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A large number of new gene candidates are being accumulated in genomic databases

day by day. It has become an important task for researchers toidentify the functions of these

new genes and proteins. Faster and more sensitive and accurate methods are required to

classify these proteins into families and predict their functions. Many existing protein clas-

sification methods build hidden Markov models (HMMs) and other forms of profiles/motifs

based on multiple alignments. These methods in general require a large amount of time for

building models and also for predicting functions based on them. Furthermore, they can

predict protein functions only if sequences are sufficiently conserved. When there is very

little sequence similarity, these methods often fail, evenif sequences share some structural

similarities. One example of highly diverged protein families is G-protein coupled recep-

tors (GPCRs). GPCRs are transmembrane proteins that play important roles in various

signal transmission processes, many of which are directly associated with a variety of hu-

man diseases. Machine learning methods that have been studied specifically for a problem

of GPCR family classification include HMM and support vectormachine (SVM) methods.

However, amino acid composition has not been studied well asa property for GPCR clas-

sification. In this thesis, SVMs with amino acid frequencieswere used to classify GPCRs

from non-GPCRs. The method was compared with several other methods as HMM-based

and decision trees methods. Various sampling schemes were used to prepare training sets

to examine if the sampling scheme affects the performance ofthe classification methods.

The results showed that amino acid composition is a simple but very effective property for



identifying GPCRs. SVM with amino acid composition as inputvectors appeared to be a

promising method for protein classification even when sequence similarities are too low to

generate reliable multiple alignments or when only short partial sequences are available.
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Chapter 1

Introduction

Day by day a large amount of new protein sequences are being accumulated in various

databases. An important task for researchers in bioinformatics is to classify these pro-

teins in families based on their structural and functional properties, thereby predicting the

functions of these new protein sequences. Most frequently applied methods (e.g., Pfam,

PRINTS, and PROSITE) use multiple alignments to create various forms of models (pro-

file hidden Markov models, fingerprints, patterns, etc.). PROSITE [17], for example, is a

database consisting of information on significant sites, patterns, and profiles that specify

different protein families. PRINTS is a database of proteinfingerprints [3]. Fingerprints

are sets of short sequence motifs conserved among members ofa protein family. Pfam is a

database of alignments and profile-hidden Markov models (HMMs) of protein families [4].

All these three methods require multiple alignments of sequences to build their models.

However, generating reliable multiple alignments becomesproblematic when dealing

with extremely diverged protein sequences. One such example is the G-protein coupled

receptor (GPCR). GPCR is a superfamily of cell membrane proteins that have seven trans-

membrane regions. Their classification and functional annotation is important in today’s
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medical and pharmaceutical research because GPCRs play keyroles in many human dis-

eases. However, identifying and classifying this membraneprotein turns out to be a difficult

task, due to the high level of sequence divergence found among the GPCR family mem-

bers. For example, although all of the three classification methods described above (Pfam,

PRINTS, and PROSITE) have successfully built multiple GPCRmodels each specific to a

family or subfamily, none of their models covers the entire GPCR superfamily.

There have been several recent developments in the classification problem specific to

the GPCR superfamily. Kim et al. [25] and Moriyama and Kim [31] developed classifi-

cation methods based on discriminant function analyses using composition and physico-

chemical properties of amino acids. Karchin et al. [23] developed a system based on

support vector machine built on profile HMMs. Liao et al.’s [30] method is similar to

Karchin et al.’s [23], but uses pairwise similarity scores between protein sequences with

a support vector machine. These newly developed methods learn from both positive (i.e.,

GPCRs) and negative (i.e., non-GPCRs) examples, giving them a better discrimination

power, whereas profile HMMs and other motif-based methods mentioned earlier use only

multiple alignments of positive samples to build their models. Lee [27] applied two forms

of general multiple-instance learning methods, GMIL-2 andkernel-based GMIL on GPCR

classification problem. They used structural properties ofamino acids, like that of Kim et

al. [25], to build the classifiers.

Despite the development of GPCR specific classification methods, there have been few

comparative performance studies. This thesis compares methods that use multiple align-

ments with those that do not, and methods that use both negative and positive data for

learning with those that only use positive data. Furthermore, there has been no study for

using simply the amino acid composition for protein classification. Therefore, I examine
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the use of amino acid frequencies with various pattern recognition methods and compare

their classification performance for the GPCR superfamily.

In this thesis, nine different protein classification methods (classifiers) were included

for the performance analysis. The nine methods used are the profile-HMM, support vector

machines (SVMs) with four different kernel functions (linear, polynomial, sigmoid, and ra-

dial basis functions), SVM-pairwise developed by Liao et al. [29], SVM-Fisher developed

by Karchin et al. [23], decision trees, and boosted decisiontrees. As mentioned above,

HMMs make use of a multiple alignment of positive sample sequences to build a model.

SVMs, on the other hand, use sequences belonging to a family (positive examples) as well

as sequences that do not belong to the family (negative examples). It learns to discrimi-

nate between positive and negative samples based on sequence similarity scores or other

attributes extracted from the sequences. The decision trees methods learn also from nega-

tive as well as positive sets of data, but try to build a tree with smallest number of nodes to

best classify the two sets of data.

Three different sampling methods for positive example datawere used to discover if

such differences affected classification performance. Thethree basic methods of sam-

pling were random sampling, taxonomical sampling, and phylogenetic sampling. Some

sequences of bacteriorhodopsin proteins were added as a part of negative examples. Bacte-

riorhodopsin proteins are similar to GPCRs in that they haveseven transmembrane regions,

but are not actually GPCRs. The addition of such proteins in the example sets was expected

to make the learning more specific. The methods for preparingtraining data (positive and

negative example data used to train classifiers) are described in detail in Chapter 3.

The nine classifiers were tested on test data sets independently created from the training
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sets. In one test, some classes of GPCRs that were not included in the training set were

intentionally included. With this particular test, I was able to examine how well the nine

classifiers can identify GPCRs even if their examples were not included in the dataset they

were trained on.

The classifiers were also tested against a data set consisting of subsequences as short

as 50 amino acids. This is based on Kim et al.’s [25] results showing that their discrim-

inant function analysis method outperformed other methods(e.g., Pfam) for such short

sequences. The expectation was that the classifiers using amino acid composition as input

vectors might be able to identify short subsequences as wellas the discriminant function

analysis methods used by Kim et al. [25] and Moriyama and Kim [31].

Various statistics were used to analyze the classification performance: accuracy of each

method, cross-validation test, minimum error point calculation, maximum and median rates

of false positives, and receiver operating characteristics graphs. By using these various

statistics, the performance of each classifier was examinedin detail, not only on their ac-

curacy rates, but also their sensitivities, specificities,and the relationships among these

statistics. Chapter 3 describes the statistics used in thisthesis.

The remainder of the thesis is organized as follows. Backgrounds on some representa-

tive methods used in protein classification as well as the protein families used in this study

are described in Chapter 2. Chapter 3 explains data collection methods, different classifi-

cation methods, and performance analysis used in this study. Results and discussions are

given in Chapter 4. Finally, Chapter 5 concludes this thesiswith the overall discussion and

future works.
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Chapter 2

Background

2.1 Protein families used in this study

2.1.1 G-protein coupled receptors (GPCRs)

G-protein coupled receptors (GPCRs) are a superfamily of cell membrane proteins. They

are characterized by seven water-insoluble (hydrophobic)regions believed to represent

those that pass through the cell membrane, or transmembraneregions, as shown in Fig-

ure 2.1. Each GPCR has an amino terminal (NH2 or N-terminal) region outside of the cell

(extracellular), followed by three sets of alternate intracellular (inside of the cell) and ex-

tracellular loops, which connect the seven transmembrane regions, and a final intracellular

carboxyl terminal (COOH- or C-terminal) region [43].

GPCRs are involved in signal transmission from the outside to the interior of the cell

through interaction with heterotrimeric1 G-proteins, or proteins that bind to guanine (G)

nucleotides. The receptor is activated when a ligand that carries an environmental signal

1A heterotrimeric protein is composed of three subunit proteins (-trimeric), where each subunit protein is
different from the others (hetero-).
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Figure 2.1: A model of G-protein coupled receptor showing seven transmembrane regions
(courtesy [2]).

binds to a part of its cell surface component as shown in Figure 2.2. A wide range of

molecules is used as the ligands including peptide hormones, neurotransmitters, pancrine

mediators, etc., and they can be in many forms: e.g., ions, amino acids, lipid messengers,

proteases.

The heterotrimeric G-proteins have three subunits, namely, α, β, andγ (Figure 2.2).

The G-protein activity is regulated by theα subunit, which binds guanine (G) nucleotides.

In an inactive state,α is bound to a GDP (guanine diphosphate), which together are bound

to subunitsβ andγ (Figure 2.2A). A ligand binding at the extracellular domainof the re-

ceptor induces a conformational change in the receptor, which causes the G-proteins to

bind to the intracellular domain of the receptor (Figure 2.2B). This stimulates the exchange

of the GDP with a GTP (guanine triphosphate) in the binding site of theα subunit. The

activated GTP-boundα subunit then dissociates from theβ andγ subunits (Figure 2.2C).
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Figure 2.2: Signal transduction process by a GPCR and a G-protein withα, β, andγ

subunits (courtesy [8]). This example shows a hormone peptide as a ligand.

Theβ andγ subunits remain bound to each other and function as theβγ complex. Theβγ

complex and the GTP-boundα subunit interact with their targets, for example, an enzyme

or an ion channel, to transmit the signal. The bound GTP becomes a GDP due to hydrol-

ysis after the transmission of the signal. The GDP-boundα subunit reassociates with the

βγ complex to form a heterotrimeric G-protein (Figure 2.2A), which is ready for another

cycle of transmission of a signal through a GPCR [8].

GPCRs are involved, for example, as light sensing moleculesin the eye (rhodopsins),

odorant receptors in the olfactory system, and as taste receptors [12]. They are found in a

wide range of eukaryotic organisms. The GPCRDB, a database system for GPCRs [15],

divides the GPCR superfamily into five major classes based onthe ligand types, functions,

and sequence similarities, as shown in Table 2.1. The sequences of different GPCR classes

are highly diverged from each other, except that they share one common structural fea-

ture, that is, they all have seven hydrophobic transmembrane regions. GPCRs within a

class share common functions and more sequence similarities. Class A, the Rhodopsin-

like class, is by far the most populated GPCR class with more than 3,500 members in the
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Table 2.1: Major GPCR classification based on GPCRDB (as of November 2003).

Class Examples Number of entries
A: Rhodopsin like Rhodopsin and adrenergic receptors 3,519
B: Secretin like Calcitonin receptors 217
C: Metabotropic glutamate/pheromone Metabotropic receptors 131
D: Fungal pheromone pheremone receptors 24
E: cAMP receptors (Dictyostelium) cAMP receptors 5

database. Each class is further divided into subclasses, subgroups, and so forth, depending

upon the common agents they bind to and sequence similarities.

Identifying the function of GPCR sequences is important in biomedical and pharmaceu-

tical research, because GPCRs play key roles in many biologically important functions and

are related to many diseases (e.g., neurological cardiovascular diseases, depression, obe-

sity, pain, and viral infections [1]). However, identifying and classifying this membrane

protein family is a difficult task due to the high levels of divergence observed among the

GPCR family members. Therefore, it becomes important that there be a way to accurately

and efficiently identify any new GPCRs from genomic data. This would benefit the phar-

maceutical research and give us a better understanding of GPCR functions. The methods

developed in this thesis will also be applicable to other proteins. GPCRs are used in this

study due to their scientific importance, and also as an example of highly diverged protein

families.

2.1.2 Bacteriorhodopsin

Bacteriorhodopsin is a type of transmembrane protein foundin bacteria. It is named as

such because of its similarities to the rhodopsin (a GPCR) found in the outer segments of

mammalian retina. Bacteriorhodopsin clusters in purple patches in the bacterium,Halobac-

terium halobium, and have seven transmembrane regions spanning the cell membrane. The
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bacteria carry out a light-driven proton transport by meansof bacteriorhodopsin. When

there is not enough oxygen for the bacteria for oxydative metabolism, the bacteria use the

energy from the sunlight to pump protons out of the cell. The proton gradient generated by

such mechanism represents potential energy, which is laterused by the cell to synthesize

ATP (adenosine triphosphate) that powers the cell [13]. Although bacteriorhodopsins share

the same seven transmembrane structure, they do not activate any G-proteins, hence they

are not GPCRs.

The protein classification methods developed in this thesislearn from training sets

composed of positive examples (GPCRs) and negative examples (non-GPCRs). Based on

the information gained (models), they classify protein sequences in the test set. Bacte-

riorhodopsin sequences were included in some training as a part of negative examples to

examine if they would improve the specificity of the algorithms to classify GPCRs. In other

words, the algorithms were tested for their abilities to discriminate GPCRs from bacteri-

orhodopsins that also have seven transmembrane regions.

2.2 Protein Classification Methods

In this section, I explain the widely used hidden Markov model (HMM) method and some

recently developed protein classification methods using support vector machines (SVMs)

and discriminant function analysis.

2.2.1 Profile hidden Markov model (HMM)

One frequently used method for protein classification is a hidden Markov model. Hid-

den Markov models, which are extensions of Markov chains, have a finite set of states

(a1, . . . an), including a begin state (where the sequence begins) and anend state (where
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the sequence terminates). Each state has two probabilitiesassociated with it:

• the transition probabilityTij, or the probability that a stateai will transition to an-

other stateaj , wherej = i + 1, . . . , n, and

• theemission probabilityE(x|j), or the probability that a stateaj will emit a particular

symbol x. Emission probabilitites are properties of only HMMs and not Markov

chains.

The difference between a Markov chain and a hidden Markov model is in the information

known on each state. In a Markov chain, for any sequence, all state transitions are exactly

known– i.e., there is a unique, known path through the model.In a hidden Markov model,

the state information ishidden from the user [9].

For example, Figure 2.3A shows Markov chains for two models (loaded and fair dice).

A Markov chain can determine the probability that a given sequence of rolls was generated

from a loaded die or a fair die. It, however, cannot determinewhich ”segments” of the

sequence of rolls were generated by which die. On the other hand, Figure 2.3B shows a

hidden Markov model with two states (dice), the transition probabilities between them, and

the emission probabilities of each of the 4 symbols at each state. An HMM can tell, for a

given sequence of rolls, which segment was generated by a loaded die and which by a fair

die. For example, for the sequence12434132443444134, the following state sequence

can be predicted by an HMM.

Rolls: 12434132443444134

State: FFFFFFFFLLLLLLLLL

whereF is a fair die andL is a loaded die.
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chain with transition probabilities between different numbers in a die. If we consider the
two dice as two states of a hidden Markov model (B), it has transition probabilities between
the both states (dice), and emission probabilities within each state.



12

In biological sequence analysis, hidden Markov models are built based on a multiple

alignment as shown in Figure 2.4. In general, the multiple alignments are generated from

a training set consisting of positive examples of protein sequences that belong to a certain

functional family sharing a level of sequence similarities.

Figure 2.4: An example multiple alignment to create a hidden Markov model. A gap is
represented by a ‘–’. Columns 1-3 and 6-10 are “match” columns, while the columns 4 and
5 are “insert” columns.

Given a multiple alignment of protein sequences, “match”, “insert”, and “delete” states

are first identified. If a column of the multiple alignment hasless than or equal to fifty per-

cent gaps (i.e., a half or more of the sequences emit an amino acid), then it is classified as a

“match column” (columns 1-3 and 6-10 in Figure 2.4). A non-gap entry in a match column

is a “match state” in the HMM, while a gap in a match column is a “delete state”. Delete

states are presumed to be modifications that stem from an amino acid sequence losing one

or more amino acids in an evolutionary event. The last type ofstate is the “insert” state.

“Insert columns” (columns 4 and 5 in Figure 2.4) are similar to delete states, except that

the evolutionary modification to the amino acid sequence is that of gaining amino acids. A

non-gap in an insert column is an “insert state”, while a gap in an insert column is ignored

since it does not represent an event of evolutionary significance.
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Figure 2.5: A hidden Markov model (courtesy [16]) with delete (circle),insert (diamond),
and match (square) states. Transitions are allowed along each arrow. Delete and match
states can only be visited once for each position along a path. Delete states do not emit
any symbols. Insert states are allowed to insert multiple symbols. The alignment at the
bottom is used to build the model in this example. The sequences begin in the start state.
Amino acids a1 and a2 are inserted at the beginning of the sequence. A3 and B1 are the
first matched symbols, followed by a deletion, where B2 is matched with a gap. A4 is
then matched with B3, b4 is inserted, A5 is matched with B5, and finally the end state is
reached.

As shown in Figure 2.5, a hidden Markov model, which can be visualized as a finite

state machine, has a start and an end state in addition to the previously identified match,

insert, and delete states. Each of these states has position-specific transition probabilities

for transitioning into each of these states from the previous state (represented by arrows in

Figure 2.5). Match states have position-specific emission probabilities for each of the 20

amino acids. Insert states also have position-specific emission probabilities for inserting

each of the 20 amino acids at that state. When no residue is associated with a node, it is a

delete state, and no emission probability is associated with it.

To obtain the probability that a new sequence belongs to the family of the model, the

new sequence is compared to the HMM by aligning it to the model. The most probable

path taken to generate the sequence similar to the new sequence gives the similarity score.
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It is calculated by multiplying the emission and transitionprobabilities along the path.

The most likely path through the model is computed with theViterbi algorithm or the

forward algorithm [9]. One could also generate the most probable sequence obtained from

a particular HMM by summing over all possible paths and choosing the path with the

maximum score. In both ways, the most probable path can be efficiently and optimally

calculated.

2.2.2 Support vector machines (SVMs)

A support vector machine (SVM) is a learning machine that makes a binary classification

based on a separating hyperplane on a remapped instance space [7]. The goal of the classi-

fication is to remap the input vectors onto a multi-dimensional space so that the instances

are linearly separable.

SVMs learn from labeled examples from a training set including both positive and neg-

ative samples. Depending upon a set of attributes, SVMs find ahyperplane that classifies

the positive and negative data in the training set. The hyperplane is optimized in such a way

that the distance called themargin, between the hyperplane and the closest training exam-

ple is maximized. The data points nearest to the margin on both sides are calledsupport

vectors. We assume that there is a mapping or target function betweenthe data and their

labels the machine will learn [22]. A kernel function, whichis a dot product that is used

in remapping input feature vectors, is used to find the hyperplane. Once the hyperplane

is found, unlabeled examples from the test set can be classified as shown in Figure 2.6.

Classification can be done solely based upon the support vectors found.

Let us represent each sequence by a feature vector (a collection of the attributes in a

vector format). If the dimension of the feature vector isl (l attributes), a sequencex can
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Figure 2.6: A hyperplane classifying two classes of data. A new sample ofan unknown
class can be classified based on the hyperplane. In this figure, the training data have two
dimensions, represented by thex andy axes. Two classes of data are represented by squares
and circles. The hyperplane that is calculated from these training examples is given by
the bold dotted line, separated from the closest training vectors by the distanceγ. The
classification of an unknown sample (triangle) is done by determining which side of the
hyperplane the new instance falls. In this example, the prediction for the unknown sample
would be square.

be represented byx = [x1, x2, . . . , xl]. In a two-class problem, the label of the sequence

can be either 1 or -1. Let us represent the label of the sequence x with yx = {1,−1}. A

classifier is then built using the feature vectors of the training set. A weight vector of the

same dimensions as the feature vector is represented byw = [w1, w2, . . . wl]. The label of

the sequence is then predicted as 1 ifw · x > b (b is a threshold), else the label is -1. The

equation of the marginγx is given by

γx = yx(w · x + b) (2.1)

If γ is positive, then the sequence is correctly classified, otherwise, it is not correctly classi-

fied. Every time a sequence is incorrectly classified, the weight vectorw and the threshold

b are updated. A simple algorithm of an SVM is presented in Algorithm 1. In this al-
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Algorithm 1: SVM algorithm
begin

w0 ← 0, b0 ← 0, k ← 0;
R← Radius of the vector most distant from the origin of vector space;
while mistakes are made on the training set do

for i = 1 to N do
if yi(wk · xi + bk) ≤ 0 then

wk+1 ←− wk + ηyixi;
bk+1 ←− bk + ηyiR

2;
k ←− k + 1;

end
end

end
end

gorithm,w, the weight vector, is initialized to 0 at the beginning. Thethresholdb is also

initialized to 0.k is the number of mistakes made,R is the radius of the hypersphere, and is

initialized to the maximum distance of a training vector from the origin of the hypersphere

(i.e., the hypersphere containing the data).N is the total number of training vectors.η is

a learning rate. In this algorithm, the final predictor or thedecision hyperplane is given by

the equation

h(x) = sgn(wk · x + bk) (2.2)

When the loop in Algorithm 1 exits, the final weight vectorw is in the form

w =

N∑

i=1

αiyixi, (2.3)

whereαi is the number of mistakes made on example. Now the equation for the decision

hyperplane becomes

h(x) = sgn(
N∑

i=1

αiyi〈xi · x〉+ b). (2.4)

The data is represented in dot products. The dot product allows us to use kernels which

implicitly remap and compute dot products. An SVM algorithmusing the kernel function,
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Algorithm 2: SVM algorithm with a kernel functionK()

begin
while mistakes are made in for loop do

for i = 1 to N do
if yi(

∑N

j=1
αjyjK(xj · x) + b) ≤ 0 then

αi ←− αi + 1;
b←− b + yiR

2;
end

end
end

end

K(X, Y ), for some vectorsX andY , is shown in Algorithm 22. Some commonly used

kernel function includes: linear, polynomial, radial basis, and sigmoid functions. The equa-

tions for the respective kernel functions are listed in Table 2.2.

Table 2.2: The four types of kernel functions frequently used with SVM.

Linear Kernel K(x, y) = (x · y + 1)
Polynomial Kernel K(x, y) = (kx · y + c)p

Sigmoid Kernel K(x, y) = tanh(kx · y + c)

Radial Basis Kernel K(x, y) = e−γ||x−y||2

The advantage of using the SVM in this study is the ability to classify protein se-

quences without depending on multiple alignments. There have been only a few studies

using SVMs in the classification of protein sequences. Karchin [22] (and also Karchin et

al. [23]) developed the SVM-Fisher method. Liao and Noble [29] on the other hand used

the SVM-pairwise method. Wang et al. [42] and Zhang [45] alsoexperimented with SVM

on identifying Thioredoxin proteins, another example of protein family with low primary

sequence similarity. Both SVM-Fisher and SVM-pairwise methods were used in this study,

and they are described next.

2The algorithm presented here is a simple form of SVM that is not used by typical SVM packages. Regular
SVMs (including SVM-light) formulate the learning problemas a convex quadratic optimization problem and
then apply interior point methods to solve it.
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SVM-Fisher

Jaakkola et al. [19] developed a method to derive kernel functions from generative proba-

bility methods. Using this method, protein sequences with variable lengths can be handled

by extracting fixed length vectors. In addition, prior knowledge from the probability model

on a sequence can be used by a kernel function. It requires an HMM built from a set of

sequences of interest, most likely from a certain protein family. The forward-backward al-

gorithm is used to obtain the likelihood score for a query sequence. The forward-backward

algorithm also extracts “sufficient statistics” for each state. The sufficient statistics are the

posterior frequencies of having taken a particular transition or having generated one of the

residues of the query sequenceX from a particular state [18]. Analogous to the sufficient

statistics are the “Fisher scores” given by

UX = ∇θ log P (X|H1, θ), (2.5)

where each component ofUX is a derivative of the log likelihood score for the query se-

quenceX with respect to each parameter given the modelH1. The magnitude of the com-

ponents specifies the extent to which each parameter contributes to generating the query

sequence.

Karchin’s [22] experiments consisted of using the mixture priors to compute enhanced

Fisher score vectors. These mixtures are the pre-calculated amino acid distributions esti-

mated by studying large databases of protein sequences. Theprobability of amino acids in

each state is decomposed into a number of components. In thiscase, there are nine com-

ponents. The nine components are the probability distribution of an amino acid at a match

state belonging to the nine subclasses as described in [22].The final Fisher score vector

for a sequenceX, given an HMM modelH1, therefore has nine components for every
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match state inH1. Transition probabilities are not used as the parameter set, (θ in Equa-

tion 2.5) during the computation of Fisher scores, reducingthe computational complexity

of the calculation. Karchin also noted that using transition probabilities does not improve

the performance of SVM classification [22].

After deriving the Fisher score vectors for training samplesequences, those vectors are

used to train the SVM with a Gaussian radial basis kernel. This method is known as the

SVM-Fisher method. Details of the derivation of the Fisher score can be found in Jaakkola

et al. [18].

SVM-Fisher method was used to discriminate GPCRs in Karchin[22] and Karchin

et al. [23]. Karchin’s results showed that the HMM method, using the SAM software,

was the best method to discriminate the GPCR superfamily. The HMMs were able to

discriminate GPCRs including Classes A, B, and E from non-GPCRs perfectly. SAM

outperformed other methods including BLAST, Smith-Waterman, and SVM-Fisher. On

the other hand, GPCR subfamilies within the superfamily were best discriminated by the

SVM-Fisher method.

SVM-pairwise

Liao and Noble [30] developed another vectorization methodfor protein sequences. The

vectors are then used in a support vector learning. A proteinsequence is compared to every

protein in the dataset. Comparison is conducted by performing the Smith-Waterman local

alignment algorithm on two sequences, and an E-value for thesimilarity is estimated [30].

Since the pairwise scores between every two sequences are used as an input vector for the

SVM, this method is calledSVM-pairwise. After comparing a sequenceX with all the

sequences in the data set, the feature vector correspondingto a proteinX is in the form of
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FX = [fx1, fx2, . . . , fxn] wheren is the total number of proteins in the training set and

fxi is the E-value of the Smith-Waterman score3 between sequencesX and theith training

sequence. As in SVM-Fisher, a radial basis kernel function is used in the SVM.

Liao and Noble [30] tested the SVM-pairwise method to measure how well it could

classify proteins into superfamilies based on the Structural Classification of Proteins (SCOP)

database [32]. Sequences were selected from the SCOP database after removing very

similar sequences. SVM-pairwise was compared with other classification methods: PSI-

BLAST, SAM, SVM-Fisher, and Family Pairwise Search (FPS). Similar to SVM-pairwise,

FPS scores a protein sequence against a family of sequences [14]. A query sequence is

compared to a set of sequences and the pairwise scores are combined to obtain an overall

score for the similarity of the query sequence to the family of sequences compared to. Their

results showed that SVM-pairwise performed better than allof the other four methods.

2.2.3 Discriminant function analysis

Another interesting GPCR classification method was developed by Kim et al. [25]. The

method was called Quasi-periodic Feature Classifier (QFC).A feature space was generated

using statistical measures of physico-chemical properties of amino acids. Linear discrimi-

nant function analysis with non-parametric optimization was used to discriminate GPCRs

from other proteins.

The general form of linear discriminant function is given by

DS = a1X1 + a2X2 + . . . + anXn (2.6)

3The Smith-Waterman score is the maximum score for a local alignment between the two protein se-
quences being compared. The E-value or the expectation value of a score (and an alignment) is the number
of different alignments with scores equivalent to or betterthan that particular score expected to occur in the
database search by chance. The lower the E-value, the higherthe confidence.
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whereDS is the discriminant score,Xi is the value for each descriptor representing the

protein sequence, andai is the coefficient for that particular variable. The discriminat score

is calculated for each sample and is used to determine the class to which the sample be-

longs. The algorithm tries to solve for a set of coefficients in such a way that it would give

the highest accuracy on classification of the training set. In a parametric linear discriminant

analysis, the algorithm tries to maximize the between-class to within-class variance [6].

In QFC, however, the authors used a non-parametric optimization method using ‘runs’

statistics in order to avoid assuming normal distributionsof variables. After training, a lin-

ear hyperplane is determined that discriminates the two classes optimally. Test data is then

classified to respective classes using this linear function.

The main idea of the method was to construct the most useful feature space. Fourteen

physico-chemical properties were considered, and after step-wise deletion, four variables

were selected. After training the algorithm with GPCRs, Kimet al. [25] tested the method

comparing with three other methods: PROSITE, Pfam, and PRINTS. QFC performed bet-

ter than or as good as other methods in the test set. More interestingly this method outper-

formed the other three methods when tested on randomly fragmented short sequences as

short as 50 amino acids. They also observed that QFC performed well identifying GPCRs

from other transmembrane proteins.

Moriyama and Kim [31] later used parametric discriminant analysis with linear, quadratic,

and logistic functions. They also included one non-parametric method, K-nearest neigh-

bors. They compared the performance of GPCR discriminationamong these methods and

QFC described above. They found that the performance of these discriminant function

methods is comparable to QFC and similarly better against short sequences compared to
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Pfam, PRINTS, and PROSITE.

Lee [27] applied a multi-instance version of Kim et al.’s method in predicting func-

tional classes of GPCRs from Class A. The generalized multiple-instance learning methods

(GMIL-2 and kernel-based GMIL) was used with 7 physico-chemical properties derived

from Kim et al. to model the protein functional classes of Class A GPCRs. Then GMIL

algorithms were used to learn and predict functional classes. They observed that kernel-

based GMIL outperformed GMIL-2 by having better accuracy rates for 6 out of 11 train

groups and same accuracy rates for 2 train groups.

Discriminant analysis methods were not included in this study. However, their perfor-

mance is compared with the nine methods based on the results by Moriyama and Kim [31].
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Chapter 3

Materials and Methods

In this chapter, data collection methods used in this study are described first. Next, protein

classification methods used, and finally how the performanceof various methods were

analyzed is described.

3.1 Data Collection

Before implementing any learning algorithms, training andtesting data sets need to be

prepared. The learning algorithms used in this project: support vector machines, hidden

Markov models, and decision trees, all were trained on several training sets, and then their

classification performance was examined against test sets.I will now begin by explaining

how the training and testing sets were prepared.

3.1.1 Data sources

The positive datasets, which consist of known GPCR sequences, were taken from GPCRDB [15].

This database maintains a repository of known sequences from the GPCR superfamily. The
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May 2003 release1 of this database was used for this study. It consists of about5,300 GPCR

sequences. The GPCR superfamily is divided into five major classes according to function

and sequence similarities as listed in Table 2.1. Class A, Rhodopsin-like, is the largest class

and consists of 3,519 sequences. Class B consists of only 217sequences, and other classes

include even fewer sequences. The number of sequences in Classes B, C, D, and E add up

to only 377. Because Class A is the largest, this study focused on this class and various

training sets were created from Class A.

GPCRDB also maintains a collection of Bacteriorhodopsin proteins. These proteins

have seven transmembrane regions as GPCRs. However, as described in Chapter 2, these

proteins do not couple with G-proteins, and therefore, theyare not GPCRs. The May 2003

release of GPCRDB included 25 such proteins in its Bacteriorhodopsin class. As described

below, these bacteriorhodopsin sequences were used as a part of negative dataset.

All of the negative datasets were taken from Swiss-Prot database [5]. Swiss-Prot main-

tains a collection of protein sequences with detailed function-related annotations. As of

October, 2003, the size of Swiss-Prot database was 135,850 entries2. Negative datasets

longer than 100 amino acids3 were sampled randomly from this database. They were

checked so that none of the negative data belonged to the GPCRsuperfamily.

1Two major updates (in February and June) has been done since May 2003. Because of the elaborate
dataset sampling scheme used in this study, newer versions of the database could not be used due to time
constraints.

2The newest version of Swiss-Prot from July, 2004 consists of153,871 entries.
3The lower bound of 100 amino acids was set so that the negativesequences were not too much shorter

than the GPCRs, whose minimum length is close to 300 amino acids.
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3.1.2 Training data

A. Sampling methods for preparing positive training sets

In order to examine if any of the algorithms’ performance vary with different sampling

schemes of training sets, six different sets of positive GPCR data were sampled from Class

A. These included one “random sampling” set, one “taxonomical sampling” set, and four

“phylogeny-based sampling” sets. Each sampling method is described next.

i) Random sampling

The random sampling set consisted of 200 GPCRs randomly sampled from Class A. This

random sampling set may have GPCRs that are very close to eachother or very diverged

from each other in sequence similarity. Random sampling maynot represent all of the

subclasses within Class A evenly, especially if some subclasses have only a small number

of member proteins. On the other hand, this sampling scheme represents the distribution of

GPCR members included in GPCRDB. This training set may not train well if such a bias

affects the power of classification models.

ii) Taxonomical sampling

The taxonomical sampling is based on the families and subfamilies of Class A according

to the GPCRDB classification scheme. As shown in Figure 3.1, Class A is divided into 16

subfamilies, which are again divided into smaller subfamilies, totaling 87 subdivisions. In

this sampling scheme, two sequences were chosen from each ofthese subdivisions, with a

total of 173 sequences (one subdivision had only one sequence). This is the only positive

training set consisting of fewer than 200 sequences. The taxonomical sampling set repre-

sents all of the subclasses within Class A regardless of the size of each subclass. Therefore,

this training set was expected to train better than the random sampling, especially when

training and test datasets had different class/subclass distributions.
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Figure 3.1: Classification scheme of the GPCR superfamily used in GPCRDB. Class A is
divided into 16 divisions based on ligand types (e.g., Amine, Peptide, etc.). Each family is
further divided into 87 subdivisions in total(e.g., Acetylcholine, Adrenoreceptors, etc. in
the Amine family).

iii) Phylogenetic sampling

The phylogenetic sampling is a more complex procedure and needs more explanation.

A phylogenetic tree of protein sequences illustrates the evolutionalry relationships among

them [28]. It consists of nodes and branches, where the external (or terminal) nodes repre-

sent the protein sequences considered. The lengths of the branches are proportional to the

numbers of amino acid substitutions estimated between the nodes.

GPCRs are extrememly diverged sequences, and even among themembers of Class

A their amino acid sequences have high divergence levels among each other. For ex-

ample, pairwise distances estimated from GPCRs in Class A (based on JTT substitution

model [21]) range from 0.00 to 32.27 amino acid substitutions per site with the average

distance 2.77. Phylogenetic sampling is used to generate positive training sets that have

various levels of divergence from this extremely diverged GPCRs. A phylogenetic tree

of all Class A sequences was reconstructed4 first. To build a phylogenetic tree, distances

4The original evolutionary events happen in nature, and phylogenetic methods try to “reconstruct” such
evolutionary (divercifying) pathways based on sequence information. Note that any phylogenetic tree “re-
constructed” is a hypothesis (or model) of the true evolutionary process.
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between sequences were required. In order to avoid a problemgenerating a multiple align-

ment from extremely diverged sequences, only pairwise alignments were generated.

The ClustalW program [41] was used to obtain pairwise alignments between all 3,519

sequences of Class A GPCRs. ClustalW uses a progressive algorithm to generate a multi-

ple alignment. However, for a pairwise alignment, it uses simply a dynamic programming.

The default set of options: gap opening penalty of 10, gap extenstion penalty of 0.10, and

the BLOSUM scoring matrices, was used. Pairwise distances were calculated using the

protdist program from the PHYLIP package [11]. The JTT substitution model [21] was

chosen for estimating distances. All of the pairwise distances were assembled into one

distance matrix. Finally, theneighbor program from the PHYLIP package was used to

reconstruct a phylogeny tree. Moriyama et al. (personal communication) compared the

phylogenetic trees reconstructed based on pairwise distances and those based on regular

distances using multiple alignments. They reported that the pairwise distance-based phy-

logeny is sufficiently accurate for illustrating major clustering patterns. Therefore, this

method should be a good approximation for the purpose used inthis study.

The UPGMA (Unweighted Pair Group Method with Arithmetic Mean) method [40],

instead of the neighbor-joining (NJ) method [36], was used to reconstruct the phylogenetic

relationships. The UPGMA reconstructs a rooted phylogenetic tree assuming a constant

evolutionary rate. The NJ method, on the other hand, produces an unrooted tree without

any assumption on the evolutionary rate. As described below, the phylogenetic sampling

used in this study involves with choosing clusters at a givendivergence level. This process

becomes much simpler when UPGMA, instead of NJ, phylogeniesare used due to the av-

eraging clustering process of UPGMA. It should be noted thatthe NJ method in general

reconstructs more accurate phylogenies than the UPGMA whenthe evolutionary rate can-
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not be assumed to be constant. Although such an assumption ismost likely invalid for the

GPCR superfamily evolution, since the purpose of using phylogeny in this study is only to

determine a rough clustering pattern, using UPGMA should not present a serious problem

in this case.

Figure 3.2: A phylogenetic tree of a subset of Class A GPCRs reconstructed by the UP-
GMA method. Threshold 1 at 1.27 branch length from the leavesgives four clusters of
sequences(A). Using Threshold 2 at 0.18 branch length from the leaves, on the other hand,
gives seven clusters of sequences as shown in B.

A sample UPGMA phylogenetic tree is shown in Figure 3.2. In the figure, ten se-

quences were used to reconstruct the phylogenetic tree. At Threshold 1, which is at the

distance (branch length) of 1.27 amino acid substitutions per site from the leaves, four clus-

ters can be formed (Figure 3.2A). The first two clusters each consists of a single sequence

(5H1A HUMAN and OPSDSEPOF). The third cluster includes four sequences under the

node 4, and the fourth cluster consists of the remaining foursequences under the node 6.

At Threshold 2, which is at 0.18 distance (branch length) from the leaves, seven clusters

can be formed (Figure 3.2B). Five clusters each consists of asingle sequence, while the
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Table 3.1: The numbers of clusters and three levels of thresholds used.

Number of Clusters Distance threshold1

100 0.905
200 0.675
400 0.446
1 Distance threshold is presented as the branch length from the leaves. To ob-

tain 100 clusters, for example, the branch length of 0.905 amino acid substi-
tutions per site from the leaf nodes was used as the cut-off line. This resulted
in 100 clusters that were formed under this threshold.

other two clusters include three sequences under the node 3 and two sequences under the

node 1.

After a phylogenetic tree including all the Class A GPCRs (3,519 sequences) was re-

constructed, three different levels of distance thresholds were used to obtain 100, 200, and

400 clusters. Table 3.1 summarizes the three levels of distance thresholds. All the distance

thresholds are the branch lengths from the leaves of the phylogenetic tree to the cut-off line.

For the first phylogeny-based sampling scheme, the distancethreshold used was 0.675.

At this threshold, there were 200 clusters as shown in Table 3.1. From each cluster, one

sequence was randomly sampled. This resulted in 200 sequences. This method is called

the “pure phylogeny-based sampling”. This sampling set is phylogenetically a good repre-

sentation of Class A GPCRs. Thus, this set was expected to train well all the classification

methods.

The second set, called “random phylogeny sampling”, was prepared by first choosing

one sequence each from the 400 clusters at the distance threshold of 0.446 as shown in Ta-

ble 3.1. Next, 200 sequences was randomly chosen from these 400 sequences. The average

divergence level of this sampling set is expected to be lowerthan the pure phylogeny-based
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sampling due to its lower threshold. This set incorporates also some random factors. This

set may not train as well as the pure phylogeny-based sampling considering its less effec-

tive representation of the GPCR families. However, the inclusion of the random sampling

could overcome this disadvantage.

For the third set, called “phylogeny and random sampling”, one sequence each was

chosen from the 100 clusters with the threshold of 0.905 as shown in Table 3.1. Another

set of 100 randomly sampled sequences without overlaps was added to this to make a to-

tal of 200 sequences. Phylogenetically, this sampling set represents Class A GPCRs better

than random phylogeny sampling and it combines the possiblebenefit of random sampling.

The fourth set, “two from each cluster sampling”, was created by choosing two se-

quences each from the 100 clusters with branch length of 0.905. This resulted in 185

sequences since 15 clusters had only one sequence. Fifteen randomly sampled sequences

were added to make a total of 200 sequences. The last three phylogenetic sampling schemes

incorporated random samplings. Comparing them with the pure phylogeny-based method

as well as the taxonomic sampling method, the effect of random sampling on the training

could be evaluated.

B. Sampling methods for preparing negative training sets

Two sets of negative data containing non-GPCR sequences were prepared. For the first set,

200 non-GPCR sequences were randomly chosen from Swiss-Prot protein database. They

consisted of any kind of protein sequences that were at least100 amino acids long but were

not GPCRs.
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For the second set, a set of bacteriorhodopsin proteins wereadded to the first negative

dataset. Bacteriorhodopsins are seven transmembrane proteins like GPCRs but they are not

actually GPCRs, as described in Chapter 2. Addition of such proteins is expected to train

the learning methods more specifically and with fewer false positives, resulting in better

classification performance on the test sets. This is becausethe learning methods will learn

to discriminate the protein sequences on properties other than the existence of seven trans-

membrane regions. There were a total of 25 bacteriorhodopsins in the May 2003 release of

GPCRDB. Ten sequences were sampled out of 25 so that they werediverged as much as

possible. A multiple alignment of these proteins were generated using ClustalW. Bootstrap

analysis5 with 1,000 replications was done by usingseqboot, a program from the PHYLIP

package. The PHYLIP programprotdist was used to estimate distances with the JTT

method [21]. The PHYLIP programneighbor was used to reconstruct neighbor-joining

trees. The programconsense from PHYLIP package was used to calculate boostrap sup-

porting scores. Strongly supported clusters, with bootstrap values of 95% or higher, were

identified and ten sequences of bacteriorhodopsin were chosen to represent the entire diver-

sity in the tree. These ten sequences were added to the previously created negative training

set. The total number of sequences in the second negative training set was therefore, 210.

C. Twelve training sets

After putting together the six positive training sets with two negative training sets, the total

number of training sets was twelve. They are summarized in Table 3.2.

5Bootstrap analysis is a method of generating multiple data sets that are resampled from the original input
data set [11]. For phylogenetic analysis, bootstrap analysis is done on the multiple alignment, and bootstrap
supporting values are calculated for each node in the phylogeny. Higher the values, the nodes (or the clusters)
are supported more.
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Table 3.2: The training sets used in this study.1

Training
Set ID Positive dataset Negative dataset
1a (400) Random (200) Random (200)
2a (373) Taxonomical (173) Random (200)
3a (400) Pure phylogeny (200) Random (200)
4a (400) Random phylogeny (200) Random (200)
5a (400) Phylogeny and Random (200) Random (200)
6a (400) Two from each cluster (200) Random (200)

1b (410) Random (200) Random and Bacteriorhodopsin (210)
2b (383) Taxonomical (173) Random and Bacteriorhodopsin (210)
3b (410) Pure phylogeny (200) Random and Bacteriorhodopsin(210)
4b (410) Random phylogeny (200) Random and Bacteriorhodopsin (210)
5b (410) Phylogeny and Random (200) Random and Bacteriorhodopsin (210)
6b (410) Two from each cluster (200) Random and Bacteriorhodopsin (210)
1 The numbers in the parantheses show the number of samples in each dataset.

3.1.3 Test data

The performance of each classification algorithm was testedagainst test datasets that in-

cluded both positive and negative data. All the sequences used in the test data are exclusive

from those in the training data.

A. Full-sequence test

Two positive test sets were created. The first dataset consisted of 200 sequences of ran-

domly sampled Class A GPCRs from GPCRDB. The second set consisted of 200 sequences

of randomly sampled GPCRs of Classes B, C, D, and E from GPCRDB. This second test

set was created to examine how well the methods trained on Class A GPCRs would classify

non-Class A GPCRs.

As described for the training sets, the negative samples forthe test datasets were ob-
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Table 3.3: The test sets used in this study.1

Test
Set ID Positive Negative
t1 (410) Random - Class A (200) Random and Bacteriorhodopsin(210)
t2 (410) Random - Class B, C, D, E (200) Random and Bacteriorhodopsin (210)
1 The numbers in parantheses show the number of samples in eachdataset.

tained from the Swiss-Prot database. Only one set of negative test data was created. The set

consisted of 200 randomly sampled non-GPCRs that were at least 100 amino acid long and

a set of 10 bacteriorhodopsin protein sequences. The bacteriorhodopsin sequences were

sampled in the same way as explained in Section 3.1.2 and theywere not overlapped with

those in the training set. The negative test set contained 210 sequences.

The two test datasets are summarized in Table 3.3.

B. Subsequence test

The test set containing 200 Class A GPCRs was used to create another sets of test data

with amino acid sequences of different lengths. Six test sets were created, where each

of the test sets consisted of a particular length of subsequences. The amino acid lengths

chosen were: 50, 75, 100, 150, 200, and 300. These were randomsubsequences of the

full GPCR sequences. These lengths were chosen because the average length of GPCRs

in all the training sets was 397, ranging from 263 to 1,050 amino acids. These test sets

were used to examine how well the classification methods perform with short subsequence

of the real GPCRs, and how the performance changes with increasing subsequence lengths.
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3.2 Protein Classification Methods

The purpose of this thesis is to compare and analyze different classification methods and

their performance and the effect of various training datasets on these methods. The prob-

lem given to these methods is to classify two types of data, GPCR and non-GPCR. The

methods used are profile hidden Markov models, support vector machines using several

kernel functions and several type of feature vectors, and decision trees. In this section,

these methods and the attributes used by these methods are described.

3.2.1 Profile-HMM

As a representative of the commonly used protein classification methods, a profile HMM

method is included in this study, and the classification performance of other methods was

examined against this method. Sequence Alignment and Modeling (SAM) software sys-

tem [16, 24, 26] is an implementation of the profile HMM methodfor protein classification.

SAM (version 3.4) was used for this study. Fasta format of unaligned sequences of the pos-

itive training sets including only GPCR sequences was used as input. Dirichlet mixture

priors [38] were used to build the models so that they have better probability distributions.

For building the models, the following command and options were used.

>buildmodel train_model -train trainset.fas

-prior_library uprior.9comp -randseed 0

Heretrainset.fas is the input file,uprior.9comp is the library of Dirichlet mix-

tures, andtrain model is the name given to the model built by SAM and it is saved in

thetrain model.mod file. The-randseed parameter is for the selection for initial

model length. The default value of-randseed is the process ID number. Here it is set to

0 so that the program run is reproducible. The test sequencesin fasta format from each of

the test sets were compared to each of the models using the following command.
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>hmmscore outfile -i train_model -db testset.fas

-sw 2 -calibrate 1

The output file (namedoutfile.dist) contains the e-values of the scores for each

test sequence from the filetestset.fas based on the model given intrain model.

The option-sw is to specify the type of alignment. Setting-sw to 2 performs full-local

alignment of sequences to the model. The-calibrate parameter with the value 1 is used

for a better calibration of the e-values. The sequences in the output file are ranked according

to the e-values. Classification was done using a certain e-value threshold. Sequences with

the e-values lower than or equal to the threshold were classified as “positives” (GPCRs),

while those with the e-values higher than the threshold wereidentified as “negatives” (non-

GPCRs). For accuracy rate calculation (described later), the e-values threshold was found

using the minimum error point described in Section 3.3.3.

3.2.2 SVM with amino acid frequencies

A support vector machine package SVM-light version 5.0, which is an implementation of

support vector machines by Joachims [20] was used. Both positive and negative sequences

(GPCRs and non-GPCRs) from the training sets were used to train the SVM.

For this study, simply nineteen amino acid frequencies of each protein sequence were

used as the input vector for SVM-light. Four kernel functions (linear, polynomial, sigmoid,

radial basis) were used to create a hyperplane for classification and the performance of

each kernel function with SVM-light is compared. The four kernel functions are listed in

Table 2.2.

The default kernel function used by SVM-light is linear kernel. For training the SVM

with linear kernel function, the following command was used:
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>svm_learn train.dat train_model

train.dat is the input file with the 19 amino acid frequencies of each training sequence

in a vector format, andtrain model is the model built by SVM based on the training

data.

For training the SVM with the polynomial, sigmoidal, and radial basis kernels, the

following commands were used:

>svm_learn -t 1 -s 1 -r 1.0 -d 100 train.dat train_model

>svm_learn -t 3 -s 10 -r 0.1 train.dat train_model

>svm_learn -t 2 -g 150 train.dat train_model

where the parametert is the kernel function option where 0 is for linear (default), 1 is for

polynomial, 2 is for radial basis, and 3 is for sigmoid kernelfunction. The other options

are used to define the parameter values for the kernel functions. They were decided after

various different values were tried. Table 3.4 summarizes the parameters used.

Table 3.4: The values used for parameters in SVM with polynomial, sigmoid, and radial
basis kernel functions.

Kernels Parameters1

k c p γ

Polynomial 1 1.0 100 -
Sigmoid 10 0.1 - -
Radial basis - - - 150
1 The parameters for each kernel are

listed in Table 2.2.

For classifying the test set sequences, the following command was used for all the

kernel functions.
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>svm_classify test.dat train_model output_file > result_file

The test.dat is the test file with 19 amino acid frequencies for each test sequence

in a vector format. Thetrain model is the model built from the training set and

output file consists of the predictions. Theresult file contains the classifica-

tion statistics including the accuracy of the SVM on the testset.

3.2.3 SVM-pairwise

SVM-light (version 5.0) package with the radial basis kernel function was used for the

SVM-pairwise method. The input vectors for the SVM were the e-values of pairwise

similarity scores between all sequences. E-values were derived using theSSearch (ver-

sion 3.4) program, which is an implementation of Smith-Waterman local alignment algo-

rithm [39, 33]. The default options ofSSearch (open gap penalty of 12, gap extension

penalty of 2, and the BLOSUM50 scoring matrix) were used.

From the training sets, each sequence was compared against each one included in the

training sets. From each comparison, the e-values was calculated and put into a vector

format. Each vector contained, for example, 400 e-values (200 from the comparison with

positive samples and 200 from those with negative samples).Next, the input vectors were

used to train a SVM using the SVM-light program,svm learn. The radial basis function

with γ = 0.0001 was used as the kernel function.

For the test sets,SSearch program was used to obtain e-values for each test sequence

against the training sets. The input vector file including these e-values was used with the

svm classify program to obtain the prediction results and the accuracy ofthe SVM on

the test set.
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Table 3.5: The profile HMMs and corresponding training and test sets used for
SVM-Fisher method.1

SAM HMM Fisher scores for training Fisher scores for testing
M1 F 1a F t1 M1, F t2 M1

F 1b F t1 M1, F t2 M1
M2 F 2a F t1 M2, F t2 M2

F 2b F t1 M2, F t2 M2
M3 F 3a F t1 M3, F t2 M3

F 3b F t1 M3, F t2 M3
M4 F 4a F t1 M4, F t2 M4

F 4b F t1 M4, F t2 M4
M5 F 5a F t1 M5, F t2 M5

F 5b F t1 M5, F t2 M5
M6 F 6a F t1 M6, F t2 M6

F 6b F t1 M6, F t2 M6
1 Six SAM models and 12 training sets were used to create the 12 sets of Fisher

score vectors for training. For example, F1a is the training set with Fisher
scores obtained from the model M1 and the training set 1a. Fortesting, two
test sets and the six SAM models were used to create 12 sets of Fisher score
vectors. For example, Ft1 M1 is the test set with Fisher scores obtained from
the model M1 and the test set t1.

3.2.4 SVM-Fisher

SAM (version 3.3.1) and SVM-light (version 5.0) were both used for this method. The

profile HMMs built by SAM earlier as explained in Section 3.2.1 was used for this method.

Both positive and negative sequences from each training setwas compared with its

corresponding SAM model, and the Fisher scores [18] were extracted for each sequence.

Table 3.5 summarizes the relationships among the several input data used for this method.

For example, the HMM M1 was built using positive sequences of1a training set, and both

1a and1b training sets with positive and negative sample sequences were compared with

the model M1 to obtain the Fisher score vectors (named F1a and F1b in the table). The

following command from SAM was used to derive Fisher scores:
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>get_fisher_scores unused -fisher_feature match_prior

-i train_model -db trainset.fas -sw 2

whereunused is the run-name (not used in this program) and-fisher feature is

the parameter that specifies which features are used to calculate the Fisher score vectors.

Thematch prior option given directs to use only the match states and Dirichlet mixture

used to train the model. The SAM model file is specified with-i option, and-db specifies

the dataset file whose Fisher score vectors need to be calculated.

This resulted in 12 training sets of Fisher score vectors (F1a to F6b in Table 3.5).

These Fisher score vectors were then used to train the SVM with a radial basis kernel func-

tion (γ = 0.0001) using thesvm learn program in SVM-light.

Each sequence of the two test sets (t1 and t2 as shown in Table 3.3) was compared

against each of the six SAM models, and the Fisher scores wereobtained by using the

get fisher scores program as described above. The Fisher score vectors obtained

from each test set (Ft1 M1 to F t2 M6 in Table 3.5) were classified using thesvm classify

program in SVM-light, based on each trained SVM model. For example, as listed in Ta-

ble 3.5, the SVM trained with the F1a input vectors was tested against both of the Ft1 M1

and Ft2 M1 test vectors.

3.2.5 Decision trees

Decision trees method, another pattern recognition method, was also used in this study for

comparison purposes. This method has rarely been used for protein classification problems.

Decision trees work by discovering rules that best classifythe given data. Each attribute

of the data is evaluated first to see which one can classify thedata best. That attribute is

then chosen as the root node, and descendant nodes are created by sorting the examples to
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appropriate branches. The entire process is repeated at each newly formed node. Once all

the nodes have only one type of the classes associated with it, the process stops. The main

idea is to choose tests at each node that maximally separatesthe data so that the final tree

is small.

Since this method does not require multiple alignments, andworks differently than

the SVMs, it is interesting to see how this method works compared with others. For this

method, I used Quinlan’s c4.5 (release 8) program [35]. The 19 amino acid frequencies of

both positive and negative training sequences were used as input to the program.

The following commands were used for training and testing.

>c4.5 -f filestem -u

where the parameter-f is to specify a filestem name. Three sets of files are used as in-

puts to c4.5.filestem.data consists of the 19 amino acid frequencies (attributes) of

each sequence in the training set, followed by its label.filestem.names consists of

the attribute names and the class names the data belongs to.filestem.test consists

of the 19 amino acid frequencies of each sequence in the test set. The parameter-u is to

specify c4.5 to classify the test data in thefilestem.text file. The output given is a

form of a confusion matrix (explained in the next section), which includes the numbers of

true positives, false positives, true negatives, and falsenegatives.

Decision tree with boosting was also performed. In boosting, many decision tree clas-

sifiers are built from the same training set by changing the weights6 of the misclassified

vectors at each iteration [34]. The weights of all the vectors are normalized at every it-

6A weight for each instance is maintained in boosting. The higher the weight, the more the effect the
instance has on the classifier [34].
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eration. When the total weight of the misclassified vectors add up to 0 or is greater than

0.5, the program stops building trees. The test vectors are passed through each decision

tree classifiers A decision on the class of a sequence is basedon the majority vote by the

classifiers.

The Weka implementation was used for the boosted decision trees [44]. In the Java

interface, the amino acid frequencies of the training set sequences and the amino acid

frequencies of the test set sequences were loaded. The decision trees program J48 [35]

(equivalent to c4.5 [44]) and the boosting program AdaBoostM1 [37] were used with the

following command:

>AdaBoostM1 -P 100 -S 1 -I 10 -W J48 -- -C 0.25 -M 2

where-P specifies the weight mass to be used,-S specifies the random number seed,-I

specifies the number of iterations, and-W specifies the learning program (J48 is used here).

The parameters for J48 include:-C specifies for the confidence threshold for pruning and

-M specifies for the minimum number of instances in a leaf nodeof the decision tree. The

output consisted of a confusion matrix with true predictions and false predictions by the

classifier.

3.3 Performance Analysis

Classification performance of each method was analysed using various statistics. Their

performance was examined against independently prepared test datasets described in Sec-

tion 3.1.3. Cross-validation analysis was also performed.The accuracy rate is the simplest

measure for the classification performance. More detailed analysis is done using the Re-

ceiver Operating Characteristic (ROC) curve. Performanceanalysis used by Karchin et
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al. [22], which examines the minimum error point, maximum and median rate of false

positives, was also performed.

3.3.1 Cross-validation

Cross-validation analysis was performed for all the experiments in this study. Cross-

validation analysis is also called “leave-one-out” method. It is done as follows. One item

from the training dataset is left out and the learning algorithm is trained on the rest of the

items. The trained model is used to predict the label of the one left out earlier. Forn se-

quences in the training set, this process is repeatedn times leaving each of then sequences

out and creating a model from the remainingn − 1 sequences. The accuracy for each

method is calculated as described next.

3.3.2 Confusion matrix and accuracy rate

A confusion matix is a2 × 2 table showing the number of real sequences and the number

of predicted sequences by a classifier. In a confusion matrix, as shown in Figure 3.3, there

are four items:

• True Positives (TP): Number of actual GPCRs that are predicted as GPCRs.

• False Positives (FP): Number of actual non-GPCRs that are predicted as GPCRs.

• True Negatives (TN): Number of actual non-GPCRs that are predicted as non-GPCRs.

• False Negatives (FN): Number of actual GPCRs that are predicted as non-GPCRs.

The accuracy rate is defined as the proportion of correct predictions and is given by:

TP + TN

TP + TN + FP + FN
.
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Predicted Label
+ −

+ True Positive (TP) False Negative (FN)
Actual
Label

− False Positive (FP) True Negative (TN)

Figure 3.3: A confusion matrix with true positive, false positive, truenegative, and false
negative.

The minimum, average, and maximum accuracy rates were calculated for each method

trained on different training sets. The accuracy rate was calculated from independently

prepared test sets as well as from the cross-validation test.

3.3.3 Minimum error point

The minimum error point (MEP) is one of the performance measures used by Karchin [22].

Each classifier outputs a score for each prediction as an example shown in Table 3.6. The

magnitude of these scores reflects the classifier’s confidence in the prediction. The test

sequences are ranked based on the scores. The threshold score where the minimum num-

ber of errors (FN + FP) occurs is the minimum error point (MEP)and the number of false

positives and false negatives are assessed at this point. The minimum error point tells us

the best case accuracy of a classifier. In Table 3.6, the MEP isobtained with the score 14,

where the number of errors is only 3.

The minimum error point is calculated for all methods exceptthe decision trees meth-

ods. These methods do not give out prediction scores for testsequences. Instead only a final

result is given in a confusion matrix. Therefore, it was not possible to do this performance

analysis on these methods.



44

Table 3.6: An example for calculating the minimum error point, maximumand median
rates of false positive.

Rank Seq. ID Score Actual Label FP FN Error FP rate
1 seq1 20 + 0 7 7 0
2 seq2 19 + 0 6 6 0
3 seq3 18 + 0 5 5 0
4 seq4 17 + 0 4 4 0
5 seq5 16 - 1 4 5 0.125
6 seq6 15 + 1 3 4 0.125
7 seq7 14 + 1 2 3 0.125
8 seq8 13 - 2 2 4 0.25
9 seq9 12 - 3 2 5 0.375

10 seq10 11 + 3 1 4 0.375
11 seq11 10 - 4 1 5 0.5
12 seq12 9 - 5 1 6 0.625
13 seq13 8 - 6 1 7 0.75
14 seq14 7 - 7 1 8 0.875
15 seq15 6 + 7 0 7 0.875
16 seq16 5 - 8 0 8 1

The sequences are ranked according to the prediction score.The numbers of false positives
(FP) and false negatives (FN) are those obtained by setting the threshold at that score.
The number of errors (Error) is given as FP+FN at each threshold score. The minimum
error point (MEP) is the threshold score where the number of errors is minimum. In this
example, the minimum error is 3 with the threshold score 14 and this is the MEP (as shown
in boldfaces). The maximum rate of false positives (MaxRFP)is the false positive rate with
a certain threshold score where all the positive sequences are identified. Here, MaxRFP is
0.875 with the threshold score 6. The median rate of false positives (MedRFP) is the false
positive rate with a certain threshold score where only a half of the positive sequences are
identified. Here, MedRFP is 0 with the threshold score 17.
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3.3.4 Maximum and median rate of false positives

The maximum rate of false positives (MaxRFP) and median rateof false positives (MedRFP)

were also used by Karchin [22]. The MaxRFP is the rate of falsepositive with a certain

threshold score where all the positive sequences are identified. For example, in Table 3.6,

to identify all the positive sequences, the threshold needsto be at the score 6. At this thresh-

old, the false positive rate is 0.875, which is the MaxRFP forthis example.

The MedRFP is the rate of false positive with a certain threshold score where only a

half of the positive sequences are identified. For example, in Table 3.6, a half (four) of the

positive examples are identified when the threshold score is17. The false positive rate is 0

at this point and this is the MedRFP for this example. The lower the MaxRFP and MedRFP,

the better the classifier.

MaxRFP and MedRFP is calculated for all methods except decision trees for the same

reasons mentioned earlier.

3.3.5 Receiver operating characteristic

The Receiver Operating Characteristic (ROC) is a popular method used today for perfor-

mance analysis of different machine learning methods [10].It is a graph plotting false

positive rates on the x-axis and true positive rates on the y-axis. It shows the trade-offs

between benefits (true positives) and costs (false positives) of a certain classifier. It is

generated by cutting off the decision scores at different thresholds and by calculating the

true positive rate and false positive rate for each threshold as done for MEP, MaxRFP, and

MedRFP calculation. ROC plots make it easy to visualize and compare the performance of

different classifiers.
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Figure 3.4: A ROC graph of four different classifiers. Classifier C is the best with the
largest area under the curve, while Classifier A is the worst with the smallest area under the
curve. A discrete Classifier D is drawn for a classifier that does not produce ranked scores.



47

An example of a ROC graph is shown in Figure 3.4. In the graph, the point (0,0) means

that the classifier gives out no false positive error, but also gives out no true positives. At

this point, everything is predicted as negative. At point (1,1) the classifier predicts every-

thing as positive making both true positive and false positive rates as 1. At point (1,0) no

true positive is produced. A perfect classification is represented by the point (0,1) where

no false positive is produced and all positive sequences areidentified correctly.

The area under the curve of a perfect classifier is 1. Therefore, we can look at the area

covered by ROC graphs of different classifiers and analyse its performance.

In Figure 3.4, Classifier C is the best with the largest area under the curve, while Clas-

sifier A is the worst with the smallest area under the curve. A discrete classifier D is drawn

for a classifier that does not produce ranked scores.

Decision trees are discrete classifiers. They only give a final classification result in a

confusion matrix as described before. Therefore, instead of a curve, a point is plotted in

the ROC graphs for these methods.
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Chapter 4

Results and Discussion

As described in Chapter 3, the nine protein classification methods were trained on twelve

different training sets. All of the methods were tested on three different types of test sets.

In this chapter, first, the results from the test on identifying Class A GPCRs is described.

In the second section, the test results to identify other GPCR classes are discussed. Finally,

the methods are tested on the subsequence test sets and theirresults are discussed.

4.1 Identification of Class A GPCRs

To examine how each of the classification methods performs when trained on different

training sets, first the test set (t1) containing Class A GPCRs (positive samples) and non-

GPCRs (negative samples) were used to test the performance of the nine methods.

4.1.1 Accuracy rates

The accuracy rates of the nine classifiers trained on 12 different datasets are listed in Ta-

ble A.1 in Appendix A. These results are summarized in Figure4.1. The figure shows the

maximum, minimum, and average accuracy rates of the nine methods. What we notice first
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Figure 4.1: Accuracy rates of the nine classification methods trained ondifferent datasets.
Tests were done on the Class A GPCR datasets (t1). The averagerates are plotted with
bars showing the range from the minimum to the maximum rates obtained among different
training sets. The results are summarized from Table A.1. All the accuracy rates except
for SAM are produced by the programs used. The accuracy rate for SAM is the one at the
minimum error point. For method name abbreviations, see thefootnotes of Table A.1.
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from these results is that all of the methods compared in thisstudy have higher than 91%

accuracy. Note that except for SAM, SVM-pairwise, and SVM-Fisher, these methods do

not rely on multiple alignments. Attributes used are simpleamino acid composition. How-

ever, all methods managed to discriminate Class A GPCRs correctly at a high accuracy.

The four best methods for classifying Class A GPCRs from non-GPCRs were SAM,

SVM-pairwise, SVM-Fisher, and SVM using the radial basis kernel functions with amino

acid frequencies (SVM-rbf). All of these three best SVM methods use radial basis kernel

function. Also, both SVM-Fisher and SAM are the classifiers based on profile-HMMs.

Among the different kernels used, the sigmoid function turned out to be the worst. It was

also observed that the boosted decision trees performed better than the regular decision

trees, although neither of them performed as well as the fourbest methods.

In order to examine the effect of different training sets on the classification methods,

accuracy rates were compared among those based on differenttraining sets. Details are

shown in Table A.1. The training sets made no difference in classification by SAM and

SVM-pairwise; regardless of the training sets used both maintained 99.8% accuracy. The

best classifiers, SAM, SVM-Fisher, SVM-pairwise, and SVM-rbf showed very small ef-

fects of training sets on their performance. On the other hand, the methods wtih lower

accuracy rates showed more varied performance depending onthe training sets.

Using the training sets prepared by phylogenetic samplings(3a/b-6a/b) was expected

to be better than that trained with random samplings (1a/b) from GPCRDB. However, the

results obtained did not show any particular advantage of using such sampling method.

Alternatively, random sampling was sufficiently good or frequently better than the other

sampling methods. Note also that taxonomical sampling following the GPCRDB classifi-
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cation system (2a/b) seemed to show a slightly better performance for the two better SVM

methods using amino acid composition: SVM-rbf and SVM-poly, although as described

before their performance varied only slightly depending onthe training sets.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

S
V

M
-F

is
h

S
V

M
-p

w

S
V

M
-li

n

S
V

M
-p

ol
y

S
V

M
-s

ig

S
V

M
-r

bf

A
cc

ur
ac

y 
ra

te

Training sets 1a-6a
Training sets 1b-6b

Figure 4.2: Accuracy rates of cross-validation tests of the six SVM-based classification
methods trained on different datasets. The average rates are plotted with bars showing the
range from the minimum to the maximum rates obtained among different training sets. The
information is summarized from Table A.2.

Cross-validation tests were done also for the six SVM based methods. The results are

summarized in Figure 4.2. It shows consistent results as discussed earlier, and SVM-Fisher,

SVM-pairwise, and SVM-rbf performed very well.

A slight difference in performance of the classification methods was observed when

bacteriorhodopsin sequences were added to the negative training sets as shown in Fig-

ures 4.1 and 4.2 (green lines for the training sets 1b-6b). The average, maximum, and

minimum accuracy rates seemed to increase slightly or remained the same when the clas-
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Table 4.1: The minimum error point, maximum and minimum rates of false positives for
the Class A GPCR test set classification.

Method Training Set MEP1 MaxRFP1 MedRFP1

Errs2 TP FP TN FN
SAM 1a 1 200 1 209 0 0.005 0.005
SVM-Fisher 1a 1 200 1 209 0 0.005 0
SVM-pairwise 1a 1 200 1 209 0 0.005 0

SVM-linear 1a 25 192 17 193 8 0.300 0.019
SVM-polynomial 1a 15 191 6 204 9 0.176 0.005
SVM-sigmoid 1a 31 189 20 190 11 0.324 0.019
SVM-radial basis 1a 7 199 6 204 1 0.067 0.005
1 Refer to Chapter 3 for the description of MEP, MaxRFP, and MedRFP.
2 Errs = FP+FN.

sification methods were trained on datasets 1b-6b.

4.1.2 Minimum error point and false positive rate analysis

Table 4.1 summarizes the minimum error point (MEP) analysis. The table shows the re-

sults only from training set 1a (randomly sampled data), since using other training sets

did not show any significant difference. SAM, SVM-pairwise,and SVM-Fisher performed

extremely well in discriminating Class A GPCRs from non-GPCRs as mentioned earlier.

The number of errors made by these methods at the MEP was only one. SVM-rbf was the

second best with seven errors, and almost all these errors were from the false positives (6

out of 7); it means that very few actual GPCRs are missed by this classifier. SVM-sigmoid

was the worst classifier of all at the MEP, and one third (11/31) of the errors were from

false negatives.

Based on the MaxRFP and MedRFP analysis, where lower numbersmean better clas-

sifiers, the same performance pattern is clearly seen. The lowest MaxRFP was for SAM,
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Table 4.2: The minimum error point, the maximum and minimum rates of false positive
when the classification methods were trained on datasets including bacteriorhodopsin se-
quences (1b).

Method Training Set MEP1 MaxRFP1 MedRFP1

Errs2 TP FP TN FN
SAM 1a 1 200 1 209 0 0.005 0.005
SVM-Fisher 1b 1 200 1 209 0 0.005 0
SVM-pairwise 1b 1 200 1 209 0 0.005 0

SVM-linear 1b 19 193 12 198 7 0.310 0.014
SVM-polynomial 1b 14 194 8 202 6 0.148 0.005
SVM-sigmoid 1b 25 193 18 192 7 0.371 0.019
SVM-radial basis 1b 7 199 6 204 1 0.067 0.005
1 Refer to Chapter 3 for the description of MEP, MaxRFP, and MedRFP.
2 Errs = FP+FN.

SVM-pairwise, and SVM-Fisher. SVM-sigmoid had the worst MaxRFP. MedRFP did not

show a large difference among different methods. This implies that 50% of the GPCR

samples were easily identified by any method. However, considering the larger difference

found in MaxRFP, better classifiers could identify more difficult GPCRs much more cor-

rectly.

Table 4.2 summarizes the results when the training sets include bacteriorhodopsin as

the negative samples. Note that SAM does not use negative samples to build HMMs. Thus

SAM in Table 4.2 lists the same results as in Table 4.1. The performance did not change

for the three classifiers: SVM-pairwise, SVM-Fisher, and SVM-rbf. The number of errors

decreased only slightly in other SVM methods. Overall, we did not see a large positive

effect of including bacteriorhodopsin in the training setsfor the classifiers compared.

Figure 4.3 shows the Receiver Operating Charateristic (ROC) analysis. It is again clear

that SAM, SVM-Fisher, SVM-pairwise, and SVM-rbf performedthe best. It is also evident
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Figure 4.3: The ROC curves of the nine methods for the Class A GPCR test set(t1). The
methods were trained on training dataset 1a. Similar ROC curves were obtained when other
training sets were used.

from the graph that all the methods compared were competitive and worked very well since

the ROC graph of all the methods are close to having an area of 1. Classifiers trained on

training sets with bacteriorhodopsin (1b) did not make muchdifference in the ROC curves

(data not shown).

4.2 Identification of the Other Classes of GPCRs

Since all the positive training data were taken from Class A GPCRs, it was interesting to see

how well the methods trained on one particular class of GPCRswould identify those from

the other classes. The performance from this test could indicate how well each method can

predict noble GPCRs based on the existing data. This sectiondescribes the performance of

the nine methods tested on the test set including GPCR sequences other than Class A (t2).
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4.2.1 Accuracy rates
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Figure 4.4: Accuracy rates of the nine classification methods trained ondifferent datasets.
Tests were done on the non-Class A GPCR datasets (t2). The average rates are plotted
with each bar showing the range from the minimum to the maximum rates obtained among
different training sets. The results are summarized from Table A.3. For the method name
abbreviations see the footnotes of Table A.3

The accuracy rates of the nine methods trained on 12 different datasets are listed in

Table A.3 in Appendix A. Figure 4.4 summarizes these results. The best methods were

SVM-pairwise and SVM-rbf. Unlike the Class A GPCR identification, SAM and SVM-

Fisher performed poorly in this case. This is because both SAM and SVM-Fisher use

HMMs built from the Class A GPCRs, and these models may be specific to that class. The

higher specificity of HMMs contributed to very low errors, for the Class A GPCR clas-

sification especially low false positive rates of SAM and SVM-Fisher compared to other

non-alignment based methods (e.g., SVM-rbf) as described in the previous section. How-

ever, GPCRs from different classes share low sequence similarities and the lengths also

vary among the classes; The average lengths of Classes A and B, for example, are 397 and
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746 amino acids respectively. This could explain why GPCRs from other classes were not

identified well by the HMM based methods. All of the SVM methods using amino acid fre-

quencies and different kernel functions performed better than SAM, SVM-Fisher, as well

as the decision trees. Their performance was not affected bythe use of different training

sets.

The inclusion of bacteriorhodopsin sequences in the training sets did not show much

difference in performance. The addition of these sequenceswas not helpful in increasing

the performance of the methods when identifying non-Class AGPCRs.

4.2.2 Minimum error point and false positive rate analysis

Table 4.3: The minimum error point, maximum and minimum rates of false positives for
the non-Class A GPCR test set (t2).

Method Training Set MEP1 MaxRFP1 MedRFP1

Errs2 TP FP TN FN
SAM 1a 139 63 2 208 137 1 0.224
SVM-Fisher 1a 122 110 32 178 90 0.995 0.138
SVM-pairwise 1a 17 197 14 196 3 0.133 0.005

SVM-linear 1a 68 186 54 156 14 0.748 0.143
SVM-polynomial 1a 55 179 34 176 21 0.652 0.052
SVM-sigmoid 1a 70 187 57 153 13 0.771 0.148
SVM-radial basis 1a 35 179 14 196 21 0.919 0.019
1 Refer to Chapter 3 for the description of MEP, MaxRFP, and MedRFP.
2 Errs = FP+FN.

As before, Table 4.3 shows only the results from the trainingdata set 1a (random sam-

pled data), since using the other training sets did not show any significant difference. The

best method was SVM-pairwise with only 17 errors. The lowestMaxRFP and MedRFP

were also found for SVM-pairwise. The second best method, SVM-rbf, had 35 errors,
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Table 4.4: The minimum error point, maximum and minimum rates of false positives
when the classification methods were trained on the dataset including bacteriorhodopsin
sequences (1b).

Method Training Set MEP1 MaxRFP1 MedRFP1

Errs2 TP FP TN FN
SAM 1a 139 63 2 208 137 1 0.224
SVM-Fisher 1b 122 110 32 178 90 0.995 0.138
SVM-pairwise 1b 16 198 14 196 2 0.129 0.005

SVM-linear 1b 65 186 51 159 14 0.662 0.110
SVM-polynomial 1b 53 174 27 183 26 0.643 0.048
SVM-sigmoid 1b 69 186 55 155 14 0.690 0.148
SVM-radial basis 1b 35 178 13 197 22 0.914 0.019
1 Refer to Chapter 3 for the description of MEP, MaxRFP, and MedRFP.
2 Errs = FP+FN.

twice as many as SVM-pairwise. Note that the higher error rate of SVM-rbf was solely

due to its higher false negative rate. This means SVM-rbf missed more GPCR candidates

than SVM-pairwise. This pattern is clearly shown in the veryhigh MaxRFP rate (0.9) of

SVM-rbf, whereas SVM-pairwise maintained a low MaxRFP rate(0.1). On the other hand,

SVM-rbf did not misidentify non-GPCRs more than SVM-pairwise (indicated by the same

number of false positives). The worst methods were SAM and SVM-Fisher with 139 and

122 errors, respectively. Their false negative rates were very high, and their MaxRFP rates

were 1.0.

When bacteriorhodopsins were added to the training set, there was a decrease in the

number of errors by only a small number as shown in Table 4.4).

Figure 4.5 shows the ROC curves compared among different methods. It shows that

some methods are extremely bad while others are good. SAM andSVM-Fisher were the

worst methods with the least area under their curves. Other SVMs did not do too bad.

The best classifier to correctly identify GPCRs and non-GPCRs even from non-Class A
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Figure 4.5: The ROC curves of the nine methods for the non-Class A GPCR test set (t2).
The methods were trained on the training dataset 1a. Similarcurves were obtained when
other training sets were used.

GPCRs was SVM-pairwise. The second best method, SVM-rbf, after the true positive rate

reached 0.85, showed a very slow increase in the true positive rate while the false positives

accumulate quickly. This illustrates why SVM-rbf sufferedfrom a very high MaxRFP rate

as shown in Table 4.3.

4.3 Identification of Subsequences

Kim et al. [25] and Moriyama and Kim [31] had performed experiments to identify short

subsequences of GPCRs with several different methods including their discriminant anal-

ysis methods. Their discriminant analysis methods based onamino acid properties out-

performed HMM-based Pfam and other methods even when the sequences were 50 or 75

amino acids long. In order to examine how SVM-based methods perform for short subse-

quences, similar subsequence analysis was conducted in this study.
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Figure 4.6: Accuracy rates of different methods tested on short subsequences.

The seven methods including SAM and six SVM-based methods trained on Class A

GPCR datasets (1a-6a) were tested against the six subsequence test sets whose lengths

range from 50 to 300 amino acids and prepared from the Class A GPCR test set (t1) as

described in Chapter 3. Figure 4.6 summarizes the performance of the methods trained on

the random sampling dataset (1a). No significant differencein performance was observed

among methods trained on different training sets. The two best methods for identifying

short subsequences were HMM-based SAM and SVM-Fisher. These two methods per-

formed consistently better than the other methods. Even against very short 50 or 75 amino

acid subsequences, they maintained higher than 95% accuracy. Other methods including

SVM-pairwise dropped their accuracy to 85-90%. All of the methods examined recovered

their performance quickly once the sequence length became 100 amino acids or longer.

The results in Figure 4.6 seem to be surprisingly good when compared to those reported
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in Moriyama and Kim [31] (and Kim et al. [25]). Figure 4.7 is taken from Moriyama and

Kim [31]. It shows higher performance of their discriminantfunction analysis methods

(non-parametric LDA, LDA, and KNN) compared to an HMM (Pfam)and other methods.

For 50 or 75 amino acid subsequences, discriminant analysismethods performed at 70-

85% accuracy, whereas even HMM-based Pfam showed only 50-70% accuracy.

Figure 4.7: Identification rates of discriminant analysis methods compared with other
methods (taken from Moriyama and Kim [31]). Their “% identification” is the same as
the accuracy rate in this study.

The difference between these two studies can be explained bythe way classifiers were

trained and tested. In this study, only Class A GPCRs were used to train and test the clas-

sifiers. This made it easier to identify subsequences of Class A GPCRs for the classifiers

because information specific to the Class A GPCR sequences were learned. It is also re-

markable that in this study multiple alignment and HMM-based methods, SAM and SVM-

Fisher, outperformed other methods even for the very short sequences. Class A GPCRs

are relatively consistent in length and relatively easier to obtain better multiple alignments.
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Such conservative sequence nature may have given an advantage for HMM-based methods

to identify correctly even short subsequences.

On the other hand, Moriyama and Kim’s [31] data sets (both training and test) were

randomly sampled across the entire GPCR classes. For Pfam and other existing methods,

no new training was done, since multiple alignments were impossible from such datasets.

Instead, multiple HMMs, patterns, and fingerprints covering the entire GPCR classes were

collected from HMM/motif databases and used against the test sets they prepared. Their

results (Figure 4.7) illustrate the disadvantage these HMM/motif based methods face simi-

lar to what described in the previous section. Therefore, itis interesting to perform another

subsequence test using non-Class A GPCR sequences. In such tests, the real advantage of

using SVM-rbf over SAM, SVM-Fisher, or SVM-pairwise may be revealed.
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Chapter 5

Conclusion and Future Work

From the experiments performed in this study, it can be concluded that SVM-pairwise is the

best method in classifying Class A GPCRs as well as non-ClassA GPCRs if full sequences

are available. SVM-pairwise does not depend on an HMM nor multiple alignments. Both

of the HMM-based methods, SAM and SVM-Fisher, worked extremely well in identify-

ing Class A GPCRs, but performed poorly when trained on ClassA GPCRs and tested for

classifying non-Class A GPCRs.

Using amino acid frequencies with SVMs, especially with theradial basis kernel func-

tion, was very effective and an easy way to represent a protein sequence. This was evident

from identifying Class A GPCRs with at least 91% accuracy andnon-Class A GPCRs with

at least 81% accuracy. Decision trees methods (boosted or not) did not perform as well

as SVMs, although the boosted decision trees method was better than the regular (non-

boosted) decision trees.

The addition of Bacteriorhodopsins in the negative training samples or the use of dif-

ferent sampling schemes of the positive training samples made very little difference in
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the performance of the algorithms studied. Especially the classifiers that performed better

(SVM-pairwise, SVM-Fisher, SAM, and SVM-rbf) did not show any effect of using differ-

ent sampling schemes for training data. Overall, the simplerandom sampling for training

data seemed to be good enough for preparing training data forthe methods studied.

The two HMM-based methods, SAM and SVM-Fisher, worked surprisingly well for

identifying short subsequences of Class A GPCRs. SVM-pairwise, on the other hand, did

not perform well compared to the HMM-based methods. The SVMsbased on amino acid

composition could identify short subsequences as short as 50 amino acids at 85% or higher

accuracy, although their performance was not as good as the alignment-based methods,

SAM, SVM-Fisher, and SVM-pairwise.

It would be interesting to generate short subsequences formnon-Class A GPCRs se-

quences (e.g., t2) and compare the performance of the nine methods used in this study as

well as the discriminant analysis methods developed by Kim et al. [25] and Moriyama and

Kim [31]. In such tests, the real advantage of using amino acid composition with SVMs

should become evident. It is also interesting to see how these SVM methods perform com-

pared to the discriminant analysis methods. Since they usedsome amino acid properties

(hydrophobicity etc.) as well as amino acid composition as attributes, their methods may

perform slightly better than the SVM-rbf used in this study.On the other hand, especially

for short partial sequences, there may be no advantage for using other amino acid proper-

ties other than simple amino acid composition.

For comparison purposes, it would be interesting to try Lee’s [27] approach with the

kernel-based GMIL method with pairwise alignments and using amino acid properties,

amino acid composition, and pairwise scores between sequences to build the GMIL classi-
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fiers.

The SVM methods described in this thesis will be tested for identifying other types of

proteins in the future. If amino acid composition is enough for other protein classification,

and if other amino acid properties need to be included for more general protein classifica-

tion, need to be examined further.
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Appendix A

Accuracy Rate Tables



7
0

Table A.1: Accuracy rates of the nine methods for classifying the ClassA GPCRs.

Training Classification methods2

set1 SAM SVM-lin SVM-poly SVM-sig SVM-rbf SVM-pw SVM-Fish DT BDT
1a 0.998 0.939 0.963 0.924 0.982 0.998 0.997 0.922 0.965
2a 0.998 0.922 0.965 0.919 0.987 0.998 0.995 0.943 0.963
3a 0.998 0.919 0.958 0.914 0.980 0.998 0.992 0.919 0.951
4a 0.998 0.919 0.956 0.917 0.982 0.998 0.997 0.922 0.943
5a 0.998 0.922 0.961 0.914 0.985 0.998 0.990 0.924 0.953
6a 0.998 0.919 0.963 0.917 0.982 0.998 0.995 0.941 0.958

1b 0.998 0.953 0.965 0.939 0.982 0.998 0.997 0.922 0.961
2b 0.998 0.934 0.973 0.924 0.990 0.998 0.995 0.943 0.958
3b 0.998 0.929 0.963 0.919 0.980 0.998 0.992 0.943 0.951
4b 0.998 0.931 0.963 0.919 0.982 0.998 0.997 0.922 0.948
5b 0.998 0.931 0.963 0.924 0.985 0.998 0.992 0.924 0.951
6b 0.998 0.936 0.970 0.924 0.985 0.998 0.995 0.939 0.970
1 For each training set, refer to Table 3.2.
2 The method name abbreviations are as follows. SVM-lin: SVM with linear kernel function, SVM-poly:

SVM with polynomial kernel function, SVM-sig: SVM with sigmoid kernel function, SVM-rbf: SVM
with radial basis kernel function, SVM-pw: SVM-pariwise, SVM-Fish: SVM-Fisher, DT: Decision trees,
and BDT: Boosted decision trees.
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Table A.2: Accuracy rates of cross-validation test for classifying the Class A
GPCRs.1

Training Classification methods
set SVM-lin SVM-poly SVM-sig SVM-rbf SVM-pw SVM-Fish
1a 0.905 0.937 0.897 0.970 0.990 0.992
2a 0.895 0.935 0.895 0.962 0.989 0.994
3a 0.877 0.910 0.885 0.927 0.990 0.990
4a 0.902 0.907 0.892 0.947 0.990 0.980
5a 0.897 0.910 0.897 0.957 0.990 0.990
6a 0.902 0.917 0.895 0.957 0.992 0.992

1b 0.914 0.936 0.890 0.970 0.990 0.992
2b 0.890 0.937 0.877 0.963 0.989 0.994
3b 0.902 0.907 0.882 0.934 0.990 0.990
4b 0.907 0.909 0.897 0.946 0.990 0.980
5b 0.914 0.914 0.892 0.958 0.990 0.990
6b 0.904 0.922 0.890 0.961 0.992 0.992
1 See the footnotes of Table A.1
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Table A.3: Accuracy rates of nine methods for classifying the non-Class A GPCRs.1

Training Classification methods
set SAM SVM-lin SVM-poly SVM-sig SVM-rbf SVM-pw SVM-Fish DT BDT
1a 0.661 0.834 0.865 0.829 0.914 0.958 0.702 0.741 0.746
2a 0.629 0.843 0.865 0.836 0.890 0.963 0.700 0.722 0.739
3a 0.726 0.829 0.861 0.822 0.900 0.956 0.724 0.700 0.726
4a 0.751 0.822 0.853 0.817 0.892 0.956 0.697 0.704 0.690
5a 0.739 0.831 0.851 0.829 0.890 0.963 0.741 0.651 0.719
6a 0.758 0.829 0.853 0.829 0.904 0.958 0.758 0.751 0.775

1b 0.661 0.841 0.870 0.831 0.914 0.961 0.702 0.741 0.756
2b 0.629 0.841 0.878 0.829 0.892 0.963 0.702 0.722 0.734
3b 0.726 0.829 0.868 0.819 0.900 0.956 0.724 0.734 0.726
4b 0.751 0.824 0.865 0.817 0.897 0.956 0.695 0.704 0.729
5b 0.739 0.824 0.865 0.817 0.892 0.963 0.741 0.651 0.714
6b 0.758 0.822 0.865 0.812 0.904 0.958 0.756 0.729 0.802
1 See the footnotes of Table A.1


