–h <threshold value> 

where  

-p specifies program used (blastp, blastn, etc); 

–d denotes the formatted protein database using formatdb;  

-i is the protein query sequence file;  

-o is the output file;  
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–e is the threshold expectation value to keep the hit results (0.005 was used);  

-j is the number of iterations (5 was used); 

 -h is the E-value threshold for inclusion in PSSM (0.005 was used).   

 All hit sequences with the E-values better than the given h (0.005) are used for 

constructing the PSSM.  The substitution matrix used for the first iteration by default is 

BLOSUM62 and gap penalties are 11 and 1 for opening and extending, respectively.  

'blastpgp' command is used to run PSI-BLAST.  The program stops when the database 

search finds no new sequence hit that are better (lower) than the E-value threshold set by 

the –h option even if the number of iterations is still fewer than that set with –j option.   

In this study, PSI-BLAST search was done using individual Neurospora crassa 

protein sequence against the locally formatted NR database downloaded from the NCBI. 

PSI-BLAST search was also carried out against the five fungal genomes (Magnaporthe 

grisea, Aspergillus nidulans, Schizosaccharomyces pombe, Saccharomyces cerevisiae, 

and Fusarium graminearum).  These search results provide us insights on the 

relationships among fungal and other organismal genes.  If there is no hit, it tells us the 

uniqueness of those fungal genes. 

 

3.2.1.5 Description of output   

 The output of BLAST programs displays the similarity score of the hit, 

description of the hit sequence, expectation value (E-value), and alignment statistics 

showing % identities (proportion of the identical amino acid pairs in the alignment), % 

positives (proportion of the amino acid pairs that are biochemically similar in the 

alignment), and the number of gaps, as well as the pairwise alignment between the query 
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and hit sequence.  There are two types of scores: the raw score is given without any 

units, and the normalized score is in bits unit.  A higher score indicates a greater 

similarity, and high scoring hits have smaller E-values.  The E-value is the number of 

alignments that are expected at random given the size of the search space, scoring matrix, 

gap penalties, and similarity score.  The smaller the E-value of the hit in the database 

search, more significant the hit is and less likely it being a random hit.  

 

3.2.2 Transmembrane prediction programs 

3.2.2.1 Introduction 

 Membrane proteins are important in many cellular processes and functions in all 

biological systems.  They are, for example, receptors for neurotransmitters or hormones, 

form ion channels, or serve as the respiratory chain.  Transmembrane proteins have a 

specialized kind of secondary structure architecture, which allows a part of the protein, 

hydrophobic alpha-helical regions, to be embedded in the membrane, and the remaining 

parts, hydrophilic regions, to be outside of the membrane.  The prediction of 

transmembrane regions in proteins is an important aspect of bioinformatics as 

transmembrane proteins form nearly 25% of all proteins [14, 15].  

 Earlier approaches were based on simple hydrophobicity analyses [16-19].  They 

used information only on the amino acids that contribute to the formation of 

transmembrane helices.  The drawback of these methods is that the results depend on 

fixed hydrophobicity thresholds.  Some helices may be missed if they fall just under the 

threshold used.  This is not unusual in proteins with many membrane-spanning helices 

that form a bundle in which non-hydrophobic residues may make contacts between 
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helices.  Because of a large difference in physical environments of the membrane-

spanning segments and the cytoplasmic or extracellular parts of the membrane proteins 

resulting in different amino acid compositions, it is reasonable to expect that more 

accurate prediction methods can be developed if more information on the amino acid 

compositions in both segments (transmembrane and loop regions) is considered.  Amino 

acid composition will reflect the diverse roles of membrane proteins in cells and in 

different environment. 

 Using hidden Markov models (HMMs) is very well suited for predictions of 

transmembrane regions because it can incorporate hydrophobicity, charge bias, helix 

lengths, and grammatical constraints into one model for which algorithms for parameter 

estimation and prediction already exist.  The basic principle is to define a set of states, 

each corresponding to a region or specific site in the proteins being modeled.  By 

defining states for transmembrane helix residues and other states for residues in loops and 

those on either side of the membrane, and by connecting them in a cycle, we can produce 

a model that in architecture closely resembles the biological system.  Each state has an 

associated probability distribution over the 20 amino acids characterizing the variability 

of amino acids in the region (state) it models.  Two of the most widely used 

transmembrane prediction methods: HMMTOP [20] and TMHMM [15, 21], were used in 

this study and they are discussed next. 
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3.2.2.2 HMMTOP (Hidden Markov Model for TOpology Prediction) 

3.2.2.2.1 Method 

 HMMTOP [20] is based on the hypothesis that the differences between amino 

acid distributions in various structural parts are the main driving force in folding 

membrane proteins; i.e., the topology of transmembrane proteins may be determined by 

the simple fact that the amino acid compositions of the various structural parts do show 

maximum differences rather than by enforcing specific compositions in these parts.  The 

sum of divergence values between the distributions of amino acids in the structural parts 

and in the whole protein is used to measure the difference.  The topology of membrane 

proteins can be determined if their amino acid sequences can be segmented to some parts 

(e.g., inside, outside, and within the membrane) in such a way that the product of the 

relative frequencies of the amino acids of these segments along the amino acid sequence 

is maximized. 

 The prediction method based on this model has three steps.  First, the initial 

values of HMM parameters (the initial state and the state transition probabilities) have to 

be set.  The initial parameters can be chosen from random values or from predetermined 

values.  The next step is the optimization of these parameters for the amino acid 

sequence(s) studied.  The third step is to find the best state sequence by the viterbi 

algorithm given the model and parameters.  Elements of the state sequence show the 

localization of each amino acid in the query sequence.  Default values of the parameters 

and the pseudocount array have been obtained from the amino acid sequences of 

transmembrane proteins whose topologies are experimentally well defined. Since 

optimization of the parameters can work for multiple sequences, prediction can be made 
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using multiple sequence information.  One of the advantages of HMM, on the other 

hand, is that related proteins do not have to be aligned before the prediction (the 

sequences need to have a certain level of similarities, however). 

 

3.2.2.2.2 Drawbacks 

 Even though HMMTOP predictions are highly accurate (>80% accuracy) [20], 

there are several weak points in this method.  One of them is that, even using multiple 

sequences, the same predicted topology is not guaranteed for each sequence.  The next 

point is related to the multiple optima problem in the optimization process.  Since the 

baum-welch algorithm cannot find the global optimum of the likelihood function, the 

correct way to handle this problem may be by an exhaustive search for the optimum.  

Because of the huge computational demand for searching, every iteration was started 

from the same point. 

 

3.2.2.2.3 Running the Program 

The program is available from http://www.enzim.hu/hmmtop.  The program can 

interpret multiple sequences in two different ways.  In the mpred mode, prediction will be 

provided for the first sequence interpreting other sequences as homologues to the first 

one.  The homologous sequences provided need not be aligned.  In the spred mode, 

HMMTOP simply evaluates the input sequences one by one, providing independent 

prediction for each of them using only single sequence information.  It supports three 

input sequence formats (FASTA, NBRF/PIR, and SWISSPROT) and offers various 
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output formats. A sample output of HMMTOP is included in Appendix A.  HMMTOP 

program was run locally with the following command line: 

hmmtop –if=infile –of=outfile –lf=logfile –pi=spred –sf=FAS  

 -if=name, --input_file=name [name of the input sequence file. If name is – then 

the program reads from the standard input]. 

 -of=name, --output_file=name [name of the output sequence file. If this option is 

omitted or name is – then the program writes to the standard output]. 

 -sf=format, --sequence_format=format [format of the sequence(s). Format may 

be FAS for fasta format (default), PIR for NBRF/PIR format, or SWP for 

SWISSPROT format]. 

 -pi=mode, --process_inputfile=mode [treats sequences in input file as single or 

homologous sequences. The mode may be spred or mpred]. 

The spred, single prediction mode, was used in this study. The input file contained the 

10,082 N. crassa protein sequences downloaded from the Whitehead Institute.  

 

3.2.2.3 TMHMM 

3.2.2.3.1 Method 

 TMHMM is also based on an HMM approach.  As shown in Figure 3.1, it models 

various regions of a membrane protein: helix caps, middle of helix, regions close to the 

membrane, and globular domains [21]. 
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Figure 3.1 Layout of the hidden Markov model used in TMHMM (taken from 

Krogh et al. [15]). 

 

 Due to the different residue distributions on the different sides (inside or outside) 

of the membrane, seven different states are used: one for the helix core, two for caps on 

either side, one for loops on the cytoplasmic side, one each for short and long loops on 

the non-cytoplasmic side, and one for globular domains in the middle of each loop.  The 

amino acid emission probabilities of all states of the same type are estimated collectively. 

 The transmembrane helix is modeled by two cap regions of five residues each, 

surrounding a core region of variable length (5-25 residues).  This allows for helices to be 

15-35 residues long.  The HMM parameters including the probabilities of the 20 amino 

acid residues in each state and the probabilities determining the length distribution of 

transmembrane helices have been estimated from a set of 160 proteins in which the 

locations of the transmembrane helices are known.  

 Prediction of the transmembrane helices is done by finding the most probable 

topology given the HMM.  This gives a set of exact helix boundaries.  However, there 
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could be many equally probable ways to place the helix boundaries, and some regions 

show predicted transmembrane helices with fairly low probabilities. In such cases, it 

would be useful to compare the three probabilities for a given residue: if being in a 

transmembrane helix, in the cytoplasmic side, or in the extracellular side. 

 

3.2.2.3.2 Drawbacks 

 In general, there are several types of mis-predictions that can occur when 

predicting the topology of a membrane protein.  The simplest errors are over- and under-

predictions: i.e., predicting a transmembrane region where none should be actually 

present or missing a true transmembrane region.  Another type of errors is that two 

adjoining transmembrane regions are joined together, so that they are predicted as a 

single long transmembrange region.  Similarly, a long transmembrane region can be 

falsely predicted as being two short regions.  TMHMM predicts transmembrane helices 

from single sequences with a high level of accuracy (>80%) [15]. The number of falsely 

merged helices and the number of falsely split helices are very low due to the natural 

modeling of helix lengths and the grammar used in the HMM.  The main type of errors 

made by TMHMM is to predict signal peptides as transmembrane helices.  And one of 

the most common mistakes by TMHMM is to reverse the direction of proteins when there 

is only one transmembrane segment.  

 

3.2.2.3.4 Running the program 

The server is available at http://www.cbs.dtu.dk/services/TMHMM/  with their default 

parameters. 
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 Input: The program takes proteins in fasta format.  It recognizes the 20 amino 

acids, and the characters B, Z, and X are treated equally as unknown.  Any other 

character is changed to X. 

 Output: Sequence identifier, length of the protein sequence, and the expected 

number of amino acids in transmembrane helices.  See Appendix B for an 

example output. 

The 10,082 N. crassa protein sequences downloaded from the Whitehead Institute were 

used as an input in a single fasta file.  

 

3.2.2.4 Kyte-Doolittle hydropathy plot 

 Kyte-Doolittle hydropathy plot [16] gives information on the possible structure of 

a protein. A hydropathy plot can indicate potential transmembrane or surface regions in 

proteins.  Hydrophobic regions, i.e., transmembrane candidate regions, achieve positive 

values (or negative depending on the set of scores used).  Each amino acid is given a 

hydrophobicity score between -4.5 and 4.5.  The score of 4.5 is the most hydrophobic and 

the score of -4.5 is the most hydrophilic (or vise versa).  A “window size” is the number 

of amino acids whose hydrophobicity scores will be averaged and assigned to the middle 

position in the window.  Setting window size to 5-7 is suggested to be a good value for 

finding putative surface-exposed regions, whereas a window size of 19-21 yields a plot in 

which transmembrane domains stand out sharply, with values of at most 1.6 at their 

centers.  The method starts with the first window of amino acids and calculates the 

average of all the hydrophobicity scores in that window. Then it moves down one amino 

acid (or a certain number of amino acids) and calculates the average of all the 
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hydrophobicity scores in the second window.  This process continues to the end of the 

protein, computing the average score for each window and assigning it to the amino acid 

at the middle position in the window.  The average scores are then plotted on a graph.  

The y axis represents the hydrophobicity scores and the x axis represents the amino acid 

position in the protein sequence.  

 In this study, I used a sliding window size of 16 amino acids (aa).  The window 

size was selected after testing on different values. The window is shifted every 10 aa.  

The region is predicted to be transmembrane when the average hydrophobicity values in 

successive windows goes from positive value to below -0.05 and back to a higher value.  

The example plot is found in Appendix C. 

 

3.2.3 Other sequence analysis 

3.2.3.1 Cell wall protein prediction 

 The fungal cell wall is a dynamic structure. Its composition, properties, and form 

constantly change during the cell cycle and depending on growth conditions. Filamentous 

fungi are always in intimate contact with their surroundings. Their cell wall proteins are 

known to have amphipathic transmembrane regions as well as regions of high 

serine/threonine (Ser/Thr) contents. Initial analyses of the amino acid content in the 

known six N. crassa cell wall protein sequences have shown high concentration of 

serine/threonine, around 50%, compared to the genomic average of 25%. Based on this 

observation, a window size of 100 amino acids was used to search protein regions with 

more than 20% of the Ser/Thr content from each of N. crassa proteins. 
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 Combination of high Ser/Thr content and having a transmembrane region is 

required to predict cell wall proteins. Appendix C shows the plots of Ser/Thr contents and 

hydrophobicities along the amino acid sequence of a known N. crassa cell wall protein 

(NCU00039.1).   

 

3.2.3.2 Base composition analysis 

 Base composition analysis was done for the entire predicted ORF sets of 

Neurospora crassa, Schizosaccharomyces pombe, and Saccharomyces cerevisiae 

genomes. The analysis was done both for the coding exons and introns. The frequencies 

of four single nucleotides (A, T, G, and C), 16 dinucleotides (AA, AT, AG, AC, and so 

on), and 64 trinucleotides were computed. The same sets of analyses were done also for 

the experimentally confirmed set of cDNAs, as well as intron sequences (described in 

Chapter 5).  These analyses should reveal any species-specific bias involved in these 

genomic properties. It will provide an idea how these genomic information should be 

incorporated in gene prediction methods. 

 
 
3.3 Gene prediction programs 

3.3.1 Introduction 

 A major goal of genome projects is to identify all genes in a given organism.  

Consequently, the development of automated gene-finding procedures has become one of 

the most active areas of research in bioinformatics.  Protein-coding DNA sequences 

exhibit characteristics that distinguish them from non-coding sequences.  For prokaryotic 

organisms, the task of gene identification is relatively easy as prokaryotic genomes are 
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rather small and genes are not interrupted by introns.  Here, all open reading frames 

(ORFs) exceeding some threshold length are likely to code proteins.  The gene-finding 

problem is much more complicated for eukaryotic organisms where the density of genes 

in the genome is about two orders of magnitude lower than in bacterial genomes and 

genes typically consist of multiple exons separated by introns of varying length.  The 

commonly used approach for gene prediction is to train computer programs to recognize 

sequences that are characteristic of known exons in genomic DNA sequences.  The 

patterns used to predict genes include intron-exon boundaries and upstream promoter 

sequences.  However, in eukaryotes, these signals are poorly defined, and therefore 

cannot be searched by a simple pattern-matching technique as used with prokaryotes. 

 During the past few years, various prediction methods have been developed to 

identify genes in eukaryotic genome sequences [22, 23].  Recent studies show, however, 

that the reliability of these methods is limited for large genomic sequences as they cannot 

locate all possible exons encoded in the sequence [24].  Moreover, many gene-prediction 

programs have originally been tested on genomic sequences of only a few kilo bases (kb) 

in length where each sequence contained only a single gene.  The performance of 

standard gene-prediction methods drops significantly when tested under more realistic 

conditions usually containing multiple genes [25].  

 Practically all existing gene-prediction programs rely on information derived from 

known genes.  Major differences between existing methods are in how they assess if a 

stretch of genomic DNA looks as known genes.  Two approaches are used. Ab-initio or 

intrinsic methods use content statistics such as ORF length or codon usage together with 

sequence signals like splice junctions to distinguish coding from non-coding regions.  
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GLIMMER [26, 27], GRAIL [28], GENEID [29], GenScan [30], and GeneMark [31] 

are among the most popular ab-initio programs.  By contrast, extrinsic methods work by 

comparing genomic sequence to known ESTs or proteins in databases and check if a 

piece of the genomic sequence is similar to any known genes or proteins.  This idea has 

been implemented in GENEWISE [32] and PROCRUSTES [33].  

 Neither ab-initio nor extrinsic methods can elucidate perfectly the complex and 

variable genomic structure of higher eukaryotic organisms.  Their genes contain a large 

number of small exons separated by long intervening sequences (introns).  Furthermore, 

in the actual genomes, some non-coding sequences could exhibit features of typical 

coding sequences (e.g., pseudogenes) and vice versa.  Moreover, a large fraction of 

higher eukaryotic coding exons are very short, which cannot be effectively detected by 

commonly used gene-prediction programs.  The following sections describe three gene-

prediction methods: GLIMMER, GLIMMERM, and GenScan, used in this study for 

detecting mainly small exons in the Neurospora crassa genome.  They were chosen 

among several others based on their possible ability to detect small coding regions, 

sensitivity and specificity values when used on other genomes. 

 

3.3.2 GLIMMER (Gene Locator and Interpolated Markov Modeler) 

GLIMMER is a computational gene finder that was initially developed to predict 

genes in prokaryotic genomes [27, 28].  Gene finders for prokaryotes have an advantage 

in that genomes tend to be gene-rich, containing 90% coding sequences.  One major 

problem is to correctly identify the genes when two or more open reading frames (ORFs) 

overlap.  GLIMMER uses a technique called interpolated Markov model (IMM), a 
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generalization of Markov chain methods, to identify coding regions in microbial 

sequences.  GLIMMER 1.0 has been used as the gene finder for some bacterial genomes 

(Borrelia burgdorferi, Treponema pallidum, Chlamydia trachomatis, and Thermotoga 

maritima) [27, 28].  GLIMMER 2.0 has several technical improvements to the 

GLIMMER 1.0 algorithm and works better in resolving overlapping ORFs.  

GLIMMER uses an approach based on frequency of occurrence of nucleotides in 

a DNA to determine the relative weights of oligomers that have different lengths from 1 

to 9 bp.  First IMMs are created for the six open reading frames (three frames for each of 

the two strands: forward and reverse), and then used to score the entire ORFs.  When 

there is an overlap between two high scoring ORFs, the overlapped regions are scored 

separately to determine the more likely gene. 

 

3.3.2.1 Interpolated Markov models (IMMs) 

 A Markov chain contains a sequence of random variables Xi (i is the position in 

the sequence), where the probability distribution for each variable depends only on the 

preceding k variables Xi-1, … , Xi-k for some constant k.  In the case of DNA sequences, 

the random variables Xi takes the value from the set of four nucleotide bases (a, c, g, and 

t).  Depending on the order of the Markov chain used, the constant k takes values from 0 

to 8.  For example, a fixed first-order Markov chain is specified completely by a matrix 

of 16 conditional probabilities: p(a|a), p(a|c), p(a|g), … , p(t|t), where each of the terms 

represents the probability of the current base given the previous base.  A second-order 

Markov chain predicts a base by looking at the two previous bases.  In general, for a kth-

order Markov model, the number of probabilities we need to look into is 4k+1 for each 
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reading frame.  In a 0th-order model, the matrix contains only the individual 

probabilities of the four nucleotides (a, c, g, and t).  In the case of a first order, the 16 

dinucleotide (aa, ac, ag, at, …, tg, tt) probabilities are calculated by looking at the 

previous base.  A second-order model gives the probability of 64 trinucleotides (aaa, aag, 

aac, aat,…, ttg, ttt).  In principle, using longer oligomers is always preferable to using 

shorter ones, but only if sufficient data is available to produce probability estimates.  

Currently most of the gene finders use a 5th-order fixed Markov chains (it uses hexamer 

nucleotide or di-codon frequencies) as they have proven to be effective for gene 

predictions [31, 34]. 

 IMMs are generalization of fixed order Markov chains.  The main difference 

between IMMs and fixed Markov models is that IMMs use varying number of bases for 

each prediction rather than making decision in advance regarding the number of bases to 

consider.  This allows IMMs to be sensitive depending on the frequencies of particular 

oligomers in a genome.  For example, if some 5-mers (oligomers having five bases) occur 

too infrequently, their probabilities cannot be estimated reliably, and they will not be 

used in the model.  On the other hand, if some 8-mers occur sufficiently frequently, IMM 

use this longer context to make better predictions.  Thus it has all the additional 

information for prediction.  

From the training data sets, GLIMMER computes the probability for each 

nucleotide base (a, c, g, or t) following all k-mers (0 ≤ k ≤ 8).  For each k-mer, weights 

are computed for use in different models.  These weights and Markov models are 

interpolated to produce a score for each base in any potential coding region.  The logs of 
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scores are summed to score each coding region.  The probability that the model M 

generates the sequence S, P(S|M), is computed as 

P(S|M) = ∑n
x=1 IMM8 (Sx) 

Where Sx is the oligomer ending at the position x, and n is the length of the sequence. 

IMM8 (Sx) is the 8th-order interpolated Markov model score computed as 

IMMk(Sx) = λk(Sx - 1) * Pk(Sx) + [1- λk(Sx - 1)] * IMMk -1(Sx) 

where λk(Sx - 1) is the numeric weight associated with the k-mer ending at the position x-1 

in the sequence S, and Pk(Sx) is the estimate obtained from the training data of the 

probability of the base located at x in the kth-order model. 

Pk(Sx) = P(sx|Sx,i) =  f(Sx,i)/(∑ bε{a,c,g,t} f(Sx,i, b)) 

where f(S) denotes the number of occurrences of the string S = s1s2…sn. GLIMMER uses 

two criteria to determine λk (Sx). The first criterion is simply the frequency of occurrence.  

The current default threshold value is 400.  The default threshold value gives 95% 

confidence that the sample probabilities are within 5% of the true probabilities from 

which the sample was taken.  When there are insufficient sample occurrences of a context 

string (oligomer), additional criteria are employed to assign a λ value.  For a given 

context string Sx,i of length i, observed frequencies of the base f(Sx,i,a), f(Sx,i,c), f(Sx,i,g), 

and f(Sx,i,t) are compared with previously calculated IMM probabilities using the next 

shorter context, IMMi-1(Sx,i – 1, a), IMMi-1(Sx,i – 1, c), IMMi-1(Sx,i – 1, g), and IMMi-1(Sx,i – 1, 

t).  Using a χ2 test the two values are compared.  If the values differ significantly, then 

the observed values are used.  If they are consistent with IMM values, a lower value is 

given as they offer less predictive value.  The value of λk(Sx) that we associate with Pk(Sx) 

can be regarded as a measure of our confidence in estimating the true probability.  The 
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number of parameters we need to estimate grows exponentially with the level of the 

order and higher the order, the parameter estimates can be less reliable. 

 

3.3.2.2 The GLIMMER system 

 The GLIMMER system consists of two programs: build-imm and glimmer (or 

glimmer2).  The program build-imm takes an input set of sequences.  The set can be 

complete genes or parital ORFs.  It builds and outputs the interpolated Markov model.  

The second program glimmer uses this IMM to identify genes in a genomic sequence.  

GLIMMER does not use sliding windows to score the coding regions.  Instead it 

identifies all ORFs that are longer than the threshold value and scores them in six 

possible reading frames. The ORF is assumed to have only one stop codon after the start 

codon in the sequence.  It selects the frame that scores the highest for further examination 

of overlaps.  If there is an overlap between reading frames, it selects the overlapped 

regions and scores them separately. Overlapping ORFs are resolved based on the length 

and a separate score computed for their overlapped regions.  Suppose that A and B are 

two ORFs that overlap.  If the overlap scores higher in A’s reading frame and A is longer 

than B, we reject B.  If the overlap scores higher in B’s reading frame and B is longer 

than A, we reject A.  Otherwise, both A and B are marked as “suspect”.  

 GLIMMER 2.0 has resolved some of the prediction problems of GLIMMER 1.0.  

GLIMMER 1.0 occasionally discarded a gene due to the placement of its start codon in 

the 5’ direction resulting in an overlap with another gene.  GLIMMER 2.0 resolves 

overlapping problems by incorporating extra rules.  The scoring is similar to that of 

GLIMMER 1.0 for potential overlapping genes, but the system attempts to move the 
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locations of the start codons much more aggressively.  In the case of ORFs A and B 

overlap, there are four different orientations to be considered.  The process of evaluating 

overlaps is performed in an iterative fashion to prevent unnecessary rejection of genes.  

The current version also helps to find genes that were missed earlier due to the high 

probability threshold score. 

 GLIMMER is the primary microbial gene finder at The Institute of Genomic 

Research (TIGR), and has been used to annotate the complete genomes of Borrelia 

burgdorferi, Treponema pallidum, Thermotoga maritima, Deinococcus radiodurans, 

Mycobacterium tuberculosis, and non-TIGR projects including Chlamydia trachomatis 

and Chlamydophila pneumoniae.  The accuracy rates of gene prediction for bacterial and 

archaebacterial genomes (including Escherichia coli, Haemophilus influenzae, 

Helicobacter pylori, Bacillus subtilis, Mycoplasma genitalium) were close to 98% [26].  

It has not been used for eukaryotic genomes. 

Even though GLIMMER is developed for prokaryotic genomes, it could be still 

useful for finding eukaryotic genes.  Many small eukaryotes, for example, have relatively 

high gene density and contain short genes without interrupted by introns, and these genes 

cannot be detected by commonly used prediction programs. 

The GLIMMER system including the source codes was downloaded from The 

Institute of Genomic Research website (http://www.tigr.org). The example output of the 

program is listed in Appendix D. 
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3.3.2.3 The GLIMMERM system 

The GLIMMERM algorithm uses the same IMM scoring method used in 

GLIMMER 2.0 and was developed specifically for eukaryotes having a gene density of 

less than 20%.  

The splice site predictor algorithm in GLIMMERM [8] captures dependencies 

among neighboring bases in a small window around each splice junction (16 and 29 bp 

around the 5′-donor and 3′-acceptor sites, respectively) [35].  The algorithm takes 

advantage of the fact that the coding and non-coding sequences switch at the splice 

junction and detects this switch with two second-order Markov chains, one models coding 

sequence and another non-coding sequence. The length of each of these coding or non-

coding context windows is currently fixed at 80 bp.  

Potential coding regions are evaluated by a scoring function based on decision 

trees that estimate the probability that a DNA subsequence is coding. Subsequences are 

evaluated according to their putative type: intron, initial exon, internal exon, final exon, 

and single-exon gene. Each such subsequence is run through ten different decision trees 

built with the OC1 induction system [10] that can take multiple numeric feature values. 

The probabilities obtained with the decision trees are averaged to produce a smoothed 

estimate of the probability that the given subsequence is of a certain type. A putative gene 

model is then accepted only if the IMM score for the coding sequence in the correct 

reading frame exceeds a fixed threshold. 

The main assumptions of this program are:  

• The coding region of every gene begins with a start codon ATG, 

• The gene has no in-frame stop codons except the very last codon, and 
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• Each exon is in a consistent reading frame with the previous exon. 

 These constraints significantly enhance the efficiency of computing the optimal 

gene models by restricting the search space of the dynamic programming algorithm.  The 

dynamic programming algorithm processes sequences from left to right searching for 

stop codons.  At each stop codon, it searches back in the 5′ direction (right to left) finding 

all possible genes using this stop codon, and chooses the highest scoring gene.  The only 

positions that are considered as possible intron donor and acceptor sites are those that 

score above the threshold determined by the Markov chains.  The algorithm is run 

separately on direct and complementary strands of the input.  GLIMMERM rejects 

overlapping genes by going through the list of putative genes.  Overlap occurs when two 

models share a common stop codon and have different exon locations.  If the genes 

overlap by less than 30 bp (the default value), then the overlap is ignored and both are 

considered possible genes.  If the overlap is more than 30 bp, then they are rescored using 

the IMM and a gene with the best score is retained. 

 GLIMMERM was used for a malaria parasite (Plasmodium falciparum) genome 

and showed the rates of sensitivity and specificity for nucleotide level recognition above 

94% and 97%, respectively [37].  GLIMMERM's accuracy of 93% on a plant genome, 

Arabidopsis thaliana [37], was comparable to the accuracy of 95% and 94% for 

GeneMark.hmm and GenScan, respectively [37].   

 

3.3.3 GenScan 

GenScan is a general-purpose gene identification program used to analyze 

genomic DNA sequences from a variety of organisms including human, other vertebrates, 



 39
invertebrates, and plants [30, 38].  For each genomic sequence, the program determines 

the most likely gene structure under a probabilistic model of the gene structural and 

compositional properties of the genomic DNA for the given organism.  

The probabilistic model used by GenScan accounts for many of the essential gene 

structural properties of genomic sequences: e.g., typical gene density, typical number of 

exons per gene, distribution of exon sizes for different types of exons; and also many of 

the important compositional properties of genes: e.g., the reading frame-specific hexamer 

composition of coding regions versus the reading frame-independent hexamer 

composition of introns and intergenic regions, and the position-specific composition of 

the translation initiation, termination signals, TATA box, cap site, and poly-adenylation 

signals.  Importantly, novel models of the donor and acceptor splice sites are used, which 

capture potentially important dependencies between positions in these signals.  For 

human and other vertebrate sequences, separate sets of model parameters are used, which 

account for the many differences in gene density and structure observed in genomic 

regions that exhibit distinct nucleotide composition (G+C%).  GenScan has an additional 

feature that draws a representation of the resultant prediction showing all putative exons 

in their respective positions on both strands and whether they are leading, internal, or 

terminal, and a simplified scoring scheme.  

 GenScan uses a homogeneous 5th-order Markov model of non-coding regions and 

three periodic 5th-order Markov models of coding regions.  The parameters are typically 

estimated using the maximum likelihood method, that is, by using the observed 

conditional frequencies obtained from an appropriate training set of known genes to 

estimate the corresponding conditional probabilities.  Nucleotides are generated 
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according to the probabilistic rules derived from an underlying hidden Markov process.  

It is parameterized for G+C content.  The training set containing exons and introns are 

divided into four categories depending on the G+C content of the sequence.  The 

categories are: I (< 43% G+C), II (43-51% G+C), III (51-57% G+C), and IV (> 57% 

G+C).  For each of these categories, separate initial state probabilities are computed by 

estimating the relative frequencies of various functional units in these categories.  

GenScan uses double-stranded models to allow for occurrences of multiple genes on 

either or both DNA strands unlike other programs, which analyze one strand at a time 

assuming the input sequence contains a single complete gene.  The essential idea is that a 

precise probabilistic model a gene/genomic sequence looks like is specified in advance, 

and then, given a sequence, one determines which of the vast number of possible gene 

structures (involving any valid combination of states/lengths) has the highest likelihood 

given the sequence.  It cannot handle overlapping transcription units and does not address 

alternative splicing. 

GenScan program was designed primarily to predict genes in human/vertebrate 

genomic sequences; its accuracy level may be lower for other organisms.  However, the 

vertebrate version of the program performed fairly well on an invertebrate (Drosophila 

melanogaster) sequences with accuracy per exon value of 68%.  The maize and 

Arabidopsis versions (both are plants) also performed fairly well on their respective 

organisms with per exon accuracy of 78% and 67%, respectively.  It differs from the 

majority of existing gene finding algorithms in that it allows partial genes as well as 

complete genes and the occurrence of multiple genes in a single sequence, on either or 
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both DNA strands.  For prokaryotic or yeast sequences, the programs GLIMMER 

and/or GeneMark [34] are better in comparison to GenScan [30, 38]. 

 

 

3.3.4 Fungal gene predictions by GLIMMER, GLIMMERM, and GenScan 

 The gene prediction methods were chosen based on their ability to identify small 

genes.  GLIMMER has been widely used for prokaryotes and is highly accurate for their 

gene detection. The program allows building models on any datasets.  GLIMMERM, a 

modified version of GLIMMER, was used as it was developed mainly for eukaryotes 

with small genome sizes and can identify short genes from high density genomes. 

GenScan was chosen for a comparison purpose since it is a widely used prediction 

program. 

• GLIMMER was trained using cDNA datasets of N. crassa, S. cerevisiae, and S. 

pombe obtained from NCBI as described in the section 3.1. The trained model was then 

used to extract putative genes from the N. crassa genomic sequences. Program get-

putative, extract, build-icm, and glimmer2 are all part of the GLIMMER package. 

USAGE 

 build-icm < tmp.train > tmp.model 

It builds the model using the training datasets in fasta format (tmp.train) and stores it 

in tmp.model 

 glimmer2 Sequence tmp.model –g n  | get-putative > g2.coord 

Using the trained model (tmp.model) and genomic sequence (Sequence), glimmer2 

predicts all possible gene locations. The most likely gene coordinates are extracted by 
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the program get-putative included in the GLIMMER package and stored in 

g2.coord. The –g option denotes the minimum gene length. 30 bp is used in this 

study.  

 extract Sequence g2.coord > Nucleotide_Output 

Using the stored coordinates (g2.coord), the ORFs are extracted from the genomic 

sequence (Sequence).  

 

• GLIMMERM was run using pre-trained models of one filamentous fungus 

species (Aspergillus fumigatus) and two plant species (Arabidopsis thaliana and Oryza 

sativa) available from the GLIMMERM software package.  

USAGE 

 glimmerm Sequence -d directory of trained model > Output 

 

• GenScan was run using pre-trained models of human and two plant species (A. 

thaliana and maize) available from the downloaded GenScan software package.  

USAGE 

 genscan Parameter_file_of_organism Sequence -cds  > Output 

The program takes in a parameter file of the trained model and a genomic sequence 

file (Sequence), and outputs the predicted ORFs. The –cds option prints the predicted 

nucleotide sequences.   
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Chapter 4 Database Implementation 

 The database was developed in order to compile information extracted from 

fungal genomes and other genomic information used in gene prediction methods.  The 

database stores entry files of fungal sequences, results of various sequence analyses (e.g., 

base composition), results from similarity search against various databases, and the 

results using various gene prediction programs.  This database system was developed to 

facilitate the future development of fungal specific gene prediction methods.  It will help 

us understand the fungal genome specific properties. 

 The database consists of three parts: i) nucleotide sequence information of the 

three fungal genomes (N. crassa, S. cerevisiae, and S. pombe), ii) N. crassa protein 

sequence information including similarity search results against the entire NCBI Non-

Redundant database, and iii) N. crassa protein similarity search results against five fungal 

genome databases. The overview of the database architecture is presented in Figure 4.1.  

MySQL was used to construct the database and PHP was used to build the web interface.  

The detailed descriptions for each table and the web interface are given next. 
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Figure 4.1 Overview of the database architecture. 

 

4.1 SQL tables 

 The database contains eight tables. The query sequences are 10,082 of the N. 

crassa ORFs annotated by the Whitehead genome project. 

1. Sequence contains protein sequence information on the entire N. crassa ORFs. It has 

three fields: sequence ID, description of the sequence, and protein sequence.  

2. Nucl_Sequence contains nucleotide sequence information on the N. crassa ORFs. It 

has three fields: sequence ID, description of the sequence, and nucleotide sequence.  

3. PsiHits contains information on the PSI-BLAST protein similarity search results 

against the NCBI NR database.  The fields include: sequence ID, PSI-BLAST output 

file, sequence length (in amino acids), NCBI accession number of the top hit, E-value 

of the top hit, description of the top hit sequence, length of the hit sequence, number 

of identical amino acids aligned between the N. crassa query and top hit sequences, 
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number of (biochemically) similar amino acids aligned between the N. crassa 

query and top hit sequences, and length of the N. crassa query that aligned with the 

top hit. The information can be accessed using the sequence IDs (accession numbers 

of N. crassa ORFs), which is the primary key. 

4. AllHits contains information on the entire hit list in the PSI-BLAST protein similarity 

search results. The fields include: sequence ID, amino acid length of the N. crassa 

query sequence, entire hits in the PSI-BLAST similarity search, their E-values, 

descriptions of the hit sequences, amino acid lengths of the hit sequences, number of 

identical amino acids aligned between the N. crassa query and each hit sequences, 

number of similar amino acids aligned between the N. crassa query and each hit 

sequences, and length of the N. crassa query that aligned with each hit.  The 

information can be accessed using sequence IDs (the accession numbers of N. crassa 

ORFs), which is the primary key.  Currently the database supports the first 100 hits 

with significant E-values (< 0.005).  

5. Property contains information on: the N. crassa ORF accession number, sequence 

length in amino acids, average Serine/Threonine %, maximum Serine/Threonine % in 

a window of 100 amino acids, and numbers of transmembrane regions predicted by 

Kyte-Doolittle hydropathy plot, HMMTOP, and TMHMM. 

 The program for calculating the Kyte-Doolittle hydropathy values was written 

locally using the window size of 16 amino acids and the average cut-off hydropathy 

value of -0.05.  The information can be accessed using the N. crassa ORF accession 

number, which is the primary key. 
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6. Phylogeny contains information on: the N. crassa ORF accession number, 

accession number of the first hits of PSI-BLAST search that belong to animal, plant, 

and fungal kingdoms, their locations in the PSI-BLAST hit list, and whether there is 

any hits to each of the three kingdoms.  The information can be accessed using the N. 

crassa ORF accession number, which is the primary key. 

  Identifying the kingdom classification of PSI-BLAST hit sequences is done as 

follows. The accession numbers of the animal, plant, and fungal kingdoms were 

downloaded from the NCBI web site (http://www.ncbi.nlm.nih.gov). The accession 

numbers of PSI-BLAST hits were searched against this list of each kingdom. The 

search continues until there is a hit with any of the three kingdom lists. When there is 

no hit within the three kingdom lists, it can either mean that there was really no hit to 

organisms in the three kingdoms (the sequence could belong to prokaryotes, for 

example) or the taxonomy list does not contain the particular accession number.  In 

either case, the kingdom identification field was kept empty. 

7. FungiDatabase contains information on the PSI-BLAST protein similarity search 

results against the five fungal databases: Aspergillus nidulans, Fusarium 

graminearum, Magnaporthe grisea, Saccharomyces cerevisiae, and 

Schizosaccharomyces pombe.  The fields include: the N. crassa ORF accession 

number, sequence length in amino acids, and whether there is any hit to each of the 

five fungal databases.  The count of significant hits within the 0.005 E-value 

thresholds to each of the five fungal databases is also included.  The information can 

be accessed using the N. crassa ORF accession number, which is the primary key. 
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8. Gene Predictions contains the ORFs predicted by prediction methods used against 

the N. crassa genomic sequences (described in chapter 5). Currently this table is not 

active and will be updated later. 

 
4.2 Interface and queries 

 The interface provides various ways to access fungal genome information 

extracted by various sequence analyses.  The stored information can be accessed using 

two primary web pages.  

1. PSI-BLAST Result Query page serves as the cover page of the database.  It is 

shown in Figure 4.2.  It contains a brief description and the links to the other query 

pages.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 4.2 Screen image of the database cover page 
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The cover page has two query sections: Browse Similarity Search Results and 

Individual Search Result. The Browse Similarity Search section (Figure 4.3) presents the 

PSI-BLAST search results for the entire N. crassa ORFs in several groups. Figure 4.4 

shows the output for one of the groups, “No Hits to NR and Fungal Database”. 

 

 

 

 

 

 

Figure 4.3 Browse Similarity Search Result section. The PSI-BLAST results are 

grouped based on whether there is any hit against the NCBI NR database or any 

one of the five fungal databases, and also whether predicted as transmembrane 

proteins.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4 PSI-BLAST results presented when the option “No Hits to NR and 

Fungal Database” is chosen. 
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The Individual Search Result section (Figure 4.5) allows users to examine the PSI-

BLAST similarity search results for each N. crassa ORF in detail.  

 

 

 

 

 

 

 
Figure 4.5 Individual Search Result section. The user can choose to browse the entire 

N. crassa search results in a spreadsheet format by giving "*" instead of an 

accession number to display customized information on an individual N. crassa 

ORF using its accession number.  

 

 

 

 

 

 

 

 

 

 

Figure 4.6 PSI-BLAST result page for an individual N. crassa ORF (NCU00005; all 

options in the Figure 4.5 were chosen).  The protein and DNA sequences for this 

ORF can be obtained from the link to the accession number. 
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The link to the top hit accession number (NP_499588.1 in Figure 4.6) opens the table 

containing upto 100 hits of the PSI-BLAST search as shown in Figure 4.7. 

 

 

 

 

 

 

 

 

Figure 4.7 Display of all hits of PSI-BLAST search for an individual N. crassa ORF, 

NCU00005.1. 

 
Fungal Database Query page provides some tools to view the results of PSI-BLAST 

similarity search for N. crassa ORFs against the five fungal genomic databases.  It has 

three sections: Individual Sequence Hits, Display Entire Hits, and General Queries on the 

Entire Hits (Figure 4.8). 

 

 

 

 

 

 

 

 

 

Figure 4.8 Fungal Database Query page. 
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 The Individual Sequence Hits section has the options to choose from the hits to 

the five fungal databases. The default option is to choose all of the five fungal databases. 

Figure 4.9 shows the result page for NCU00050.   Each "Yes" in the table is linked to the 

list of PSI-BLAST hits for the given fungal genomic database.  

 

 

 

 
Figure 4.9 Fungal database hits page for an individual N. crassa ORF, NCU00050. 

 
  The Display Entire Hits section (Figure 4.7) has options to display all of the five 

fungal genome search results with a customized sorting method based on increasing or 

decreasing N. crassa sequence lengths, increasing or decreasing N. crassa sequence IDs, 

or increasing or decreasing total number of hits (Figure 4.10).  

 

 

 

 

 

 

 

 

Figure 4.10 Fungal database hits sorted by decreasing N. crassa sequence length. 

Only one sorting option can be chosen.  
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The General Queries on Entire Hits section provides more options to customize the 

display of the PSI-BLAST search results of the entire N. crassa ORFs against the five 

fungal databases (Figure 4.11). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.11 List of N. crassa ORFs that have hits to selected fungal genomes.  All 

fungi except Magnaporthe grisea were chosen from the “Choose the Fungal 

Databases” options. 

 
It has an option to filter the list based on the N. crassa ORF lengths.  The third subsection 

of the General Query section allows users to display results based on: No Hit by 5 fungi, 

Hit by at least 1 fungi and Hit by all 5 fungi.  These results are by default sorted 

according to the N. crassa ORF accession numbers.  An option is provided to sort them 

based on the increasing length.  There is also a button to display the summary statistics.  

The statistics page view is shown in Figure 4.12.  
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Figure 4.12 Summary Statistics of N. crassa ORF hits against the five fungal 

databases.  The summary statistics table shows the number of fungal genomes N. 

crassa ORFs have any hit against. 
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The interfaces to view other sequence information (e.g., base frequencies) and gene 

predictions are not yet implemented. 

The database is currently accessible at the following URL:  

http://bioservdb.unl.edu/~skanth/psiblast.php 
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Chapter 5 Results and Discussion 

5.1 Fungal genome analysis at the protein level 

 The complete sets of predicted proteins from three filamentous fungal genomes 

(Neurospora crassa, Aspergillus nidulans, and Fusarium graminearum) were analyzed. 

The protein sequence data were downloaded from the Whitehead Institute web site. They 

included 10,082 proteins for N. crassa, 9,541 for A. nudulans, and 11,640 for F. 

graminearum. In order to identify any possible functions for the predicted proteins, a 

series of PSI-BLAST similarity search was conducted on the NCBI Non-Redundant (NR) 

protein database using each of the predicted proteins from A. nidulans, F. graminearum, 

and N. crassa as a query. The database hits were filtered using the E-value cut off of 

0.005. Each of the top hits was further identified if it belongs to the animal, plant, or 

fungal kingdom. PSI-BLAST similarity search was also done against each of the five 

fungal genome databases from N. crassa, A. nidulans, M. grisea, F. graminearum, S. 

cerevisiae, and S. pombe to find any similar sequences from other fungal genomes.  

Whereas any significant similarity will give us a clue for the possible protein functions, if 

there is no hit to the database sequence, it implies uniqueness of these proteins (genes) to 

the fungal species.  

 In order to identify possible transmembrane proteins, transmembrane region 

predictions were done by HMMTOP, TMHMM, and Kyte-Doolittle methods. The 

numbers of identified transmembrane regions were often different among the three 

prediction methods.  Although the numbers of identified regions were not the same 

between HMMTOP and TMHMM, the total number of proteins predicted to have one or 
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more transmembrane regions were very close. We decided to use prediction based on 

HMMTOP to classify the proteins as transmembrane (TM) and non-transmembrane 

(NonTM) proteins.  

 As described in Chapter 3, cell wall proteins are found to have high Ser/Thr 

contents.  In this project, any protein regions longer than 100 aa that have Ser/Thr content 

higher than 20% were identified, and such proteins were considered as the candidates for 

cell wall proteins. 

 Table 5.1 summarizes the results of the PSI-BLAST similarity search and other 

protein sequence analyses.  Around 10% of A. nidulans and F. graminearum sequences, 

and about 25% of N. crassa sequences were unique to the species (species specific); i.e., 

there was no hit to any other organisms including other fungal species. Further analysis 

showed that of the N. crassa specific 2,211 proteins, 937 were shorter than 100 aa. Such 

numbers were much smaller for F. graminearum and A. nidulans. In the case of the 1,182 

F. graminearum specific proteins, only 80 were shorter than 100 aa, whereas only 77 

were shorter among the 826 A. nidulans specific proteins. These species-specific 

sequences will become candidates for further experimental and in depth analysis. All 

three genomes had less than 2% of hits only by animals and/or plants but not by any 

fungus species. These genes are also of our future research interests. Why these genes do 

not have any homologue in other fungi but in animals/plants, and where and how they 

come from, are of great interest.  
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Table 5.1 Summary of similarity search against the NR database and fungal 

genomes  

Genome 
(Total no of proteins) 

Category No of 
NonTM 
proteins1 

No of 
TM 

proteins1

A. nidulans (9,541) All 4,273 5,268 
 Species specific2 604 222 
 Fungal hits except S. cerevisiae3 1,863 1,330 
 S. cerevisiae hit4 2,703 2,688 
 Hit except fungi5 98 33 
 Ser+Thr >= 20%6 2,723 2,536 
    

F. graminearum (11,640) All 6,712 4,928 
 Species specific2 851 331 
 Fungal hits except S. cerevisiae3 2,613 1,740 
 S. cerevisiae hit4 3,133 2,799 
 Hit except fungi5 115 58 
 Ser+Thr >= 20%6 2,701 3,218 
    

N. crassa (10,080) All 3,990 6,092 
 Species specific2 1,759 452 
 Fungal hits except S. cerevisiae3 1,779 1,338 
 S. cerevisiae hit4 2,437 2,156 
 Hit except fungi5 117 44 
 Ser+Thr >= 20%6 2,473 2,816 

 

1 Each protein was grouped as nontransmembrane (NonTM) or transmembrane (TM) 
proteins.   

2 No significant PSI-BLAST hit based on E-value threshold = 0.005 to any database 
sequence 

3 Significant PSI-BLAST hits found against any fungal databases except the S. cerevisea 
genome. 

4 Significant PSI-BLAST hits found only against the S. cerevisea genome. 
5 Significant PSI-BLAST hits found against animal and/or plant sequences, but no fungal 

genome hit. 
6 Number of proteins that have the Ser + Thr content higher than or equal to 20 %.  
 

 All of the three fungal genomes had high proportions of hits to any S. cerevisiae 

proteins. The numbers of N. crassa, F. graminearum, and A. nidulans proteins that have 

any hits to S. cerevisiae proteins were 5,391, 5,932, and 4,593, respectively. This 

accounts for about 50-60% of the entire proteins present in each species. More notably, 
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the remaining 40-50% of these fungal proteins does not share similarities with any S. 

cerevisiae proteins. Note that the three fungal species used for this study are all 

filamentous fungi, whereas S. cerevisiae is a non-filamentous fungus. Saccharomyces 

cerevisiae was the first fungal and the first eukaryotic genome that was completely 

sequenced, and has been used as representing the fungal kingdom genomes. However, the 

results described above clearly show that there might be a bias in using the S. cerevisiae 

genome to represent the entire fungal species. This was indeed one of the main reasons in 

this study to create species-specific database and gene prediction. 

 Sequences are almost equally split into transmembrane (TM) and non-

transmembrane (NonTM) proteins. There are more NonTM proteins for fungal species 

specific proteins; all three species have three-fold or more of NonTM proteins.  This 

latter ratio is more reasonable as the majority of proteins must be required for performing 

other than membrane-related cell functions. In general, 25% of the proteins are expected 

to be TM proteins in eukaryotic genomes.  It implies that the over representation of TM 

proteins (50% or more) from the entire protein sets may be due to over prediction by the 

transmembrane prediction program used (HMMTOP). 

 

5.2 Gene prediction by GLIMMER, GLIMMERM, and GenScan 

 As described in Chapter 3, many fungal genomes have relatively high gene 

density and contain many short genes that cannot be effectively detected by commonly 

used gene prediction programs. From many available gene prediction methods, three 

programs: GLIMMER, GLIMMERM and GenScan were chosen in this study, and their 

prediction performance was examined against the currently available genome 
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annotations. GLIMMER and GLIMMERM were chosen based on their possible ability 

to detect small coding regions. GLIMMER is the most hopeful even though it is 

developed for prokaryotic genomes as it can detect small ORFs and the program can be 

altered to have a minimum gene size. GLIMMERM, although it may underpredict 

splicing sites, hardly misses a gene completely. Thus this method might be also helpful to 

identify genes of small size. GenScan was added for a comparison purpose. 

 

5.2.1 Gene prediction by GLIMMER 

 In order to train gene prediction methods, a set of genes with experimentally 

confirmed is required.  It is ideal if such training dataset was obtained from the organism 

under the investigation.  For this reason, experimentally confirmed cDNA sequences 

were obtained for three fungal species from the NCBI database as described in Chapter 3.   

The three datasets include: 120 N. crassa, 157 S. cerevisiae, and 613 S. pombe cDNA 

sequences.  The larger dataset used by the prediction program FGENESH mentioned in 

Chapter 3 was not used as the aim of this study was to identify possible new genes using 

experimentally verified cDNA sequences.  The dataset used by FGENESH includes a 

larger number of cDNA sequences that might not be experimentally confirmed. This will 

provide a way to verify already annotated genes by the Whitehead genome project, and to 

identify any new gene candidates independently. 

 GLIMMER 2.0 was trained using these three sets of cDNA sequences, and an 

interpolated Markov model was created for each of the three species. Trained GLIMMER 

2.0 programs were used on the complete N. crassa genomic sequence obtained from the 

Whitehead website (including 821 contig sequences). Table 5.2 summarizes the analysis 

of GLIMMER prediction compared to the Whitehead annotation.  
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Table 5.2 GLIMMER predictions for the N. crassa genome.  

Predicted new ORFs  
 

Training set 

No of 
Whitehead 
predicted 

ORFs 

No of 
GLIMMER 

predicted 
ORFs 

Total 
>= 10aa 

< 100aa  
& 

>= 10aa 

Exact match 
with 

Whitehead 
prediced 

ORFs 

No hit 
with 

M. grisea 
genome 

No hit 
with NR 
database 

N. crassa 10,082 34,008 70 68 746 53 59 

S. cerevisiae 10,082 44,087 320 314 582 27 216 

S. pombe 10,082 46,191 437 428 598 209 390 

 

The program predicted 34,008 possible ORFs when trained with the N. crassa 

cDNA dataset. This number is much larger than the one found in the Whitehead genome 

project, 10,082 ORFs.  This is expected since GLIMMER (developed for prokaryotic 

genomes) does not predict exon-intron structures, and all predicted ORFs are considered 

as uninterrupted single exon gene.  Therefore, multi-exon genes are likely to be 

recognized as multiple small genes by GLIMMER.  Considering the average number of 

exons in N. crassa is 2.7, approximately four times higher numbers of predicted ORFs by 

GLIMMER seems to be reasonable.  

 In order to identify any new predictions compared to the Whitehead annotations, 

predicted ORFs were used as queries for blastn DNA similarity search against the 

Whitehead predicted N. crassa ORF set. 70 ORFs predicted by GLIMMER were not 

overlapped with any Whitehead annotated ORFs.  After excluding very short (shorter 

than 10 aa) ORFs, there were still 68 new short gene candidates (shorter than 100 aa but 

longer than 9 aa). Although only less than 2% was the exact match with Whitehead 

predicted ORFs as shown in Table 5.2, as described above, this is not surprising since 

GLIMMER does not recognize multi-exon genes.  
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 In order to check if any of these new short gene candidates have been already 

known in another fungal species, these new ORFs were used as queries for PSI-BLAST 

against the NCBI NR database and blastn against the M. grisea genomic database. M. 

grisea was used because this is one of the closest fungal species to N. crassa (See Figure 

1.1). The default parameters were used for both blastn and PSI-BLAST searches. As 

shown in Table 5.2, the majority of the new short gene candidates did not have any 

similar sequence either in the NCBI NR database or in the M. grisea genome.  These “no 

hit” ORFs could be false positives or actual new unique genes identified for the first time. 

On the other hand, 17 ORFs shared similarities with M. grisea ORFs.  It is possible that 

these are real genes that have been missed by other prediction methods including the 

Whitehead genome project.  Further experimental analysis is necessary to confirm these 

short gene candidates.  

 GLIMMER was also trained on other two fungal cDNA datasets: S. cerevisiae 

and S. pombe.  These two trained programs predicted even more ORFs from the N. crassa 

genome, and shorter new gene candidates were identified (see Table 5.2).  It is interesting 

that more short new gene candidates shared similarities with M. grisea when GLIMMER  

was trained based on S. pombe, which is non-filamentous fungus as is S. cerevisiae.  It 

should be noted that the S. pombe training set included more cDNA samples (613) than 

the N. crassa set (120).  Although the species is different, the S. pombe training set may 

have had a better representation of the actual genes in the N. crassa genome.  The overall 

percentage of newly predicted genes that did not have a hit to any database was higher for 

N. crassa (85%) and S. pombe (89%) compared to S. cerevisiae (68%) trained results.  
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The new genes predicted by different models need to be examined further if 

predictions by different methods overlap. 

 

5.2.2 Gene prediction by GLIMMERM 

 Due to technical problems and time constrains, GLIMMERM could not be trained 

using the three cDNA data sets used for training GLIMMER. Instead, the default models 

created with one filamentous fungal species (Aspergillus fumigatus) and two plant 

species (Arabidopsis thaliana and Oryza sativa) were used against the N. crassa genomic 

sequence. As shown in Table 5.3, GLIMMERM predicted 39,386, 26,058, and 20,608 

possible ORFs using A. fumigatus, A. thaliana, and O. sativa models, respectively. The 

numbers of predicted ORFs were smaller than those of GLIMMER.  This is expected 

since GLIMMERM (developed for small eukaryotic genomes) should be able to identify 

multi-exon genes. 

Table 5.3 GLIMMERM predictions for the N. crassa genome. 

Predicted new ORFs  
Training set 

No of 
Whitehead 
predicted 

ORFs 

No of 
GLIMMERM  

predicted 
ORFs 

Total 
>= 10aa 

< 100aa  
& 

>= 10aa 

Exact 
match with 
Whitehead 
prediced 

ORFs 

No hit 
with 

M. grisea 
genome 

No hit 
with NR 
database 

A. fumigatus 10,082 39,386 82 82 1,952 45 79 

A. thaliana 10,082 26,058 83 82 881 44 73 

O. sativa 10,082 20,608 37 37 2,012 27 32 

 

 The program predicted between 500 to 2,500 new ORFs depending on the 

training set, and the majority of these new ORFs were shorter than 100 aa. However, 

many of these new ORFs were also shorter than 10 aa. After rejecting these very short 

ORFs the numbers of new short ORF candidates became comparable to those obtained by 
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GLIMMER (83 ORFs or fewer as shown in Table 5.3). Around 16 % of the new ORFs 

shorter than 100 aa were longer than 10 aa, and predictions exactly matching with the 

Whitehead annotations were between 8-20%, higher rates than GLIMMER's. It was 

expected that the model trained with A. fumigatus, a filamentous fungus, would perform 

better than other two plant models.  However, the results showed that all the three models 

had similar performance based on the numbers of predictions.  

 

5.2.3 Gene prediction by GenScan 

 GenScan could not be trained using the three cDNA training sets because the 

package does not provide the capability to build our own training models. Therefore, 

their default models created with human and two plant species (A. thaliana and maize) 

were used against the N. crassa genomic sequences. As shown in Table 5.4, the program 

predicted 7,994, 8,094, and 7,345 possible ORFs, with A. thaliana, maize, and human 

models, respectively. These prediction numbers were much smaller than those obtained 

by the other two prediction methods, and even smaller than the number given by the 

Whitehead prediction.  

Table 5.4 GenScan predictions for the N. crassa genome. 

Predicted new ORFs  
Training set 

No of 
Whitehead 
predicted 

ORFs 

 
No of GenScan 

ORFs Total 
>= 10aa 

< 100aa  
& 

>= 10aa 

Exact 
match with 
Whitehead 
prediced 

ORFs 

No hit 
with 

M. grisea 
genome 

No hit 
with NR 
database 

A. thaliana 10,082 7,994 3 3 828 0 1 

maize 10,082 8,094 4 4 808 4 3 

human 10,082 7,345 3 3 1145 2 1 
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GenScan with any of the three training sets predicted very few new ORFs. The 

prediction using human as the training model seemed to perform slightly better than the 

other two models based on the number of predictions exactly matching with the 

Whitehead prediction. Overall about 10% of predicted ORFs agreed exactly with those 

predicted by Whitehead. Based on the data in Table 5.4, we can see that GenScan with 

the three models used does not seem to work well for the N. crassa gene prediction. The 

program needs to be trained with datasets obtained from the family closest to the genome 

under the study.  However, even if a plant species, O. sativa, was used to train the model, 

GLIMMERM seemed to work better than GenScan. GenScan was developed primarily 

for larger and more complex eukaryotic genome annotation, and used mainly for human, 

mouse, and other vertebrates.  These genomes contain much larger genes with longer 

introns compared to fungal genomes.  Such differences in model architecture may explain 

the prediction difference among the three gene prediction methods. 

 

5.2.4 Comparison of predictions among the three methods. 

 Of the three programs used for prediction, GLIMMER and GLIMMERM are 

better than GenScan. GenScan predicted fewer new genes and the number of predicted 

ORFs were smaller than predicted by the Whitehead. GLIMMER and GLIMMERM had 

few ORFs common between their predicted ORF sets. New ORFs predicted by 

GLIMMER using N. crassa, S. cerevisiae, and S. pombe training sets that were not also 

predicted by GLIMMERM were 47, 40, and 146, respectively.  Similarly GLIMMERM 

had 71, 73, and 32 ORFs that were not also predicted by GLIMMER, with A. fumigatus, 

A. thaliana, and O. sativa models, respectively.  All the new ORFs predicted by GenScan 

were distinct among the different training datasets. It would be interesting to see how 
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GLIMMERM performs if it is trained with cDNA datasets used by GLIMMER in this 

study. Better performance comparison is possible if different prediction programs are 

trained on the same datasets.  

 
5.3 Nucleotide composition and gene feature analysis 

 As described in Chapter 3, gene prediction methods build their gene models based 

on the information present in the training set. In order to identify and understand any 

species-specific properties useful for gene prediction from fungal genomes, nucleotide 

frequencies and other gene properties were examined from the three fungal genomes: N. 

crassa, S. cerevisiae, and S. pombe. This analysis would reveal any common or different 

bias among these fungal genomes.  

 The three cDNA sets used in the GLIMMER training are small, including only 

122-613 samples (see Chapter 3).  However, these sequences include only the real genes 

with experimentally confirmed coding sequences.  Thus their nucleotide frequencies 

should reflect the real genomic properties.  On the other hand, the predicted ORF sets 

from the complete genomes are much larger, but they could include false positives, 

generated by the prediction methods. In order to see whether these two datasets show 

consistent properties, some genome statistics were compared between the two datasets.  

Table 5.5 compares base compositions of the three genomes between the two datasets. 

There is a good agreement in base composition between the small cDNA samples and the 

complete ORF sets of the three genomes. The distributions of base composition of the 

three training sets are comparable to those of predicted ORF sets. It justifies the use of 

the predicted ORF sets for various further analyses. 



 66
Table 5.5 Comparison of base composition between the small cDNA sample and 

complete predicted genome datasets for the three fungal species. 

 

a) Neurospora crassa 
 Base composition (%) 

 
cDNA dataset: 122 cDNAs 

 
Genome dataset: 10,082 ORFs 

 
 
 

Nucleotide 
 

 
Mean ± SD1 

 
Min2 

 
Max3 

 
Mean ± SD1 

 
Min2 

 
Max3 

A 22.03 ± 2.92 14.18 28.19 23.68 ± 3.56 2.67 61.02 
C 30.94 ± 2.42 22.28 40.36 28.69 ± 4.04 0 51.52 
G 26.77 ± 2.42 20.44 32.34 27.14 ± 3.27 3.03 51.52 

T 20.24 ± 2.28 15.35 27.60 20.47 ± 3.24 3.39 44.44 

 
b) Saccharomyces cerevisiae 

 Base composition (%) 

 
cDNA dataset: 162 cDNAs 

 
Genome dataset: 5,043 ORFs 

 
 
 

Nucleotide 
 

Mean ± SD1 
 

Min2 
 

Max3 
 

Mean ± SD1 
 

Min2 
 

Max3 

A 31.45± 4.56 17.39 45.87 32.45 ± 3.85 15.43 47.44 
C 19.52 ± 3.31 5.26 28.73 19.28 ± 3.00  6.67 43.27 
G 22.29 ± 3.44 8.84 39.47 20.87 ± 2.61 7.60 32.67 
T 26.73 ± 4.39 11.84 44.44 27.39 ± 3.47 10.25 48 

 
c) Schizosaccharomyces pombe 

 Base composition (%) 
 

cDNA dataset: 613 cDNAs 
 

Genome dataset: 5,845 ORFs 
 
 
 

Nucleotide 
 

Mean ± SD1 
 

Min2 
 

Max3 
 

Mean ± SD1 
 

Min2 
 

Max3 
A 28.17 ± 4.29 16.72 41.80 30.07 ± 3.84 12.12 49.06 

C 20.74 ± 3.21  11.63 32.23 19.16 ± 2.80 9.09 41.92 

G 21.72 ± 2.64 13.98 36.79 20.06 ± 2.27 7.84 31.02 
T 29.36 ± 3.19  16.67 40.31 30.71 ± 3.17 14.15 48.34 

 

1 SD: standard deviation, 2 Min: minimum base composition, 3 Max: maximum base 
composition.  
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 Nucleotide frequencies were examined both for the coding sequences and 

introns. Figure 5.2 compares the single nucleotide frequencies (base compositions) of the 

coding sequences (ORFs) among the three fungal genomes (the similar histograms 

obtained from the cDNA datasets are included in Appendix E). The ORF sets of N. 

crassa show preference for nucleotides G and C (G+C% = 56), whereas S. cerevisiae and 

S. pombe have preference for nucleotides A and T (G+C% = 40). The cDNA data in 

Appendix E show the trends similar to their corresponding genome sets. 

 Table 5.6 shows the base composition (%) observed from intron sequences.  

Comparing to the data found in Table 5.5, an almost equal contribution of the four 

nucleotides with slightly lower G% is found in the introns of N. crassa. The intron 

sequences of the two yeast genomes, S. pombe and S. cerevisiae, are close to 70% A+T. 

Introns are non-coding sequences.  Therefore, the base composition observed in these 

sequences should reflect the spontaneous mutation patterns.  Based on Table 5.6, we can 

conclude that mutation patterns are not equal among four nucleotides.  Mutation patterns 

are biased toward A and T nucleotides in S. pombe and S. cerevisiae.  On the other hand, 

in N. crassa, mutations are biased toward non-G nucleotides, although the bias is not as 

pronounced as in the two yeast species. 

 The difference observed in Table 5.5 compared to Table 5.6 can be explained by 

the effect of functional constrains in the coding sequences. Appendix K shows the 

universal genetic code. Three consecutive nucleotides in coding regions form a unit 

called "codon", and each codon codes one of 20 amino acids. The frequencies of these 20 

amino acids are not consistent among different proteins. Furthermore, mutations from  
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a.   Neurospora crassa 
(Average base composition A: 23.68, C: 28.69, G: 27.14, and T: 20.47) 

 
 
 
 
 
 
 
 
 
 
 
 
b. Saccharomyces cerevisiae 
(Average base composition A: 32.45, C: 19.28, G: 20.87, and T: 27.39) 

 
 

 
 
 
 
 
 
 
 
 
 
c. Schizosaccharomyces pombe 
(Average base composition A: 30.07, C: 19.16, G: 20.06, and T: 30.71) 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.2: Frequency distribution of base composition from the three fungal 

genomes. 
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one nucleotide to another are under different levels of constraints depending on where 

the nucleotide is within the codon (first, second, or third codon position). As the code 

table shows, the majority of mutations between nucleotides at the third codon position do 

not change the coded amino acid (e.g., four codons CCT, CCC, CCA, and CCG all code 

the same amino acid, proline or Pro).  On the other hand, such mutations are restricted for 

nucleotides at the first and second codon positions (e.g. a mutation between TTT and 

TTA changes coded amino acid between Phe and Leu). These constrains generate 

different patterns of base composition in coding sequences compared to introns and non-

coding sequences.  Compared to introns, coding sequences in all the three fungal 

genomes have relatively more G and C.  This indicates that the constraint working on 

nucleotide substitutions in the coding regions is similar among the three fungal genomes.  

Understanding all of these differences is important in predicting gene structures (e.g. 

exons vs introns).  It is also clear that species specific base composition data are 

necessary from both of coding and non-coding sequences for more accurate gene 

prediction. 

The dinucleotide frequency was calculated as follows. First the occurrence of all 

possible nucleotide pairs (AA, AC, AG, …, TT) in each genomic sequence is counted by 

shifting the nucleotide position by 1 bp. Then all the occurrences are summed up (total 

number of dinucleotide pairs) and the proportion of each dinucleotide pair values is 

calculated from each genome.  A similar procedure is used for calculating the 

trinucleotide frequencies. These frequency values can tell us the preference for particular 

nucleotide pairs and triplets in each genome.   
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Table 5.6 Comparison of base composition of introns from complete predicted 

genome datasets. 
 
a) Neurospora crassa 
 

 Base composition (%) 
Genome dataset: 17,113 introns  

 
Nucleotide Mean ± SD1 Minimum Maximum 

 
A 

 
25.19 ± 6.09 

 
5.17 

 
72.32 

 
C 

 
25.37 ± 7.16 

 
0.67 

 
57.29 

 
G 

 
21.63 ± 6.45 

 
2.50 

 
54.17 

 
T 

 
27.80 ± 6.51 

 
1.38 

 
69.60 

 
b) Saccharomyces cerevisiae 
 

 Base composition (%) 
Genome dataset: 267 introns 

 
 
 

Nucleotide Mean ± SD1 Minimum Maximum 
 

A 
 

31.46 ± 5.19 
 

12.98 
 

43.67 
 

C 
 

16.73 ± 3.85 
 

7.14 
 

43.28 
 

G 
 

16.77 ± 3.71 
 

6.02 
 

19.41 
 

T 
 

35.02 ± 5.88 
 

28.57 
 

53.17 
 
c) Schizosaccharomyces pombe 
 

 Base composition (%) 
Genome dataset: 4,719 introns 

 
 
 

Nucleotide Mean ± SD1 Minimum Maximum 
 

A 
 

31.71 ± 6.45 
 

8.47 
 

57.69 
 

C 
 

13.25 ± 4.23 
 

0 
 

29.83 
 

G 
 

15.60 ± 4.09 
 

3.39 
 

32.78 
 

T 
 

39.39 ± 6.95 
 

15 
 

63.77 
1 SD: standard deviation. 
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Figures 5.3 and 5.4 summarize the dinucleotide frequencies observed in the 

coding sequences and introns from the three fungal genomes. The trinucleotide data are 

found in Appendices I and J. In the case of N. crassa, dinucleotides and trinucleoides 

including G or C occur more frequently compared to other combinations. However, the 

degree of variation in nucleotide combinations is not as high as in the other two fungi.  

Interestingly, AT happens almost twice as many as TA (4.7% vs. 2.7%).  In the case of S. 

pombe and S. cerevisiae, dinucleotides and trinucleotides that include A or T are 

preferred over others.  Dinucleotides AA, AT, and TT pairs occur quite often compared 

to other nucleotide pairs. Trinucleotides AAA and TTT are represented most in the two 

yeast genomes.  Such bias becomes higher in intron sequences.  Many of these biases 

appear to be consistent with the base composition (single nucleotide frequencies) 

described earlier. N. crassa tends to use more combinations including G and C, whereas 

other two species use more A and T related nucleotide combinations. AT bias in base 

composition is most pronounced in introns in S. cerevisiae and S. pombe. 

 Table 5.7 summarizes the lengths (bp) of introns and coding sequences (CDS) in 

the three fungi genomes.  The table also gives the number of introns and ORFs in the 

three genomes.  The most striking difference between the three fungal genomes is that the 

S. cerevisea genome has a very small number of introns.  Both yeast species have smaller 

number of ORFs compared to N. crassa.  N. crassa has twice as many ORFs.  The 

difference is more pronounced in the intron numbers, S. pombe has much more introns 

than S. cerevisea, but N. crassa has even more introns. 



 72
a) Neurospora crassa 

Second nucleotide       
 A C G T 

 
A 

5.89 
(858,168) 

6.28 
(913,794) 

6.75 
(982,624) 

4.73 
(688,011) 

 
C 

7.53 
(1,095,420) 

8.22 
(1,195,608) 

7.07 
(1,029,455) 

6.22 
(904,881) 

 
G 

7.54 
(1,096,121) 

7.59 
(1,105,004) 

7.14 
(1,038,698) 

4.71 
(686,169) 

Fi
rs

t n
uc

le
ot

id
e 

 
T 

2.68 
(389,953) 

6.94 
(1,010,929) 

6.04 
(878,192) 

4.63 
(673,053) 

 
b) Saccharomyces cerevisiae 

Second nucleotide  
 

A C G T 

 
A 

11.78 
(1,035,635) 

5.82 
(510,971) 

6.53 
(573,604) 

8.63 
(758,578) 

 
C 

6.92 
(607,617) 

3.94 
(346,314) 

2.96 
(260,848) 

5.34 
(469,234) 

 
G 

7.43 
(653,364) 

3.83 
(336,791) 

4.35 
(381,938) 

4.81 
(422,873) 

Fi
rs

t n
uc

le
ot

id
e 

 
T 

6.61 
(580,827) 

5.57 
(489,937) 

6.60 
(579,921) 

8.85 
(778,381) 

 
c) Schizosaccharomyces pombe   

Second nucleotide  
 A C G T 

 
A 

10.72 
(776,858) 

5.08 
(368,407) 

5.67 
(410,795) 

8.49 
(615,377) 

 
C 

5.92 
(428,604) 

3.79 
(274,814) 

3.22 
(233,398) 

6.30 
(456,484) 

 
G 

6.62 
(480,029) 

4.09 
(296,834) 

3.95 
(285,949) 

5.22 
(378,355) 

Fi
rs

t n
uc

le
ot

id
e 

 
T 

6.69 
(484,918) 

6.26 
(453,337) 

7.06 
(511,958) 

10.91 
(790,140) 

 
Figure 5.3 Dinucleotide frequencies observed in ORF coding sequences.  

Frequencies are given in percentages and the numbers in parentheses are the 

numbers of each nucleotide pair.  
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a) Neurospora crassa 

Second nucleotide       
 A C G T 

 
A 

6.74 
(155,035) 

5.78 
(151,524) 

5.78 
(133,152) 

6.11 
(140,651) 

 
C 

7.17 
(165,042) 

6.89 
(158,737) 

4.37 
(100,493) 

7.22 
(166,105) 

 
G 

5.78 
(133,090) 

5.02 
(115,522) 

4.71 
(108,269) 

6.11 
(140,674) 

Fi
rs

t n
uc

le
ot

id
e 

 
T 

5.53 
(127,195) 

7.15 
(164,594) 

6.77 
(155,641) 

8.04 
(184,906) 

 
b) Saccharomyces cerevisiae 

Second nucleotide  
 

A C G T 

 
A 

11.51 
(7,396) 

5.58 
(3,584) 

5.52 
(3,549) 

9.91 
(6,372) 

 
C 

5.78 
(3,715) 

2.84 
(1,828) 

2.44 
(1,567) 

5.43 
(3,487) 

 
G 

6.05 
(3,888) 

2.97 
(1,909) 

2.84 
(1,823) 

5.23 
(3,360) 

Fi
rs

t n
uc

le
ot

id
e 

 
T 

9.19 
(5,902) 

5.09 
(3,275) 

6.29 
(4,042) 

13.32 
(8,560) 

 
c) Schizosaccharomyces pombe   

Second nucleotide  
 A C G T 

 
A 

11.95 
(16,419,491) 

5.14 
(706,440) 

5.67 
(779,460) 

9.26 
(1,272,990) 

 
C 

6.13 
(842,974) 

3.27 
(449,563) 

2.86 
(392,769) 

5.65 
(776,687) 

 
G 

5.93 
(814,863) 

3.61 
(495,271) 

3.28 
(450,778) 

5.15 
(707,540) 

Fi
rs

t n
uc

le
ot

id
e 

 
T 

8.01 
(1,101,055) 

5.89 
(810,721) 

6.16 
(845,443) 

12.04 
(1,654,297) 

 

Figure 5.4 Dinucleotide frequencies observed from intron sequences. Frequencies 

are given in percentages and the numbers in parentheses are the numbers of each 

nucleotide pairs. 
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Table 5.7 Comparison of sequence length (bp) between the intron and coding 

sequences 

 
a) Neurospora crassa 
 

 
CDS: 10,082 ORFs 

 
Introns: 17,113 introns 

 
Mean ± SD 

 
Min 

 
Max 

 
Mean ± SD 

 
Min 

 
Max 

 
1,443.77 ± 1,230.22 

 
30 

 
32,463 

 
135.43 ± 129.08

 
20 

 
2074 

 
 
b) Saccharomyces cerevisiae 
 

 
CDS: 5,845 ORFs 

 
Introns: 267 introns 

 
Mean ± SD 

 
Min 

 
Max 

 
Mean ± SD 

 
Min 

 
Max 

 
1,504.31 ± 1,143.64 

 
51 

 
14,733 

 
241.66 ± 175.87

 
49 

 
1,002 

 
 
c) Schizosaccharomyces pombe 
 

 
CDS: 5,043 ORFs 

 
Introns: 4,719 introns 

 
Mean ± SD 

 
Min 

 
Max 

 
Mean ± SD 

 
Min 

 
Max 

 
1,437.89 ± 1,060.88 

 
54 

 
15,005 

 

 
82.38 ± 68.03 

 
30 

 
817 

 

The length distributions of complete ORF datasets are shown also in Appendix H. 

It shows that there are both very short (<= 100 bp) as well as extremely long (>= 20,000 

bp) ORFs in all of the three fungal genomes.  In the case of N. crassa, one ORF was 

predicted to be longer than 32 kb. For these extremely long ORFs, prediction mistakes 

may need to be considered.  On the other hand, more short ORFs (<= 100 bp) were 
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observed in the N. crassa compared to the two yeast genomes. There are 46 ORFs in 

N. crassa shorter than 50 bp whereas the minimum ORF lengths are 51 and 54 bp in S. 

cerevisiae and S. pombe, respectively.  

The length distributions of introns were again very different among the three 

fungal genomes (Appendix G). N. crassa has more than 11,000 introns shorter than 100 

bp, whereas S. cerevisiae has fewer than 100 such short introns. In the S. pombe genome, 

there are approximately 3,500 introns shorter than 100 bp.  The N. crassa genome also 

has 30 introns longer than 1000 bp compared to the other two yeast genomes (S. 

cerevisea has only one such intron and S. pombe has none).  Both yeast genomes are 

more compact than N. crassa.  As described earlier in Table 1.1, the two yeast genomes 

are close to 10 Mb, while the N. crassa genome is approximately 40 Mb.  However, to 

achieve the compactness, S. cerevisiae has very few introns whereas S. pombe has more 

but shorter introns.  The genome of N. crassa, a filamentous fungus, is much more 

complex with more and longer introns, compared to the two non-filamentous fungi. 

These observations exemplify again the necessity of species-specific optimization of gene 

prediction methods. 
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Chapter 6 Conclusions and Future Development 

In this thesis, comparative analysis of three fungal genomes: Neurospora crassa, 

Aspergillus nidulans, and Fusarium graminearum, was performed. Various similarity 

searches performed using PSI-BLAST against the NCBI Non-redundant database and 

three other fungal genomes provided insights on the characteristics and uniqueness of 

these filamentous fungi genomes. The results obtained showed a large number of species-

specific sequences from all of the three genomes.  In particular, there were 915 N. crassa 

specific ORFs that were shorter than 100 aa, whereas much smaller numbers of such 

short ORFs (fewer than 100) were found from F. graminearum and A. nidulans genomes. 

These protein sequences can become candidates for further in depth analysis. 

The Ser/Thr content was examined from their putative protein sequences and 

transmembrane regions were predicted using different prediction methods. Though the 

numbers of identified regions were not the same among the methods, the total numbers of 

proteins predicted as containing transmembrane regions were very close. However, there 

appeared to be still an overestimation of transmembrane proteins, and more investigation 

on transmembrane prediction is required.  

Three gene mining methods: GLIMMER, GLIMMERM, and GenScan, were 

examined on their performance to predict N. crassa ORFs. Their performance was 

compared with the existing N. crassa genome annotation by the Whitehead genome 

project.  New gene candidates previously not annotated were identified and examined.  

GenScan performed poorly compared to the other two programs.  This was expected 

since GenScan was not trained with any fungal dataset, and also the method was 

optimized for larger vertebrate genomes that include longer and more complex gene 
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structures. In the future, training of the above programs should be carried out with the 

same datasets especially from filamentous fungi in order to validate the results. 

Comparison of the results across various gene prediction methods can be done to identify 

any common predictions.  

Some genomic information including nucleotide frequencies was extracted from 

three fungal genomes: Neurospora crassa, Schizosaccharomyces pombe and 

Saccharomyces cerevisiae, and they were compared between coding and non-coding 

sequences and also among the genomes.  Mutation patterns appeared to be different 

between N. crassa and other two non-filamentous fungal genomes, and such difference 

must have caused the different nucleotide frequencies observed among the three 

genomes.  The length distributions showed that there are both very short (<= 100 bp) as 

well as extremely long (>= 20,000 bp) ORFs in all of the three fungal genomes. 

Especially for those extremely long ORFs, mistakes in gene prediction need to be 

considered.  On the other hand, more short ORFs (<= 50 bp) were observed in the N. 

crassa genome compared to the two yeast genomes. The numbers as well as length 

distributions of introns were also very different among the three fungal genomes.  

Examining these genome-specific features should help us optimizing genome prediction 

methods for other, particularly non-filamenous fungal species. The future plan is to 

extend the analysis to Fusarium graminearum and Aspergillus nidulans in order to 

identify more filamentous fungi-specific genomic features.   

 Finally, a database was constructed based on the Neurospora crassa genomic data 

to compile information useful for various gene prediction methods.  The stored data can 

be visualized using a web-based graphical interface.  The plan is to add more genomic 
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information from other fungal genomes as well as other model organisms to help more 

detailed comparative analysis.  This database development is expected to facilitate the 

development and optimization of fungal specific gene prediction methods in the future. 
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Appendix A: A sample output of HMMTOP for a N. crassa 
protein, NCU10034.1 
 
 
 Protein: NCU10034.1 predicted protein (4678 - 5483) 
 Length:  214 
 N-terminus: OUT  
 Number of transmembrane helices: 3 
 Transmembrane helices: 17-41 106-125 156-180  
 
 Total entropy of the model:  17.0073 
 Entropy of the best path:  17.0092 
 
 The best path: 
 
 seq  MPSLLVVIFV IELFVQLVNT IGAATINNLL WRIALSLPLP LSAQFAAQRK   50 
 pred Oooooooooo ooooooHHHH HHHHHHHHHH HHHHHHHHHH Hiiiiiiiii  
 
 seq  KQKEYLAIRR ELNATSSQDE FAKWARLRRQ HDKLLEDLEK RKKELDAAKT  100 
 pred iiiiiiIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII iiiiiiiiii  
 
 seq  KFDRTLTTVR VVATRGLQWF LPFWYSREPM FWLPYGWFPY YVEWFASFPR  150 
 pred iiiiiHHHHH HHHHHHHHHH HHHHHooooo oooooooooo oooooooooo  
 
 seq  APLGSVSIVV WQWACTGVIK LVIETVMAVV GLIVAARQKQ QEKQKAKQAV  200 
 pred oooooHHHHH HHHHHHHHHH HHHHHHHHHH iiiiiiiiii iiiiiIIIII  
 
 seq  PAAGGGDSKA EEAK 214 
 pred IIIIIIIIII IIII 
 
 
The predicted transmembrane regions are denoted by “H”. For the above example, 

the program predicted three transmembrane segments. 
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Appendix B: A sample output of TMHMM for a N.crassa 
protein, NCU10034.1 
 
 
 # NCU10034.1 Length: 214 
 # NCU10034.1 Number of predicted TMHs:  3 
 # NCU10034.1 Exp number of AAs in TMHs: 60.37802 
 # NCU10034.1 Exp number, first 60 AAs:  22.80493 
 # NCU10034.1 Total prob of N-in:        0.21769 
 # NCU10034.1 POSSIBLE N-term signal sequence 
 NCU10034.1 TMHMM2.0 outside      1     3 
 NCU10034.1 TMHMM2.0 TMhelix      4    26 
 NCU10034.1 TMHMM2.0 inside     27   130 
 NCU10034.1 TMHMM2.0 TMhelix    131   148 
 NCU10034.1 TMHMM2.0 outside    149   162 
 NCU10034.1 TMHMM2.0 TMhelix    163   185 
 NCU10034.1 TMHMM2.0 inside    186   214 

 

The predicted transmembrane segments are denoted by TMhelix. For the above 

example, the program predicted three transmembrane segments. 
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Appendix C: An example plot of Ser/Thr % and hydrophobicity 
along the amino acid sequence of a known cell wall protein from N. 
crassa, NCU00039.1. 
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Appendix D: A sample GLIMMER output using N. crassa 
cDNA dataset for training the model and one of N. crassa 
contigs as input 
 

 
 
Predicted ORF*: 

 
*The stop codon is not included in the output.  GLIMMER prediction allows three 
possible start codons: ATG, TTG or GTG. 
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Appendix E: Frequency distribution of base composition 
based on cDNA training sets 
 
a.   Neurospora crassa  
(Average base compositions A: 22.03, C: 30.94, G: 26.77 and T: 20.24) 
 

 
 
 
 
 
 
 
 
 
 
 

b.   Saccharomyces cerevisiae 
 (Average base compositions A: 31.45, C: 19.52, G: 22.29 and T: 26.73) 

 
 
 
 
 
 
 
 
 
 
 

 
c.    Schizosaccharomyces pombe  
(Average base compositions A: 28.17, C: 20.74, G: 21.72 and T: 29.36) 
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Appendix F: Frequency distribution of base composition 
from the intron datasets 
 
a.   Neurospora crassa  
(Average base compositions A: 25.19, C: 25.37, G: 21.63 and T: 27.80) 
 

 
 
 
 
 
 
 
 
 
 
 

b.   Saccharomyces cerevisiae 
 (Average base compositions A: 31.46, C: 16.73, G: 16.77 and T: 35.02) 

 
 
 
 
 
 
 
 
 
 
 

 
c.    Schizosaccharomyces pombe 
 (Average base compositions A: 31.71, C: 13.25, G: 15.60 and T: 39.39) 
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Appendix G: Frequency distribution of intron lengths (bp). 
  
a.   Neurospora crassa  
 

 
 
 
 
 
 
 
 
 
 
 

b.   Saccharomyces cerevisiae  
 
 
 
 
 
 
 
 
 
 
 

 
c.    Schizosaccharomyces pombe 
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Appendix H: Frequency distribution of coding sequence 
(CDS) lengths (bp) 
 
a.   Neurospora crassa  
 

 
 
 
 
 
 
 
 
 
 
 

 
b.   Saccharomyces cerevisiae  
 

 
 
 
 
 
 
 
 
 
 

 
 
c.    Schizosaccharomyces pombe 
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Appendix I: Trinucleotide frequencies observed in ORF 
coding sequences*  
 
a) Neurospora crassa 

 
 
b) Saccharomyces cerevisiae 

  
A 

 
C 

 
G 

 
T 

 

 
A 

1.22 (177,635) 
1.63 (237,460) 
2.21 (321,732) 
0.81 (118,406) 

1.62 (235,719) 
1.94 (281,297) 
1.56 (227,627) 
1.16 (169,151) 

1.84 (267,911) 
1.91 (277,459) 
1.95 (283,084) 
1.04 (151,193) 

0.59 (86,440) 
1.62 (234,820) 
1.63 (236,489) 
0.89 (130,262) 

A 
C 
G 
T 

 
C 

2.42 (352,416) 
1.64 (238,970) 
1.90 (276,396) 
1.56 (227,638) 

2.32 (337,333) 
2.04 (296,408) 
2.06 (299,591) 
1.81 (262,276) 

2.15 (312,805) 
1.96 (285,422) 
1.75 (254,078) 
1.22 (177,150) 

0.88 (128,586) 
2.12 (308,748) 
1.66 (241,872) 
1.55 (225,675) 

A 
C 
G 
T 

 
G 

1.85 (269,779) 
1.89 (275,736) 
2.22 (322,229) 
1.54 (224,207) 

1.81 (263,501) 
2.31 (336,317) 
1.73 (250,888) 
1.74 (254,928) 

2.09 (304,655) 
2.15 (312,047) 
1.46 (212,858) 
1.44 (209,138) 

0.68 (98,814) 
1.62 (235,567) 
1.26 (184,382) 
1.15 (167,406) 

A 
C 
G 
T 

 
T 

0.40 (58,338) 
1.11 (161,628) 
0.42 (62,267) 
0.74 (107,720) 

1.78 (258,867) 
1.94 (281,586) 
1.73 (251,349) 
1.51 (219,127) 

1.45 (210,750) 
1.58 (230,076) 
1.98 (288,678) 
1.02 (148,688) 

0.52 (76,113) 
1.59 (231,794) 
1.48 (215,449) 
1.02 (149,697) 

A 
C 
G 
T 

  
A 

 
C 

 
G 

 
T 

 

 
A 

4.16 (365,600) 
2.00 (175,755) 
2.75 (241,387) 
2.84 (250,131) 

2.00 (175,713) 
1.19 (105,345) 
1.01 (88,781) 
1.61 (141,132) 

2.59 (228,211) 
1.18 (104,040) 
1.34 (117,997) 
1.39 (122,011) 

2.03 (178,461) 
1.72 (150,551) 
2.11 (184,937) 
2.78 (244,629) 

A 
C 
G 
T 

 
C 

2.76 (242,681) 
1.11 (97,083) 
1.41 (123,747) 
1.64 (144,106) 

1.65 (144,686) 
0.67 (59,377) 
0.61 (53,517) 
1.01 (88,734) 

1.07 (94,177) 
0.56 (49,060) 
0.59 (51,768) 
0.75 (65,843) 

1.41 (123,663) 
1.03 (90,402) 
1.31 (114,788) 
1.59 (140,381) 

A 
C 
G 
T 

 
G 

2.93 (257,154) 
1.18 (103,642) 
1.30 (114,259) 
2.01 (176,571) 

1.30 (114,226) 
0.82 (72,383) 
0.53 (45,897) 
1.19 (104,285) 

1.49 (130,040) 
0.84 (74,197) 
0.71 (62,763) 
1.31 (114,938) 

1.16 (101,797) 
0.93 (81,270) 
1.06 (93,392) 
1.67 (146,414) 

A 
C 
G 
T 

 
T 

1.94 (170,200) 
1.53 (134,491) 
1.07 (94,209) 
2.07 (181,927) 

1.97 (172,992) 
1.24 (109,209) 
0.83 (72,653) 
1.54 (135,083) 

2.29 (200,936) 
1.24 (109,494) 
1.71 (149,410) 
1.37 (120,081) 

2.01 (176,906) 
1.91 (167,714) 
2.13 (186,804) 
2.81 (246,957) 

A 
C 
G 
T 
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c) Schizosaccharomyces pombe 

 

*Frequencies are given in percentages and the numbers in parentheses are the 

numbers of each nucleotide pairs. 

  
A 

 
C 

 
G 

 
T 

 

 
A 

3.90 (282,692) 
1.73 (125,252) 
2.34 (169,727) 
2.71 (196,323) 

1.57 (113,751) 
1.00 (72,732) 
0.89 (64,994) 
1.61 (116,922) 

1.89 (137,282) 
1.27 (92,523) 
1.09 (79,345) 
1.39 (100,617) 

1.73 (124,913) 
1.65 (119,829) 
2.16 (156,183) 
2.96 (214,441) 

A 
C 
G 
T 

 
C 

2.45 (170,034) 
0.85 (61,940) 
1.13 (81,646) 
1.58 (11,4979) 

1.22 (88,263) 
0.68 (49,855) 
0.64 (46,637) 
1.24 (90,048) 

1.08 (78,611) 
0.58 (42,063) 
0.55 (39,818) 
1.01 (72,900) 

1.38 (100,049) 
1.29 (92,968) 
1.37 (99,582) 
2.26 (163,879) 

A 
C 
G 
T 

 
G 

2.59 (187,785) 
0.96 (69,593) 
1.18 (85,315) 
1.88 (136,353) 

1.23 (89,205) 
0.75 (54,104) 
0.57 (44,173) 
1.55 (112,348) 

1.45 (105,131) 
0.73 (52,969) 
0.57 (41,299) 
1.19 (86,545) 

1.20 (81,788) 
1.02 (73,999) 
1.04 (75,377) 
1.96 (141,788) 

A 
C 
G 
T 

 
T 

1.88 (136,336) 
1.54 (111,621) 
1.02 (74,102) 
2.25 (162,854) 

1.89 (137,378) 
1.36 (98,121) 
1.12 (80,590) 
1.89 (137,163) 

2.19 (158,904) 
1.51 (109,275) 
1.73 (125,484) 
1.63 (118,286) 

2.38 (172,765) 
2.29 (166,532) 
2.49 (180,811) 
3.73 (270,022) 

A 
C 
G 
T 



 94
Appendix J: Trinucleotide frequencies observed from intron 
sequences. 
 

a) Neurospora crassa    

 
 

b) Saccharomyces cerevisiae  

 A C G T  

 
A 

1.87 (42,685) 
1.87 (42,601) 
1.66 (37,844) 
1.39 (31,905) 

2.08 (47,609) 
1.77 (40,416) 
1.12 (25,646) 
1.65 (37,853) 

1.37 (31,317) 
1.25 (28,638) 
1.15 (26,234) 
1.31 (29,850) 

1.37 (31,260) 
1.63 (37,250) 
1.69 (38,652) 
1.46 (33,489) 

A 
C 
G 
T 

 
C 

1.93 (44,014) 
1.72 (39,347) 
1.69 (38,712) 
1.88 (42,969) 

1.95 (44,644) 
1.96 (44,692) 
1.12 (25,493) 
1.92 (43,908) 

1.24 (28,284) 
1.09 (25,068) 
0.94 (21,429) 
1.13 (25,712) 

1.46 (33,249) 
1.91 (43,591) 
1.66 (37,995) 
2.24 (51,270) 

A 
C 
G 
T 

 
G 

1.54 (34,954) 
1.52 (34,666) 
1.36 (31,202) 
1.41 (32,268) 

1.33 (30,425) 
1.26 (28,701) 
0.91 (20,727) 
1.56 (35,669) 

1.33 (30,359) 
1.11 (25,390) 
1.10 (25,317) 
1.19 (27,203) 

1.58 (36,155) 
1.46 (33,368) 
1.44 (33,018) 
1.67 (38,133) 

A 
C 
G 
T 

 
T 

1.46 (33,382) 
1.53 (34,910) 
1.11 (25,394) 
1.46 (33,509) 

1.85 (42,364) 
1.96 (44,928) 
1.25 (28,627) 
2.13 (48,675) 

1.88 (43,130) 
1.59 (36,426) 
1.54 (35,289) 
1.78 (40,796) 

1.16 (26,531) 
2.21 (50,385) 
2.01 (45,976) 
2.72 (62,014) 

A 
C 
G 
T 

 A C G T  

 
A 

4.13 (884) 
2.15 (460) 
2.04 (437) 
3.16 (676) 

1.98 (425) 
0.99 (212) 
0.86 (184) 
1.87 (401) 

1.90 (407) 
0.92 (196) 
0.91 (194) 
1.21 (324) 

3.04 (652) 
1.33 (285) 
2.00 (430) 
3.50 (750) 

A 
C 
G 
T 

 
C 

2.00 (430) 
0.86 (184) 
1.07 (230) 
1.62 (348) 

1.13 (242) 
0.47 (101) 
0.47 (101) 
0.78 (169) 

0.85 (182) 
0.38 (82) 
0.40 (86) 
0.81 (174) 

1.64 (353) 
0.93 (199) 
0.96 (207) 
2.02 (433) 

A 
C 
G 
T 

 
G 

2.32 (496) 
0.77 (166) 
1.08 (233) 
1.65 (354) 

1.04 (224) 
0.44 (96) 
0.46 (100) 
0.96 (206) 

1.24 (266) 
0.47 (102) 
0.51 (110) 
0.61 (130) 

2.33 (500) 
0.56 (121) 
0.96 (205) 
1.75 (374) 

A 
C 
G 
T 

 
T 

2.75 (589) 
1.73 (370) 
1.36 (292) 
2.76 (592) 

1.78 (383) 
0.97 (209) 
0.75 (161) 
1.76 (379) 

2.31 (494) 
1.14 (244) 
0.95 (204) 
2.75 (590) 

2.89 (621) 
2.13 (456) 
2.02 (433) 
5.98 (1281) 

A 
C 
G 
T 
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c) Schizosaccharomyces pombe 

 

*Frequencies are given in percentages and the numbers in parentheses are the 

numbers of each nucleotide pairs. 

 A C G T  

 
A 

4.55 (208,779) 
1.89 (86,988) 
2.19 (100,579) 
3.26 (149,306) 

1.69 (77,790) 
0.98 (44,763) 
0.87 (39,971) 
1.58 (72,258) 

1.81 (82,787) 
1.25 (57,210) 
1.03 (47,046) 
1.56 (71,747) 

2.51 (114,831) 
1.64 (75,223) 
1.81 (82,682) 
3.30 (151,178) 

A 
C 
G 
T 

 
C 

2.35 (107,667) 
0.89 (40,863) 
1.06 (48,809) 
1.82 (83,359) 

1.23 (56,620) 
0.53 (24,251) 
0.49 (22,483) 
1.03 (47,472) 

0.98 (45,080) 
0.51 (23,466) 
0.49 (22,542) 
0.89 (40,874) 

1.30 (59,718) 
1.04 (48,067) 
1.05 (48,127) 
2.22 (101,802) 

A 
C 
G 
T 

 
G 

2.33 (106,819) 
0.87 (39,922) 
1.08 (49,451) 
1.66 (76,113) 

1.25 (57,183) 
0.59 (27,164) 
0.50 (23,038) 
1.26 (57,913) 

1.18 (54,374) 
0.59 (27,427) 
0.53 (24,480) 
0.97 (44,827) 

1.56 (71,505) 
0.86 (39,569) 
0.88 (40,697) 
1.89 (86,846) 

A 
C 
G 
T 

 
T 

2.70 (123,822) 
1.49 (68,080) 
1.29 (59,293) 
2.51 (115,064) 

1.95 (89,441) 
1.17 (53,760) 
0.96 (44,405) 
1.79 (82,073) 

1.97 (90,114) 
1.25 (57,529) 
1.24 (56,617) 
1.71 (78,556) 

2.72 (124,646) 
2.31 (105,926) 
2.35 (107,713) 
4.63 (212,186) 

A 
C 
G 
T 
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Appendix K: The universal genetic code table 
 

 
 
 

The table lists the three letter representation of the amino acid coded by each codon.  

The one letter codes as well as name of the amino acid are shown next to letter 

representation.  “Ter” is for the stop codon. 

 
 


