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A large number of new gene candidates are being accumulatgeniomic databases
day by day. It has become an important task for researchatsntfy the functions of these
new genes and proteins. Faster and more sensitive and scowethods are required to
classify these proteins into families and predict theirchions. Many existing protein clas-
sification methods build hidden Markov models (HMMs) andeotiorms of profiles/motifs
based on multiple alignments. These methods in generalresglarge amount of time for
building models and also for predicting functions basedh@mt. Furthermore, they can
predict protein functions only if sequences are sufficikentdnserved. When there is very
little sequence similarity, these methods often fail, eNesequences share some structural
similarities. One example of highly diverged protein faeslis G-protein coupled recep-
tors (GPCRs). GPCRs are transmembrane proteins that plagriamt roles in various
signal transmission processes, many of which are diresg@ated with a variety of hu-
man diseases. Machine learning methods that have beeedwmbcifically for a problem
of GPCR family classification include HMM and support veatwachine (SVM) methods.
However, amino acid composition has not been studied wel@®perty for GPCR clas-
sification. In this thesis, SVMs with amino acid frequenaciesse used to classify GPCRs
from non-GPCRs. The method was compared with several otbdrads as HMM-based
and decision trees methods. Various sampling schemes weckto prepare training sets
to examine if the sampling scheme affects the performandkeotlassification methods.

The results showed that amino acid composition is a simgleday effective property for



identifying GPCRs. SVM with amino acid composition as ingattors appeared to be a
promising method for protein classification even when segeeaimilarities are too low to

generate reliable multiple alignments or when only shortigissequences are available.
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Chapter 1

Introduction

Day by day a large amount of new protein sequences are beauynatated in various

databases. An important task for researchers in bioinfocsiés to classify these pro-
teins in families based on their structural and functiomaperties, thereby predicting the
functions of these new protein sequences. Most frequepljied methods (e.g., Pfam,
PRINTS, and PROSITE) use multiple alignments to createouarforms of models (pro-
file hidden Markov models, fingerprints, patterns, etc.) OBRTE [17], for example, is a
database consisting of information on significant sitettepas, and profiles that specify
different protein families. PRINTS is a database of profeigerprints [3]. Fingerprints

are sets of short sequence motifs conserved among memleematein family. Pfam is a
database of alignments and profile-hidden Markov modelsits$)bf protein families [4].

All these three methods require multiple alignments of seges to build their models.

However, generating reliable multiple alignments becopreblematic when dealing
with extremely diverged protein sequences. One such examspghe G-protein coupled
receptor (GPCR). GPCR is a superfamily of cell membraneeprstthat have seven trans-

membrane regions. Their classification and functional tatiom is important in today’s
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medical and pharmaceutical research because GPCRs plaglksyin many human dis-
eases. However, identifying and classifying this membpaogein turns out to be a difficult
task, due to the high level of sequence divergence found grtitenGPCR family mem-
bers. For example, although all of the three classificatiethwds described above (Pfam,
PRINTS, and PROSITE) have successfully built multiple GRG#tels each specific to a

family or subfamily, none of their models covers the entifeRCR superfamily.

There have been several recent developments in the clasisifigproblem specific to
the GPCR superfamily. Kim et al. [25] and Moriyama and Kim][8&veloped classifi-
cation methods based on discriminant function analysesgyusamposition and physico-
chemical properties of amino acids. Karchin et al. [23] digped a system based on
support vector machine built on profile HMMs. Liao et al.'9¥[3nethod is similar to
Karchin et al.’s [23], but uses pairwise similarity scoredviieen protein sequences with
a support vector machine. These newly developed methods fieen both positive (i.e.,
GPCRs) and negative (i.e., non-GPCRs) examples, giving théetter discrimination
power, whereas profile HMMs and other motif-based method®ioeed earlier use only
multiple alignments of positive samples to build their misdéee [27] applied two forms
of general multiple-instance learning methods, GMIL-2 &athel-based GMIL on GPCR
classification problem. They used structural propertiesnoino acids, like that of Kim et

al. [25], to build the classifiers.

Despite the development of GPCR specific classification atsththere have been few
comparative performance studies. This thesis compardsoaethat use multiple align-
ments with those that do not, and methods that use both megatid positive data for
learning with those that only use positive data. Furtheentivere has been no study for

using simply the amino acid composition for protein clasation. Therefore, | examine
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the use of amino acid frequencies with various pattern neitiog methods and compare

their classification performance for the GPCR superfamily.

In this thesis, nine different protein classification methdclassifiers) were included
for the performance analysis. The nine methods used argafilegHMM, support vector
machines (SVMs) with four different kernel functions (larepolynomial, sigmoid, and ra-
dial basis functions), SVM-pairwise developed by Liao e{29], SVM-Fisher developed
by Karchin et al. [23], decision trees, and boosted decitieas. As mentioned above,
HMMs make use of a multiple alignment of positive sample seges to build a model.
SVMs, on the other hand, use sequences belonging to a fapoijtive examples) as well
as sequences that do not belong to the family (negative deajndt learns to discrimi-
nate between positive and negative samples based on segsiamnlarity scores or other
attributes extracted from the sequences. The decisios tne¢hods learn also from nega-
tive as well as positive sets of data, but try to build a tre wimallest number of nodes to

best classify the two sets of data.

Three different sampling methods for positive example detee used to discover if
such differences affected classification performance. fhinee basic methods of sam-
pling were random sampling, taxonomical sampling, and @ipgthetic sampling. Some
sequences of bacteriorhodopsin proteins were added at@ pagative examples. Bacte-
riorhodopsin proteins are similar to GPCRs in that they s@wen transmembrane regions,
but are not actually GPCRs. The addition of such proteinisgérekample sets was expected
to make the learning more specific. The methods for preparaiging data (positive and

negative example data used to train classifiers) are descimdetail in Chapter 3.

The nine classifiers were tested on test data sets indepndeated from the training
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sets. In one test, some classes of GPCRs that were not idcindke training set were
intentionally included. With this particular test, | wasl@lbo examine how well the nine
classifiers can identify GPCRs even if their examples wetenotuded in the dataset they

were trained on.

The classifiers were also tested against a data set cogsidtsubsequences as short
as 50 amino acids. This is based on Kim et al.'s [25] resultsviig that their discrim-
inant function analysis method outperformed other metHeds., Pfam) for such short
sequences. The expectation was that the classifiers usimg agid composition as input
vectors might be able to identify short subsequences asasdlie discriminant function

analysis methods used by Kim et al. [25] and Moriyama and Kifj.[

Various statistics were used to analyze the classificagofopnance: accuracy of each
method, cross-validation test, minimum error point catioh, maximum and median rates
of false positives, and receiver operating charactessjraphs. By using these various
statistics, the performance of each classifier was examinddtail, not only on their ac-
curacy rates, but also their sensitivities, specificiteasg the relationships among these

statistics. Chapter 3 describes the statistics used inhesss.

The remainder of the thesis is organized as follows. Baakgie on some representa-
tive methods used in protein classification as well as theeprdamilies used in this study
are described in Chapter 2. Chapter 3 explains data calteatiethods, different classifi-
cation methods, and performance analysis used in this.siResults and discussions are
given in Chapter 4. Finally, Chapter 5 concludes this thesis the overall discussion and

future works.



Chapter 2

Background

2.1 Protein families used in this study

2.1.1 G-protein coupled receptors (GPCRS)

G-protein coupled receptors (GPCRs) are a superfamily lbfrmbrane proteins. They
are characterized by seven water-insoluble (hydrophaleigjons believed to represent
those that pass through the cell membrane, or transmembegions, as shown in Fig-
ure 2.1. Each GPCR has an amino terminal {NifN-terminal) region outside of the cell
(extracellular), followed by three sets of alternate iogléular (inside of the cell) and ex-
tracellular loops, which connect the seven transmembiegiens, and a final intracellular

carboxyl terminal (COOH- or C-terminal) region [43].

GPCRs are involved in signal transmission from the outsadiae interior of the cell
through interaction with heterotrimeti&-proteins, or proteins that bind to guanine (G)

nucleotides. The receptor is activated when a ligand thaitesaan environmental signal

1A heterotrimeric protein is composed of three subunit pnsté-trimeric), where each subunit protein is
different from the others (hetero-).



Extracellular

Intracellular

Figure 2.1: A model of G-protein coupled receptor showing seven tramsibmane regions
(courtesy [2]).

binds to a part of its cell surface component as shown in EigQu2. A wide range of
molecules is used as the ligands including peptide hormam@sotransmitters, pancrine
mediators, etc., and they can be in many forms: e.g., iongaatids, lipid messengers,

proteases.

The heterotrimeric G-proteins have three subunits, namely, and~ (Figure 2.2).
The G-protein activity is regulated by tlhesubunit, which binds guanine (G) nucleotides.
In an inactive statey is bound to a GDP (guanine diphosphate), which together@rad
to subunits3 and~ (Figure 2.2A). A ligand binding at the extracellular domairthe re-
ceptor induces a conformational change in the receptorgciwbauses the G-proteins to
bind to the intracellular domain of the receptor (FigureB). I his stimulates the exchange
of the GDP with a GTP (guanine triphosphate) in the binding sf thea subunit. The

activated GTP-bound subunit then dissociates from ti¥eand~ subunits (Figure 2.2C).
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Figure 2.2: Signal transduction process by a GPCR and a G-protein aitd, and~
subunits (courtesy [8]). This example shows a hormone gejais a ligand.

The 5 and~ subunits remain bound to each other and function agtheomplex. The3~y
complex and the GTP-boundsubunit interact with their targets, for example, an enzyme
or an ion channel, to transmit the signal. The bound GTP besarGDP due to hydrol-
ysis after the transmission of the signal. The GDP-boursdibunit reassociates with the
(v complex to form a heterotrimeric G-protein (Figure 2.2Ajigh is ready for another

cycle of transmission of a signal through a GPCR [8].

GPCRs are involved, for example, as light sensing moledunlése eye (rhodopsins),
odorant receptors in the olfactory system, and as tastpt@sg12]. They are found in a
wide range of eukaryotic organisms. The GPCRDB, a databeders for GPCRs [15],
divides the GPCR superfamily into five major classes basati®hgand types, functions,
and sequence similarities, as shown in Table 2.1. The segaa@f different GPCR classes
are highly diverged from each other, except that they shaeecommon structural fea-
ture, that is, they all have seven hydrophobic transmenebragions. GPCRs within a
class share common functions and more sequence simsariitass A, the Rhodopsin-

like class, is by far the most populated GPCR class with muaa 8,500 members in the
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Table 2.1: Major GPCR classification based on GPCRDB (as of Novembe3200

Class Examples Number of entries
A: Rhodopsin like Rhodopsin and adrenergic receptors 3,519
B: Secretin like Calcitonin receptors 217
C: Metabotropic glutamate/pheromone Metabotropic rearspt 131

D: Fungal pheromone pheremone receptors 24
E: cCAMP receptors (Dictyostelium) CAMP receptors 5

database. Each class is further divided into subclassegr@ups, and so forth, depending

upon the common agents they bind to and sequence sim#aritie

Identifying the function of GPCR sequences is importaniamiedical and pharmaceu-
tical research, because GPCRs play key roles in many baathgimportant functions and
are related to many diseases (e.g., neurological cardiolasdiseases, depression, obe-
sity, pain, and viral infections [1]). However, identifgrand classifying this membrane
protein family is a difficult task due to the high levels of éigence observed among the
GPCR family members. Therefore, it becomes important thexetbe a way to accurately
and efficiently identify any new GPCRs from genomic data.shMould benefit the phar-
maceutical research and give us a better understanding @RGénctions. The methods
developed in this thesis will also be applicable to othetgins. GPCRs are used in this
study due to their scientific importance, and also as an ebaaiighly diverged protein

families.

2.1.2 Bacteriorhodopsin

Bacteriorhodopsin is a type of transmembrane protein fdornacteria. It is named as
such because of its similarities to the rhodopsin (a GPCE)dan the outer segments of
mammalian retina. Bacteriorhodopsin clusters in purptelpss in the bacteriunijal obac-

terium halobium, and have seven transmembrane regions spanning the celinaween The
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bacteria carry out a light-driven proton transport by meainbacteriorhodopsin. When

there is not enough oxygen for the bacteria for oxydativeatnaism, the bacteria use the
energy from the sunlight to pump protons out of the cell. Treggn gradient generated by
such mechanism represents potential energy, which isuatmt by the cell to synthesize
ATP (adenosine triphosphate) that powers the cell [13h@ugh bacteriorhodopsins share
the same seven transmembrane structure, they do not acngtG-proteins, hence they

are not GPCRs.

The protein classification methods developed in this thiesisn from training sets
composed of positive examples (GPCRs) and negative exartip@-GPCRs). Based on
the information gained (models), they classify proteinuggtges in the test set. Bacte-
riorhodopsin sequences were included in some training astaopnegative examples to
examine if they would improve the specificity of the algonithto classify GPCRs. In other
words, the algorithms were tested for their abilities tacdiminate GPCRs from bacteri-

orhodopsins that also have seven transmembrane regions.

2.2 Protein Classification Methods

In this section, | explain the widely used hidden Markov mqédM) method and some
recently developed protein classification methods usipgast vector machines (SVMs)

and discriminant function analysis.

2.2.1 Profile hidden Markov model (HMM)

One frequently used method for protein classification isddén Markov model. Hid-
den Markov models, which are extensions of Markov chainse lmfinite set of states

(ai,...ay,), including a begin state (where the sequence begins) amtha@ustate (where
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the sequence terminates). Each state has two probaldgsexiated with it:

¢ thetransition probability 7;;, or the probability that a statg will transition to an-

other state:;, wherej =i+ 1,...,n, and

¢ theemission probability £(x|;), or the probability that a statg will emit a particular
symbol x. Emission probabilitites are properties of only M&and not Markov

chains.

The difference between a Markov chain and a hidden Markovahisdn the information
known on each state. In a Markov chain, for any sequencetaddl Fransitions are exactly
known-i.e., there is a unique, known path through the mdded. hidden Markov model,

the state information ikidden from the user [9].

For example, Figure 2.3A shows Markov chains for two modeklsded and fair dice).
A Markov chain can determine the probability that a giverusgge of rolls was generated
from a loaded die or a fair die. It, however, cannot deternvitiéch "segments” of the
sequence of rolls were generated by which die. On the othed, Hfégure 2.3B shows a
hidden Markov model with two states (dice), the transitioolgabilities between them, and
the emission probabilities of each of the 4 symbols at eaate.sAn HMM can tell, for a
given sequence of rolls, which segment was generated bydadodie and which by a fair
die. For example, for the sequent2434132443444134, the following state sequence
can be predicted by an HMM.
Rol I's: 12434132443444134
State: FFFFFFFFLLLLLLLLL

whereF is a fair die and_ is a loaded die.
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(A)| ua FAIR v4a 16 LOADED 1/6

(B) FAIR LOADED
0.95 1:1/4 1: 1/6 0.90
0.05
2:1/4 2:1/6
3:1/4 3:1/6
0.10
4:1/4 4:1/2

Figure 2.3: An example of a Markov chain and a hidden Markov model. If westder two
dice (loaded die and the fair die) as two models (A), then edthem has its own Markov
chain with transition probabilities between different rhers in a die. If we consider the
two dice as two states of a hidden Markov model (B), it hassitaon probabilities between
the both states (dice), and emission probabilities witlhichestate.
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In biological sequence analysis, hidden Markov models aik lbased on a multiple
alignment as shown in Figure 2.4. In general, the multipignahents are generated from
a training set consisting of positive examples of protenusaces that belong to a certain

functional family sharing a level of sequence similarities
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Figure 2.4: An example multiple alignment to create a hidden Markov nhodegap is
represented by a ‘—. Columns 1-3 and 6-10 are “match” cokimihile the columns 4 and
5 are “insert” columns.

Given a multiple alignment of protein sequences, “matchisért”, and “delete” states
are first identified. If a column of the multiple alignment hess than or equal to fifty per-
cent gaps (i.e., a half or more of the sequences emit an aroid)p then it is classified as a
“match column” (columns 1-3 and 6-10 in Figure 2.4). A nomp-gatry in a match column
is a “match state” in the HMM, while a gap in a match column isleléte state”. Delete
states are presumed to be modifications that stem from aroaanid sequence losing one
or more amino acids in an evolutionary event. The last typstate is the “insert” state.
“Insert columns” (columns 4 and 5 in Figure 2.4) are simitadelete states, except that
the evolutionary modification to the amino acid sequencleasaf gaining amino acids. A
non-gap in an insert column is an “insert state”, while a gagn insert column is ignored

since it does not represent an event of evolutionary sigmitie.
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al a2z A3 — A4 . A5
Bl B2 B3 b4 pg

Figure 2.5: A hidden Markov model (courtesy [16]) with delete (circlalsert (diamond),

and match (square) states. Transitions are allowed alocty @&aow. Delete and match
states can only be visited once for each position along a daghete states do not emit
any symbols. Insert states are allowed to insert multiptal®yls. The alignment at the
bottom is used to build the model in this example. The seqggebegin in the start state.
Amino acids al and a2 are inserted at the beginning of theesegu A3 and B1 are the
first matched symbols, followed by a deletion, where B2 isamed with a gap. A4 is
then matched with B3, b4 is inserted, A5 is matched with Bl famally the end state is
reached.

As shown in Figure 2.5, a hidden Markov model, which can bealiged as a finite
state machine, has a start and an end state in addition ta¢kepsly identified match,
insert, and delete states. Each of these states has pesieaific transition probabilities
for transitioning into each of these states from the previtate (represented by arrows in
Figure 2.5). Match states have position-specific emissiobabilities for each of the 20
amino acids. Insert states also have position-specificstomgrobabilities for inserting
each of the 20 amino acids at that state. When no residuedsiatsd with a node, itis a

delete state, and no emission probability is associatdditvit

To obtain the probability that a new sequence belongs toaimély of the model, the
new sequence is compared to the HMM by aligning it to the mod&le most probable

path taken to generate the sequence similar to the new semgems the similarity score.
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It is calculated by multiplying the emission and transitiprobabilities along the path.
The most likely path through the model is computed with Yiierbi algorithm or the
forward algorithm [9]. One could also generate the most probableesszg obtained from
a particular HMM by summing over all possible paths and cimapshe path with the
maximum score. In both ways, the most probable path can bxeefliy and optimally

calculated.

2.2.2 Support vector machines (SVMs)

A support vector machine (SVM) is a learning machine thatesakbinary classification
based on a separating hyperplane on a remapped instaneq gpakhe goal of the classi-
fication is to remap the input vectors onto a multi-dimenal@pace so that the instances

are linearly separable.

SVMs learn from labeled examples from a training set ingigdioth positive and neg-
ative samples. Depending upon a set of attributes, SVMs fimgparplane that classifies
the positive and negative data in the training set. The Iptpee is optimized in such a way
that the distance called tmeargin, between the hyperplane and the closest training exam-
ple is maximized. The data points nearest to the margin om fides are callegupport
vectors. We assume that there is a mapping or target function bettteedata and their
labels the machine will learn [22]. A kernel function, whisha dot product that is used
in remapping input feature vectors, is used to find the hypag Once the hyperplane
is found, unlabeled examples from the test set can be ckdsif shown in Figure 2.6.

Classification can be done solely based upon the suppodredound.

Let us represent each sequence by a feature vector (a aoll@gtthe attributes in a

vector format). If the dimension of the feature vectof { attributes), a sequencecan
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Figure 2.6: A hyperplane classifying two classes of data. A new sampknafinknown
class can be classified based on the hyperplane. In this fithadraining data have two
dimensions, represented by thandy axes. Two classes of data are represented by squares
and circles. The hyperplane that is calculated from themiaitlg examples is given by
the bold dotted line, separated from the closest trainirgors by the distance. The
classification of an unknown sample (triangle) is done byiaeining which side of the
hyperplane the new instance falls. In this example, theigtied for the unknown sample
would be square.

be represented by = [z, 2o, ..., 1. In a two-class problem, the label of the sequence
can be either 1 or -1. Let us represent the label of the sequendth y, = {1,—-1}. A
classifier is then built using the feature vectors of thentray set. A weight vector of the
same dimensions as the feature vector is represented-byw,, ws, ... w;|. The label of
the sequence is then predicted as wif x > b (b is a threshold), else the label is -1. The

equation of the margin, is given by

If ~ is positive, then the sequence is correctly classified rofise, it is not correctly classi-
fied. Every time a sequence is incorrectly classified, thglteiectorw and the threshold

b are updated. A simple algorithm of an SVM is presented in Atgm 1.  In this al-
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Algorithm 1: SVM algorithm
begin
wo «— 0,09 «— 0,k < 0;
R < Radius of the vector most distant from the origin of vectacg
while mistakes are made on the training set do
fori=1to N do
if y;(wy - x; + bx) < 0then
Wiyl < Wi + NYiXi;
ber «— by, + nyi R?;
k+—Fk+1;
end
end

end
end

gorithm, w, the weight vector, is initialized to 0 at the beginning. Theesholdb is also
initialized to 0.k is the number of mistakes madejs the radius of the hypersphere, and is
initialized to the maximum distance of a training vectomfrthe origin of the hypersphere
(i.e., the hypersphere containing the datd)is the total number of training vectors.is

a learning rate. In this algorithm, the final predictor or tleeision hyperplane is given by

the equation

h(x) = sgn(wy, - x + by,) (2.2)

When the loop in Algorithm 1 exits, the final weight vecteris in the form

N
W = Z QY X, (2.3)
i=1

whereq; is the number of mistakes made on example. Now the equatichdadecision

hyperplane becomes

N
h(x) = sgn(z oy (x; - x) +b). (2.4)
i=1

The data is represented in dot products. The dot produstsills to use kernels which

implicitly remap and compute dot products. An SVM algoritbsing the kernel function,
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Algorithm 2: SVM algorithm with a kernel functior ()
begin
while mistakes are made in for loop do

fori=1to N do

if yl(zj\[:l OéjyjK(Xj . X) + b) <0 then
o — oy + 1

end

end

end
end

K(X,Y), for some vectors{ andY’, is shown in Algorithm 2. Some commonly used
kernel function includes: linear, polynomial, radial l|gsind sigmoid functions. The equa-

tions for the respective kernel functions are listed in &hP.

Table 2.2: The four types of kernel functions frequently used with SVM.

Linear Kernel K(z,y)
Polynomial Kernel K(z,y)
Sigmoid Kernel K(z,y) = tanh(kz -y + ¢)
Radial Basis Kernel K (z,y)

The advantage of using the SVM in this study is the ability kassify protein se-
guences without depending on multiple alignments. Thewe li@en only a few studies
using SVMs in the classification of protein sequences. Karf2?] (and also Karchin et
al. [23]) developed the SVM-Fisher method. Liao and Nob® [@ the other hand used
the SVM-pairwise method. Wang et al. [42] and Zhang [45] a&sperimented with SVM
on identifying Thioredoxin proteins, another example aftpin family with low primary
sequence similarity. Both SVM-Fisher and SVM-pairwise imoels were used in this study,

and they are described next.

2The algorithm presented here is a simple form of SVM that taised by typical SVM packages. Regular
SVMs (including SVM-light) formulate the learning problexa a convex quadratic optimization problem and
then apply interior point methods to solve it.
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SVM-Fisher

Jaakkola et al. [19] developed a method to derive kerneltfons from generative proba-
bility methods. Using this method, protein sequences watiiable lengths can be handled
by extracting fixed length vectors. In addition, prior kneatje from the probability model
on a sequence can be used by a kernel function. It requiredviv blilt from a set of
sequences of interest, most likely from a certain protaimlfa The forward-backward al-
gorithm is used to obtain the likelihood score for a queryusege. The forward-backward
algorithm also extracts “sufficient statistics” for eacatst The sufficient statistics are the
posterior frequencies of having taken a particular trémsibr having generated one of the
residues of the query sequengefrom a particular state [18]. Analogous to the sufficient

statistics are the “Fisher scores” given by

Ux = Vy 10gP(X‘H1,9)7 (2.5)

where each component 6fy is a derivative of the log likelihood score for the query se-
guenceX with respect to each parameter given the mddel The magnitude of the com-
ponents specifies the extent to which each parameter cot@silbto generating the query

sequence.

Karchin’s [22] experiments consisted of using the mixtuiens to compute enhanced
Fisher score vectors. These mixtures are the pre-caldudateno acid distributions esti-
mated by studying large databases of protein sequencesgrdbability of amino acids in
each state is decomposed into a number of components. |loaes there are nine com-
ponents. The nine components are the probability distahudf an amino acid at a match
state belonging to the nine subclasses as described in T2i.final Fisher score vector

for a sequenceX, given an HMM modelH, therefore has nine components for every
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match state inf{;. Transition probabilities are not used as the paramete(ksat Equa-
tion 2.5) during the computation of Fisher scores, redutiregcomputational complexity
of the calculation. Karchin also noted that using transifioobabilities does not improve

the performance of SVM classification [22].

After deriving the Fisher score vectors for training sangaquences, those vectors are
used to train the SVM with a Gaussian radial basis kernels method is known as the
SVM-Fisher method. Details of the derivation of the Fisher score carobad in Jaakkola

et al. [18].

SVM-Fisher method was used to discriminate GPCRs in Kar{2®h and Karchin
et al. [23]. Karchin’s results showed that the HMM methodngshe SAM software,
was the best method to discriminate the GPCR superfamilye HWIMs were able to
discriminate GPCRs including Classes A, B, and E from noiGk® perfectly. SAM
outperformed other methods including BLAST, Smith-Watanmand SVM-Fisher. On
the other hand, GPCR subfamilies within the superfamilyeasst discriminated by the
SVM-Fisher method.

SVM-pairwise

Liao and Noble [30] developed another vectorization mettuogrotein sequences. The
vectors are then used in a support vector learning. A pregguience is compared to every
protein in the dataset. Comparison is conducted by perfagrttie Smith-Waterman local
alignment algorithm on two sequences, and an E-value fosithgarity is estimated [30].
Since the pairwise scores between every two sequencesett@sigin input vector for the
SVM, this method is calle®VM-pairwise. After comparing a sequencg with all the

sequences in the data set, the feature vector correspotadéngroteinX is in the form of
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Fx = [fe1, fa2,---, fon] Wheren is the total number of proteins in the training set and
f.i is the E-value of the Smith-Waterman scobetween sequenceés and theith training

sequence. As in SVM-Fisher, a radial basis kernel funcsarsed in the SVM.

Liao and Noble [30] tested the SVM-pairwise method to measaw well it could
classify proteins into superfamilies based on the Strat@iassification of Proteins (SCOP)
database [32]. Sequences were selected from the SCOP skatafber removing very
similar sequences. SVM-pairwise was compared with othegsilication methods: PSI-
BLAST, SAM, SVM-Fisher, and Family Pairwise Search (FP3nifr to SVM-pairwise,
FPS scores a protein sequence against a family of sequehjesA query sequence is
compared to a set of sequences and the pairwise scores apgedno obtain an overall
score for the similarity of the query sequence to the fanfiseguences compared to. Their

results showed that SVM-pairwise performed better thaofdhe other four methods.

2.2.3 Discriminant function analysis

Another interesting GPCR classification method was dewsldpy Kim et al. [25]. The
method was called Quasi-periodic Feature Classifier (QR@ature space was generated
using statistical measures of physico-chemical propedie@mino acids. Linear discrimi-
nant function analysis with non-parametric optimizaticeswsed to discriminate GPCRs

from other proteins.

The general form of linear discriminant function is given by

DS = CI,1X1 + GQXQ + ...+ aan (26)

3The Smith-Waterman score is the maximum score for a locghaient between the two protein se-
guences being compared. The E-value or the expectatior edla score (and an alignment) is the number
of different alignments with scores equivalent to or betthan that particular score expected to occur in the
database search by chance. The lower the E-value, the higheonfidence.
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where DS is the discriminant scoreX; is the value for each descriptor representing the
protein sequence, anglis the coefficient for that particular variable. The disdnat score

is calculated for each sample and is used to determine tke tdawhich the sample be-
longs. The algorithm tries to solve for a set of coefficientsuch a way that it would give
the highest accuracy on classification of the training $ed parametric linear discriminant

analysis, the algorithm tries to maximize the betweensdasvithin-class variance [6].

In QFC, however, the authors used a non-parametric optiloizenethod using ‘runs’
statistics in order to avoid assuming normal distributiohgariables. After training, a lin-
ear hyperplane is determined that discriminates the twssekoptimally. Test data is then

classified to respective classes using this linear function

The main idea of the method was to construct the most usedturfe space. Fourteen
physico-chemical properties were considered, and aftgrwise deletion, four variables
were selected. After training the algorithm with GPCRs, Kihal. [25] tested the method
comparing with three other methods: PROSITE, Pfam, and PRINDFC performed bet-
ter than or as good as other methods in the test set. Morestitegly this method outper-
formed the other three methods when tested on randomly &atgd short sequences as
short as 50 amino acids. They also observed that QFC pertowek identifying GPCRs

from other transmembrane proteins.

Moriyama and Kim [31] later used parametric discriminarglgsis with linear, quadratic,
and logistic functions. They also included one non-parametethod, K-nearest neigh-
bors. They compared the performance of GPCR discriminaimong these methods and
QFC described above. They found that the performance oéttesriminant function

methods is comparable to QFC and similarly better agairst sequences compared to
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Pfam, PRINTS, and PROSITE.

Lee [27] applied a multi-instance version of Kim et al’s hnad in predicting func-
tional classes of GPCRs from Class A. The generalized niediistance learning methods
(GMIL-2 and kernel-based GMIL) was used with 7 physico-cleainproperties derived
from Kim et al. to model the protein functional classes ofSl& GPCRs. Then GMIL
algorithms were used to learn and predict functional cks3déey observed that kernel-
based GMIL outperformed GMIL-2 by having better accuradgsdor 6 out of 11 train

groups and same accuracy rates for 2 train groups.

Discriminant analysis methods were not included in thislgtiHowever, their perfor-

mance is compared with the nine methods based on the regiMtellyama and Kim [31].
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Chapter 3

Materials and Methods

In this chapter, data collection methods used in this studylascribed first. Next, protein
classification methods used, and finally how the performaicerious methods were

analyzed is described.

3.1 Data Collection

Before implementing any learning algorithms, training desting data sets need to be
prepared. The learning algorithms used in this projectpstpvector machines, hidden
Markov models, and decision trees, all were trained on séWaining sets, and then their
classification performance was examined against test lse@if.now begin by explaining

how the training and testing sets were prepared.

3.1.1 Data sources

The positive datasets, which consist of known GPCR seqsenege taken from GPCRDB [15].

This database maintains a repository of known sequenaestfre GPCR superfamily. The
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May 2003 releaseof this database was used for this study. It consists of @800 GPCR
sequences. The GPCR superfamily is divided into five magssds according to function
and sequence similarities as listed in Table 2.1. Class AdBpsin-like, is the largest class
and consists of 3,519 sequences. Class B consists of onlge2fliences, and other classes
include even fewer sequences. The number of sequencessseSIB, C, D, and E add up
to only 377. Because Class A is the largest, this study fatosethis class and various

training sets were created from Class A.

GPCRDB also maintains a collection of Bacteriorhnodopsimtgins. These proteins
have seven transmembrane regions as GPCRs. However, abel@sc Chapter 2, these
proteins do not couple with G-proteins, and therefore, Hreynot GPCRs. The May 2003
release of GPCRDB included 25 such proteins in its Bacteoidopsin class. As described

below, these bacteriorhodopsin sequences were used asod pagative dataset.

All of the negative datasets were taken from Swiss-Protdeta [5]. Swiss-Prot main-
tains a collection of protein sequences with detailed fionetelated annotations. As of
October, 2003, the size of Swiss-Prot database was 135/866% Negative datasets
longer than 100 amino acidswere sampled randomly from this database. They were

checked so that none of the negative data belonged to the GB@Rfamily.

Two major updates (in February and June) has been done siage2®3. Because of the elaborate
dataset sampling scheme used in this study, newer versidhg database could not be used due to time
constraints.

2The newest version of Swiss-Prot from July, 2004 consisis8{871 entries.

3The lower bound of 100 amino acids was set so that the negsgitygences were not too much shorter
than the GPCRs, whose minimum length is close to 300 amimsaci
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3.1.2 Training data
A. Sampling methods for preparing positive training sets

In order to examine if any of the algorithms’ performanceyvaith different sampling
schemes of training sets, six different sets of positive B&ta were sampled from Class
A. These included one “random sampling” set, one “taxonahsampling” set, and four

“phylogeny-based sampling” sets. Each sampling methodssribed next.

i) Random sampling

The random sampling set consisted of 200 GPCRs randomlyledrnpm Class A. This
random sampling set may have GPCRs that are very close too#laehor very diverged
from each other in sequence similarity. Random sampling nayrepresent all of the
subclasses within Class A evenly, especially if some sgBelahave only a small number
of member proteins. On the other hand, this sampling schepresents the distribution of
GPCR members included in GPCRDB. This training set may i well if such a bias

affects the power of classification models.

if) Taxonomical sampling

The taxonomical sampling is based on the families and subésof Class A according
to the GPCRDB classification scheme. As shown in Figure 3ds<CA is divided into 16
subfamilies, which are again divided into smaller subfamsijltotaling 87 subdivisions. In
this sampling scheme, two sequences were chosen from e#obsefsubdivisions, with a
total of 173 sequences (one subdivision had only one segeihis is the only positive
training set consisting of fewer than 200 sequences. Thentarical sampling set repre-
sents all of the subclasses within Class A regardless ofzbe$each subclass. Therefore,
this training set was expected to train better than the nansl@mpling, especially when

training and test datasets had different class/subclaggaditions.
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GPCR superfamily

T TN

Class A Class B Class C Class D Class E
Amine Peptide .. Other
Acetyl- Adreno-... Trace Angio-Bom- ... Other Platelet SREB ... GP40-like

choline receptors Amine tensin besin Receptors

Figure 3.1: Classification scheme of the GPCR superfamily used in GPCRIM&S A is
divided into 16 divisions based on ligand types (e.g., AmiPeptide, etc.). Each family is
further divided into 87 subdivisions in total(e.g., Acetybline, Adrenoreceptors, etc. in
the Amine family).
iii) Phylogenetic sampling

The phylogenetic sampling is a more complex procedure ardsimore explanation.
A phylogenetic tree of protein sequences illustrates tlodugionalry relationships among
them [28]. It consists of nodes and branches, where theratt@ar terminal) nodes repre-

sent the protein sequences considered. The lengths ofdhetms are proportional to the

numbers of amino acid substitutions estimated betweendtdes

GPCRs are extrememly diverged sequences, and even amongethbers of Class
A their amino acid sequences have high divergence levelsngreach other. For ex-
ample, pairwise distances estimated from GPCRs in Classagetbon JTT substitution
model [21]) range from 0.00 to 32.27 amino acid substitigiper site with the average
distance 2.77. Phylogenetic sampling is used to generaiév@otraining sets that have
various levels of divergence from this extremely divergdéGRs. A phylogenetic tree

of all Class A sequences was reconstrutfiagt. To build a phylogenetic tree, distances

4The original evolutionary events happen in nature, andqaismetic methods try to “reconstruct” such
evolutionary (divercifying) pathways based on sequentaimation. Note that any phylogenetic tree “re-
constructed” is a hypothesis (or model) of the true evohaiy process.
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between sequences were required. In order to avoid a praj@esrating a multiple align-

ment from extremely diverged sequences, only pairwiseal@gnts were generated.

The ClustalW program [41] was used to obtain pairwise alignts between all 3,519
sequences of Class A GPCRs. ClustalW uses a progressivélaigto generate a multi-
ple alignment. However, for a pairwise alignment, it usegmy a dynamic programming.
The default set of options: gap opening penalty of 10, gaprestion penalty of 0.10, and
the BLOSUM scoring matrices, was used. Pairwise distan@s walculated using the
protdist program from the PHYLIP package [11]. The JTT substitutiordel [21] was
chosen for estimating distances. All of the pairwise distgnwere assembled into one
distance matrix. Finally, theeighbor program from the PHYLIP package was used to
reconstruct a phylogeny tree. Moriyama et al. (personalnaanication) compared the
phylogenetic trees reconstructed based on pairwise dissaand those based on regular
distances using multiple alignments. They reported thaptirwise distance-based phy-
logeny is sufficiently accurate for illustrating major dieisng patterns. Therefore, this

method should be a good approximation for the purpose usthisistudy.

The UPGMA (Unweighted Pair Group Method with Arithmetic Mganethod [40],
instead of the neighbor-joining (NJ) method [36], was usegktonstruct the phylogenetic
relationships. The UPGMA reconstructs a rooted phylogernete assuming a constant
evolutionary rate. The NJ method, on the other hand, pradaneunrooted tree without
any assumption on the evolutionary rate. As described het@phylogenetic sampling
used in this study involves with choosing clusters at a goigargence level. This process
becomes much simpler when UPGMA, instead of NJ, phylogaiesised due to the av-
eraging clustering process of UPGMA. It should be noted thatNJ method in general

reconstructs more accurate phylogenies than the UPGMA wWieeavolutionary rate can-
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not be assumed to be constant. Although such an assumptiwosislikely invalid for the
GPCR superfamily evolution, since the purpose of using gty in this study is only to
determine a rough clustering pattern, using UPGMA shoutgpnesent a serious problem

in this case.
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Figure 3.2: A phylogenetic tree of a subset of Class A GPCRs reconstiunte¢he UP-
GMA method. Threshold 1 at 1.27 branch length from the le@ress four clusters of
sequences(A). Using Threshold 2 at 0.18 branch length fhentetaves, on the other hand,
gives seven clusters of sequences as shown in B.

A sample UPGMA phylogenetic tree is shown in Figure 3.2. le figure, ten se-
guences were used to reconstruct the phylogenetic tree.higsiold 1, which is at the
distance (branch length) of 1.27 amino acid substituti@nspe from the leaves, four clus-
ters can be formed (Figure 3.2A). The first two clusters eaxttsists of a single sequence
(5H1A_HUMAN and OPSDSEPOF). The third cluster includes four sequences under the
node 4, and the fourth cluster consists of the remaining $eguences under the node 6.
At Threshold 2, which is at 0.18 distance (branch lengthinftbe leaves, seven clusters

can be formed (Figure 3.2B). Five clusters each consistssirigle sequence, while the
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Table 3.1: The numbers of clusters and three levels of thresholds used.

Number of Clusters Distance threshbld
100 0.905
200 0.675
400 0.446

! Distance threshold is presented as the branch length frereéves. To ob-
tain 100 clusters, for example, the branch length of 0.90mamcid substi-
tutions per site from the leaf nodes was used as the cutreff This resulted
in 100 clusters that were formed under this threshold.

other two clusters include three sequences under the nodd 8va sequences under the

node 1.

After a phylogenetic tree including all the Class A GPCR$18, sequences) was re-
constructed, three different levels of distance thresheldre used to obtain 100, 200, and
400 clusters. Table 3.1 summarizes the three levels ofrdistdaresholds. All the distance

thresholds are the branch lengths from the leaves of theghgktic tree to the cut-off line.

For the first phylogeny-based sampling scheme, the distAneshold used was 0.675.
At this threshold, there were 200 clusters as shown in Taldle Brom each cluster, one
sequence was randomly sampled. This resulted in 200 segmiembis method is called
the “pure phylogeny-based sampling”. This sampling sehidqgenetically a good repre-
sentation of Class A GPCRs. Thus, this set was expectedimotedl all the classification

methods.

The second set, called “random phylogeny sampling”, wapgyesl by first choosing
one sequence each from the 400 clusters at the distanchdlded 0.446 as shown in Ta-
ble 3.1. Next, 200 sequences was randomly chosen from tl@€sseduences. The average

divergence level of this sampling set is expected to be lokgar the pure phylogeny-based
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sampling due to its lower threshold. This set incorporakes some random factors. This
set may not train as well as the pure phylogeny-based sagnpdinsidering its less effec-
tive representation of the GPCR families. However, theusicin of the random sampling

could overcome this disadvantage.

For the third set, called “phylogeny and random samplingie sequence each was
chosen from the 100 clusters with the threshold of 0.905 awslin Table 3.1. Another
set of 100 randomly sampled sequences without overlaps ddgesddo this to make a to-
tal of 200 sequences. Phylogenetically, this samplingeggesents Class A GPCRs better

than random phylogeny sampling and it combines the posséiefit of random sampling.

The fourth set, “two from each cluster sampling”, was credig choosing two se-
guences each from the 100 clusters with branch length of50.9this resulted in 185
sequences since 15 clusters had only one sequence. Fiftegommly sampled sequences
were added to make a total of 200 sequences. The last thremgphgtic sampling schemes
incorporated random samplings. Comparing them with the phylogeny-based method
as well as the taxonomic sampling method, the effect of randampling on the training

could be evaluated.

B. Sampling methods for preparing negative training sets

Two sets of negative data containing non-GPCR sequencesprepared. For the first set,
200 non-GPCR sequences were randomly chosen from SwisgiBtein database. They
consisted of any kind of protein sequences that were at1€8samino acids long but were

not GPCRs.
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For the second set, a set of bacteriorhodopsin proteins acketed to the first negative
dataset. Bacteriorhodopsins are seven transmembrarménsrbke GPCRs but they are not
actually GPCRs, as described in Chapter 2. Addition of suotems is expected to train
the learning methods more specifically and with fewer falgsitjves, resulting in better
classification performance on the test sets. This is bedhadearning methods will learn
to discriminate the protein sequences on properties dtlaerthe existence of seven trans-
membrane regions. There were a total of 25 bacteriorhodsjpsithe May 2003 release of
GPCRDB. Ten sequences were sampled out of 25 so that theydiverrged as much as
possible. A multiple alignment of these proteins were gataer using ClustalW. Bootstrap
analysis® with 1,000 replications was done by usingboot, a program from the PHYLIP
package. The PHYLIP programrotdist was used to estimate distances with the JTT
method [21]. The PHYLIP programeighbor was used to reconstruct neighbor-joining
trees. The progranvnsense from PHYLIP package was used to calculate boostrap sup-
porting scores. Strongly supported clusters, with boapstalues of 95% or higher, were
identified and ten sequences of bacteriorhodopsin wereealtogepresent the entire diver-
sity in the tree. These ten sequences were added to the psivaeated negative training

set. The total number of sequences in the second negaiinmgaet was therefore, 210.

C. Twelve training sets

After putting together the six positive training sets witfotnegative training sets, the total

number of training sets was twelve. They are summarizedieTa 2.

SBootstrap analysis is a method of generating multiple detsatbat are resampled from the original input
data set [11]. For phylogenetic analysis, bootstrap aisigsione on the multiple alignment, and bootstrap
supporting values are calculated for each node in the peyladHigher the values, the nodes (or the clusters)
are supported more.
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Table 3.2: The training sets used in this stutly.

Training

Set ID Positive dataset Negative dataset
la (400) Random (200) Random (200)
2a (373) Taxonomical (173) Random (200)
3a (400) Pure phylogeny (200) Random (200)

4a (400) Random phylogeny (200) Random (200)
5a (400) Phylogeny and Random (200) Random (200)
6a (400) Two from each cluster (200) Random (200)

1b (410) Random (200) Random and Bacteriorhodopsin (210)
2b (383) Taxonomical (173) Random and Bacteriorhodopsif)2

3b (410) Pure phylogeny (200) Random and Bacteriorhodd@4id)

4b (410) Random phylogeny (200) Random and Bacteriorhod@p%0)

5b (410) Phylogeny and Random (200) Random and Bacteriogsma (210)
6b (410) Two from each cluster (200) Random and Bacteriavpsith (210)

! The numbers in the parantheses show the number of samplashdataset.

3.1.3 Testdata

The performance of each classification algorithm was testganst test datasets that in-
cluded both positive and negative data. All the sequenaasinghe test data are exclusive

from those in the training data.

A. Full-sequence test

Two positive test sets were created. The first dataset dedsi§ 200 sequences of ran-
domly sampled Class A GPCRs from GPCRDB. The second setstedsif 200 sequences
of randomly sampled GPCRs of Classes B, C, D, and E from GPCRDB second test
set was created to examine how well the methods trained as @l&PCRs would classify

non-Class A GPCRs.

As described for the training sets, the negative samplethéotest datasets were ob-
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Table 3.3: The test sets used in this stutly.

Test
SetID  Positive Negative
t1 (410) Random - Class A (200) Random and Bacteriorhodd@4id)

t2 (410) Random - Class B, C, D, E (200) Random and Bacterttmpsin (210)
! The numbers in parantheses show the number of samples inlatcet.

tained from the Swiss-Prot database. Only one set of neatst data was created. The set
consisted of 200 randomly sampled non-GPCRs that weresit1€8 amino acid long and
a set of 10 bacteriorhodopsin protein sequences. The babtidopsin sequences were
sampled in the same way as explained in Section 3.1.2 andwbeynot overlapped with

those in the training set. The negative test set contain@g@duences.

The two test datasets are summarized in Table 3.3.

B. Subsequence test

The test set containing 200 Class A GPCRs was used to creatieearsets of test data
with amino acid sequences of different lengths. Six test satre created, where each
of the test sets consisted of a particular length of subsexse The amino acid lengths
chosen were: 50, 75, 100, 150, 200, and 300. These were rasdlosequences of the
full GPCR sequences. These lengths were chosen becausesthgealength of GPCRs
in all the training sets was 397, ranging from 263 to 1,050n@nacids. These test sets
were used to examine how well the classification method®parivith short subsequence

of the real GPCRs, and how the performance changes withasiorg subsequence lengths.
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3.2 Protein Classification Methods

The purpose of this thesis is to compare and analyze diffetassification methods and
their performance and the effect of various training ddtase these methods. The prob-
lem given to these methods is to classify two types of dataCERnd non-GPCR. The
methods used are profile hidden Markov models, support vectzhines using several
kernel functions and several type of feature vectors, amisia trees. In this section,

these methods and the attributes used by these methodssaridodd.

3.2.1 Profile-HMM

As a representative of the commonly used protein classdicaethods, a profile HMM
method is included in this study, and the classificationgrertince of other methods was
examined against this method. Sequence Alignment and NMaodébAM) software sys-
tem [16, 24, 26] is an implementation of the profile HMM metHiodprotein classification.
SAM (version 3.4) was used for this study. Fasta format ofignad sequences of the pos-
itive training sets including only GPCR sequences was usedput. Dirichlet mixture
priors [38] were used to build the models so that they haviebptobability distributions.

For building the models, the following command and optiomsewsed.

>pui | dnodel train_nodel -train trainset.fas

-prior_library uprior.9conp -randseed 0

Heret r ai nset . f as is the input file,upr i or . 9conp is the library of Dirichlet mix-
tures, and r ai n_nodel is the name given to the model built by SAM and it is saved in
thet rai n_nodel . nod file. The-randseed parameter is for the selection for initial
model length. The default value of andseed is the process ID number. Here it is set to
0 so that the program run is reproducible. The test sequendasta format from each of

the test sets were compared to each of the models using tbeiftd command.
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>hmrscore outfile -i train_nodel -db testset.fas

-sw 2 -calibrate 1

The output file (hameaut fi | e. di st) contains the e-values of the scores for each
test sequence from the fiteest set . f as based on the model given trr ai n_nodel .
The option- swis to specify the type of alignment. Settingwto 2 performs full-local
alignment of sequences to the model. Tloal i br at e parameter with the value 1 is used
for a better calibration of the e-values. The sequence®iotkput file are ranked according
to the e-values. Classification was done using a certainuevareshold. Sequences with
the e-values lower than or equal to the threshold were fledsas “positives” (GPCRS),
while those with the e-values higher than the threshold vekmetified as “negatives” (non-
GPCRs). For accuracy rate calculation (described lateg)etvalues threshold was found

using the minimum error point described in Section 3.3.3.

3.2.2 SVM with amino acid frequencies

A support vector machine package SVM-light version 5.0,clvhg an implementation of
support vector machines by Joachims [20] was used. Bothiymaind negative sequences

(GPCRs and non-GPCRs) from the training sets were usedtah@SVM.

For this study, simply nineteen amino acid frequencies ohgaotein sequence were
used as the input vector for SVM-light. Four kernel functidiinear, polynomial, sigmoid,
radial basis) were used to create a hyperplane for cladgsficand the performance of
each kernel function with SVM-light is compared. The fourred functions are listed in

Table 2.2.

The default kernel function used by SVM-light is linear keltnFor training the SVM

with linear kernel function, the following command was used
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>svm | earn train.dat train_nodel

t rai n. dat is the input file with the 19 amino acid frequencies of eaciming sequence
in a vector format, and r ai n_nodel is the model built by SVM based on the training

data.

For training the SVM with the polynomial, sigmoidal, and iedasis kernels, the

following commands were used:

>svmlearn -t 1 -s 1 -r 1.0 -d 100 train.dat train_nodel

>svmlearn -t 3 -s 10 -r 0.1 train.dat trai n_nodel

>svmlearn -t 2 -g 150 train.dat train_nodel

where the parametéris the kernel function option where 0 is for linear (default)s for
polynomial, 2 is for radial basis, and 3 is for sigmoid kerheiction. The other options
are used to define the parameter values for the kernel funsctibhey were decided after

various different values were tried. Table 3.4 summarikegparameters used.

Table 3.4: The values used for parameters in SVM with polynomial, siginand radial
basis kernel functions.

Kernels Parametelrs
k¢ p v
Polynomial 1 1.0 100 -
Sigmoid 10 0.1 - -
Radial basis - - - 150

! The parameters for each kernel are
listed in Table 2.2.

For classifying the test set sequences, the following contmeas used for all the

kernel functions.
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>svm cl assify test.dat train_nodel output file > result file

Thet est. dat is the test file with 19 amino acid frequencies for each tegtisece
in a vector format. The r ai n_nodel is the model built from the training set and
out put fil e consists of the predictions. Theesul t fi | e contains the classifica-

tion statistics including the accuracy of the SVM on the sest

3.2.3 SVM-pairwise

SVM-light (version 5.0) package with the radial basis kérfio@ction was used for the
SVM-pairwise method. The input vectors for the SVM were theakies of pairwise
similarity scores between all sequences. E-values weieedeusing theSSearch (ver-
sion 3.4) program, which is an implementation of Smith-Waten local alignment algo-
rithm [39, 33]. The default options af Search (open gap penalty of 12, gap extension
penalty of 2, and the BLOSUM50 scoring matrix) were used.

From the training sets, each sequence was compared agaghsoere included in the
training sets. From each comparison, the e-values waslatdduand put into a vector
format. Each vector contained, for example, 400 e-valu@® {bm the comparison with
positive samples and 200 from those with negative sampheit, the input vectors were
used to train a SVM using the SVM-light prograsyml ear n. The radial basis function

with v = 0.0001 was used as the kernel function.

For the test setsySearch program was used to obtain e-values for each test sequence
against the training sets. The input vector file includingsthe-values was used with the
svmcl assi f y program to obtain the prediction results and the accuratye@EVM on

the test set.
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Table 3.5: The profile HMMs and corresponding training and test setsl dise
SVM-Fisher method.

SAM HMM Fisher scores for training  Fisher scores for testing

M1 F.la Ft1.M1, Ft2. M1
F_1b Ft1 M1, Ft2.M1
M2 F_2a Ft1.M2, Ft2. M2
F_2b Ft1 M2, F_t2. M2
M3 F_3a Ft1.M3, Ft2.M3
F_3b Ft1 M3, F_t2.M3
M4 F 4a Ft1-M4, Ft2.M4
F_4b Ft1 M4, Ft2.M4
M5 F_5a Ft1_M5, Ft2.M5
F_5b Ft1 M5, F_t2_.M5
M6 F_6a Ft1.M6, Ft2_.M6
F_6b Ft1 M6, F_t2_.M6

1 Six SAM models and 12 training sets were used to create thets2§Fisher
score vectors for training. For example,1B is the training set with Fisher
scores obtained from the model M1 and the training set la.tdsbing, two
test sets and the six SAM models were used to create 12 setshafrscore
vectors. For example, BL_M1 is the test set with Fisher scores obtained from
the model M1 and the test set t1.

3.2.4 SVM-Fisher

SAM (version 3.3.1) and SVM-light (version 5.0) were botteddor this method. The

profile HMMs built by SAM earlier as explained in Section 3.2vas used for this method.

Both positive and negative sequences from each trainingvastcompared with its
corresponding SAM model, and the Fisher scores [18] wemaebed for each sequence.
Table 3.5 summarizes the relationships among the sevenat data used for this method.
For example, the HMM M1 was built using positive sequencek:dfaining set, and both
la and1b training sets with positive and negative sample sequenees eompared with
the model M1 to obtain the Fisher score vectors (hamed Bhd F1b in the table). The

following command from SAM was used to derive Fisher scores:
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>get _fisher_scores unused -fisher_feature match_prior

-i train_nodel -db trainset.fas -sw 2

whereunused is the run-name (not used in this program) arfid sher _f eat ure is
the parameter that specifies which features are used tol@i@dthe Fisher score vectors.
Themat ch_pri or option given directs to use only the match states and Detahixture
used to train the model. The SAM model file is specified withoption, and db specifies

the dataset file whose Fisher score vectors need to be daldula

This resulted in 12 training sets of Fisher score vectordgRo E6b in Table 3.5).
These Fisher score vectors were then used to train the SViVawadial basis kernel func-

tion (v = 0.0001) using thevml ear n program in SVM-light.

Each sequence of the two test sets (t1 and t2 as shown in Ta})lev8s compared
against each of the six SAM models, and the Fisher scores o#egned by using the
get fi sher _scor es program as described above. The Fisher score vectors ebitain
from each test set (EL_M1to F_t2_M6 in Table 3.5) were classified using themcl assi fy
program in SVM-light, based on each trained SVM model. Famegle, as listed in Ta-
ble 3.5, the SVM trained with the Ea input vectors was tested against both of th& M1

and Ft2_M1 test vectors.

3.2.5 Decision trees

Decision trees method, another pattern recognition methas also used in this study for
comparison purposes. This method has rarely been usedfeipclassification problems.
Decision trees work by discovering rules that best claghiéygiven data. Each attribute
of the data is evaluated first to see which one can classifgdite best. That attribute is

then chosen as the root node, and descendant nodes arel ¢rgatwting the examples to



40
appropriate branches. The entire process is repeatedraheaty formed node. Once all
the nodes have only one type of the classes associated il process stops. The main
idea is to choose tests at each node that maximally sepanatélata so that the final tree

is small.

Since this method does not require multiple alignments, \aarks differently than
the SVMs, it is interesting to see how this method works camgbavith others. For this
method, | used Quinlan’s c4.5 (release 8) program [35]. Tharhino acid frequencies of

both positive and negative training sequences were usegbastd the program.

The following commands were used for training and testing.
>c4.5 -f filestem-u

where the parameterf is to specify a filestem name. Three sets of files are used as in-
puts to c4.5.fi | est em dat a consists of the 19 amino acid frequencies (attributes) of
each sequence in the training set, followed by its lalbéll est em names consists of

the attribute names and the class names the data belonfjsltest em t est consists

of the 19 amino acid frequencies of each sequence in thedestBe parameteru is to
specify c4.5 to classify the test data in thiel est em t ext file. The output given is a
form of a confusion matrix (explained in the next sectionfjeh includes the numbers of

true positives, false positives, true negatives, and fadggtives.

Decision tree with boosting was also performed. In boostingny decision tree clas-
sifiers are built from the same training set by changing thigime® of the misclassified

vectors at each iteration [34]. The weights of all the vectare normalized at every it-

6A weight for each instance is maintained in boosting. Théndighe weight, the more the effect the
instance has on the classifier [34].
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eration. When the total weight of the misclassified vectald ap to O or is greater than
0.5, the program stops building trees. The test vectors assaul through each decision
tree classifiers A decision on the class of a sequence is lmest#te majority vote by the

classifiers.

The Weka implementation was used for the boosted deciseas §44]. In the Java
interface, the amino acid frequencies of the training squeeces and the amino acid
frequencies of the test set sequences were loaded. Theotettises program J48 [35]
(equivalent to c4.5 [44]) and the boosting program AdaB@ds37] were used with the

following command:
>AdaBoostML -P 100 -S 1 -1 10 -WJ48 -- -C0.25 -M2

where- P specifies the weight mass to be use8,specifies the random number seed,
specifies the number of iterations, andispecifies the learning program (J48 is used here).
The parameters for J48 includeC specifies for the confidence threshold for pruning and
-M specifies for the minimum number of instances in a leaf nafdbe decision tree. The
output consisted of a confusion matrix with true predicsi@md false predictions by the

classifier.

3.3 Performance Analysis

Classification performance of each method was analysedj wsinous statistics. Their
performance was examined against independently prepeseddtasets described in Sec-
tion 3.1.3. Cross-validation analysis was also perforniéaek accuracy rate is the simplest
measure for the classification performance. More detaihedyais is done using the Re-

ceiver Operating Characteristic (ROC) curve. Performatalysis used by Karchin et
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al. [22], which examines the minimum error point, maximund anedian rate of false

positives, was also performed.

3.3.1 Cross-validation

Cross-validation analysis was performed for all the expernits in this study. Cross-
validation analysis is also called “leave-one-out” methtids done as follows. One item
from the training dataset is left out and the learning alpaniis trained on the rest of the
items. The trained model is used to predict the label of theeleft out earlier. Forn se-
guences in the training set, this process is repeatedes leaving each of the sequences
out and creating a model from the remaining- 1 sequences. The accuracy for each

method is calculated as described next.

3.3.2 Confusion matrix and accuracy rate

A confusion matix is & x 2 table showing the number of real sequences and the number
of predicted sequences by a classifier. In a confusion masishown in Figure 3.3, there

are four items:
e True Positives (TP): Number of actual GPCRs that are predicted as GPCRs.
e False Positives (FP): Number of actual non-GPCRs that are predicted as GPCRs.
e TrueNegatives(TN): Number of actual non-GPCRs that are predicted as non-GPCRs
e False Negatives (FN): Number of actual GPCRs that are predicted as non-GPCRs.

The accuracy rate is defined as the proportion of correcligireds and is given by:

TP + TN
TP + TN +FP + FN’
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Predicted Label
+ —

+ | True Positive (TP), False Negative (FN
Actual
Label

— | False Positive (FP) True Negative (TN)

Figure 3.3: A confusion matrix with true positive, false positive, troegative, and false
negative.

The minimum, average, and maximum accuracy rates werelatdufor each method
trained on different training sets. The accuracy rate wésutaied from independently

prepared test sets as well as from the cross-validation test

3.3.3 Minimum error point

The minimum error point (MEP) is one of the performance messused by Karchin [22].
Each classifier outputs a score for each prediction as anmgashown in Table 3.6. The
magnitude of these scores reflects the classifier's confeddanthe prediction. The test
sequences are ranked based on the scores. The thresh@dvaye the minimum num-
ber of errors (FN + FP) occurs is the minimum error point (MBR{Yl the number of false
positives and false negatives are assessed at this poiatmiriimum error point tells us
the best case accuracy of a classifier. In Table 3.6, the MBBt&ned with the score 14,

where the number of errors is only 3.

The minimum error point is calculated for all methods exdbptdecision trees meth-
ods. These methods do not give out prediction scores fasegstences. Instead only a final
result is given in a confusion matrix. Therefore, it was noggible to do this performance

analysis on these methods.
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Table 3.6: An example for calculating the minimum error point, maximamd median
rates of false positive.

Rank Seq.ID Score ActuallLabel FP FN Error FP rate

1 seql 20 + o 7 7 0

2 seqQ2 19 + 0O 6 6 0

3 seq3 18 + 0O 5 5 0

4 seq4d 17 + 0O 4 4 0

5 seqg5 16 - 1 4 5 0.125

6 seq6 15 + 1 3 4 0.125

7 seq7 14 + 1 2 3 0.125

8 seq8 13 - 2 2 4 0.25

9 seq9 12 - 3 2 5 0.375
10 seqlO 11 + 3 1 4 0.375
11 seqll 10 - 4 1 5 0.5
12 seql2 9 - 5 1 6 0.625
13 seql3 8 - 6 1 7 0.75
14 seql4d 7 - 7 1 8 0.875
15 seql5 6 + 7 0 7 0.875
16 seql6 5 - 8 O 8 1

The sequences are ranked according to the prediction stoeenumbers of false positives
(FP) and false negatives (FN) are those obtained by settieghreshold at that score.
The number of errors (Error) is given as FP+FN at each thtddumre. The minimum
error point (MEP) is the threshold score where the numberrof&is minimum. In this
example, the minimum error is 3 with the threshold score Hthis is the MEP (as shown
in boldfaces). The maximum rate of false positives (MaxRiER)e false positive rate with
a certain threshold score where all the positive sequeneddentified. Here, MaxRFP is
0.875 with the threshold score 6. The median rate of falséipes (MedRFP) is the false
positive rate with a certain threshold score where only &dfahe positive sequences are
identified. Here, MedRFP is 0 with the threshold score 17.
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3.3.4 Maximum and median rate of false positives

The maximum rate of false positives (MaxRFP) and medianfdtdse positives (MedRFP)
were also used by Karchin [22]. The MaxRFP is the rate of falsstive with a certain

threshold score where all the positive sequences are figehtFor example, in Table 3.6,
to identify all the positive sequences, the threshold nezts at the score 6. At this thresh-

old, the false positive rate is 0.875, which is the MaxRFRlig example.

The MedRFP is the rate of false positive with a certain thoeskcore where only a
half of the positive sequences are identified. For exampl&able 3.6, a half (four) of the
positive examples are identified when the threshold scdté.ig he false positive rate is 0
at this point and this is the MedRFP for this example. The faive MaxRFP and MedRFP,

the better the classifier.

MaxRFP and MedRFP is calculated for all methods except iecisees for the same

reasons mentioned earlier.

3.3.5 Receiver operating characteristic

The Receiver Operating Characteristic (ROC) is a populdhateused today for perfor-
mance analysis of different machine learning methods [10]s a graph plotting false
positive rates on the x-axis and true positive rates on thgiy- It shows the trade-offs
between benefits (true positives) and costs (false posjtivka certain classifier. It is
generated by cutting off the decision scores at differergsholds and by calculating the
true positive rate and false positive rate for each threshsldone for MEP, MaxRFP, and
MedRFP calculation. ROC plots make it easy to visualize amdpare the performance of

different classifiers.
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Figure 3.4: A ROC graph of four different classifiers. Classifier C is thestowith the
largest area under the curve, while Classifier A is the woitt the smallest area under the
curve. A discrete Classifier D is drawn for a classifier thagloot produce ranked scores.
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An example of a ROC graph is shown in Figure 3.4. In the graphpbint (0,0) means
that the classifier gives out no false positive error, bud gises out no true positives. At
this point, everything is predicted as negative. At poinL)the classifier predicts every-
thing as positive making both true positive and false pesitates as 1. At point (1,0) no
true positive is produced. A perfect classification is reprged by the point (0,1) where

no false positive is produced and all positive sequenceglantified correctly.

The area under the curve of a perfect classifier is 1. Thexefoe can look at the area

covered by ROC graphs of different classifiers and analggeeitformance.

In Figure 3.4, Classifier C is the best with the largest areteuthe curve, while Clas-
sifier A is the worst with the smallest area under the curveis@rdte classifier D is drawn

for a classifier that does not produce ranked scores.

Decision trees are discrete classifiers. They only give a& éllagsification result in a
confusion matrix as described before. Therefore, instéadanrve, a point is plotted in

the ROC graphs for these methods.
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Chapter 4

Results and Discussion

As described in Chapter 3, the nine protein classificatiothods were trained on twelve

different training sets. All of the methods were tested aedldifferent types of test sets.
In this chapter, first, the results from the test on identifyClass A GPCRs is described.
In the second section, the test results to identify other BPi@sses are discussed. Finally,

the methods are tested on the subsequence test sets amdshig are discussed.

4.1 Identification of Class A GPCRs

To examine how each of the classification methods performsnvitained on different
training sets, first the test set (t1) containing Class A GB(#sitive samples) and non-

GPCRs (negative samples) were used to test the performéatioe mine methods.

4.1.1 Accuracy rates

The accuracy rates of the nine classifiers trained on 12rdiffedatasets are listed in Ta-
ble A.1 in Appendix A. These results are summarized in Figute The figure shows the

maximum, minimum, and average accuracy rates of the ninkadst What we notice first
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Figure 4.1: Accuracy rates of the nine classification methods traineditberent datasets.
Tests were done on the Class A GPCR datasets (t1). The avextageare plotted with
bars showing the range from the minimum to the maximum rabésmed among different
training sets. The results are summarized from Table A.1.th& accuracy rates except
for SAM are produced by the programs used. The accuracyoat@XM is the one at the
minimum error point. For method name abbreviations, seédbimotes of Table A.1.
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from these results is that all of the methods compared insthidy have higher than 91%
accuracy. Note that except for SAM, SVM-pairwise, and SVMKEr, these methods do
not rely on multiple alignments. Attributes used are singsteno acid composition. How-

ever, all methods managed to discriminate Class A GPCRsattyrat a high accuracy.

The four best methods for classifying Class A GPCRs from GBCRs were SAM,
SVM-pairwise, SVM-Fisher, and SVM using the radial basislet functions with amino
acid frequencies (SVM-rbf). All of these three best SVM noeth use radial basis kernel
function. Also, both SVM-Fisher and SAM are the classifieasdd on profile-HMMs.
Among the different kernels used, the sigmoid function égrout to be the worst. It was
also observed that the boosted decision trees performeer tledn the regular decision

trees, although neither of them performed as well as theldest methods.

In order to examine the effect of different training sets bea tlassification methods,
accuracy rates were compared among those based on diffeagnibg sets. Details are
shown in Table A.1. The training sets made no difference assification by SAM and
SVM-pairwise; regardless of the training sets used botmtaaied 99.8% accuracy. The
best classifiers, SAM, SVM-Fisher, SVM-pairwise, and SVdM-showed very small ef-
fects of training sets on their performance. On the othedhéme methods wtih lower

accuracy rates showed more varied performance dependitige draining sets.

Using the training sets prepared by phylogenetic sampl{Bg&-6a/b) was expected
to be better than that trained with random samplings (Ladoh {IGPCRDB. However, the
results obtained did not show any particular advantage ioigusuch sampling method.
Alternatively, random sampling was sufficiently good orguently better than the other

sampling methods. Note also that taxonomical samplingJotig the GPCRDB classifi-
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cation system (2a/b) seemed to show a slightly better padoce for the two better SVM
methods using amino acid composition: SVM-rbf and SVM-palghough as described

before their performance varied only slightly dependinglantraining sets.
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Figure 4.2: Accuracy rates of cross-validation tests of the six SVMdokslassification
methods trained on different datasets. The average ragdated with bars showing the
range from the minimum to the maximum rates obtained amdifgyeint training sets. The
information is summarized from Table A.2.

Cross-validation tests were done also for the six SVM basetthods. The results are
summarized in Figure 4.2. It shows consistent results asigs®d earlier, and SVM-Fisher,

SVM-pairwise, and SVM-rbf performed very well.

A slight difference in performance of the classification hugets was observed when
bacteriorhodopsin sequences were added to the negatimengraets as shown in Fig-
ures 4.1 and 4.2 (green lines for the training sets 1b-6b)e alerage, maximum, and

minimum accuracy rates seemed to increase slightly or reedahe same when the clas-
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Table 4.1: The minimum error point, maximum and minimum rates of falgsifives for
the Class A GPCR test set classification.

Method Training Set MEP MaxRFP MedRFP
Errs TP FP TN FN

SAM la 1 200 1 209 O 0.005 0.005
SVM-Fisher la 1 200 1 209 O 0.005 0
SVM-pairwise la 1 200 1 209 O 0.005 0
SVM-linear la 25 192 17 193 8 0.300 0.019
SVM-polynomial 1la 15 191 6 204 9 0.176 0.005
SVM-sigmoid la 31 189 20 190 11 0.324 0.019
SVM-radial basis 1la 7 199 6 204 1 0.067 0.005

! Refer to Chapter 3 for the description of MEP, MaxRFP, and Rfedl
2 Errs = FP+FN.

sification methods were trained on datasets 1b-6b.

4.1.2 Minimum error point and false positive rate analysis

Table 4.1 summarizes the minimum error point (MEP) analy$ise table shows the re-
sults only from training set 1a (randomly sampled data)¢esinsing other training sets
did not show any significant difference. SAM, SVM-pairwisead SVM-Fisher performed
extremely well in discriminating Class A GPCRs from non-G®Cas mentioned earlier.
The number of errors made by these methods at the MEP was oalySYM-rbf was the
second best with seven errors, and almost all these erraesfraen the false positives (6
out of 7); it means that very few actual GPCRs are missed lsyctassifier. SVM-sigmoid
was the worst classifier of all at the MEP, and one third (1L(81he errors were from

false negatives.

Based on the MaxRFP and MedRFP analysis, where lower numiesas better clas-

sifiers, the same performance pattern is clearly seen. WestdvlaxRFP was for SAM,
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Table 4.2: The minimum error point, the maximum and minimum rates addgbositive
when the classification methods were trained on datasdtsling bacteriorhodopsin se-
guences (1b).

Method Training Set MEP MaxRFP MedRFP
Enrs TP FP TN FN

SAM la 1 200 1 209 0 0.005 0.005
SVM-Fisher 1b 1 200 1 209 0 0.005 0
SVM-pairwise 1b 1 200 1 209 0 0.005 0
SVM-linear 1b 19 193 12 198 7 0.310 0.014
SVM-polynomial 1b 14 194 8 202 6 0.148 0.005
SVM-sigmoid 1b 25 193 18 192 7 0371 0.019
SVM-radial basis 1b 7 199 6 204 1 0.067 0.005

1 Refer to Chapter 3 for the description of MEP, MaxRFP, and Rfeé
2 Errs = FP+FN.

SVM-pairwise, and SVM-Fisher. SVM-sigmoid had the worstdR&P. MedRFP did not
show a large difference among different methods. This iegpthat 50% of the GPCR
samples were easily identified by any method. However, denisig the larger difference
found in MaxRFP, better classifiers could identify more difft GPCRs much more cor-

rectly.

Table 4.2 summarizes the results when the training setadedbacteriorhodopsin as
the negative samples. Note that SAM does not use negativelesito build HMMs. Thus
SAM in Table 4.2 lists the same results as in Table 4.1. Thiopaance did not change
for the three classifiers: SVM-pairwise, SVM-Fisher, and\&¥bf. The number of errors
decreased only slightly in other SVM methods. Overall, we bt see a large positive

effect of including bacteriorhodopsin in the training detsthe classifiers compared.

Figure 4.3 shows the Receiver Operating Charateristic (RD@lysis. It is again clear

that SAM, SVM-Fisher, SVM-pairwise, and SVM-rbf performiée best. It is also evident
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Figure 4.3: The ROC curves of the nine methods for the Class A GPCR teétl3efThe
methods were trained on training dataset 1a. Similar RO@suwvere obtained when other
training sets were used.

from the graph that all the methods compared were competitid worked very well since
the ROC graph of all the methods are close to having an area Gfaksifiers trained on

training sets with bacteriorhodopsin (1b) did not make mdiffierence in the ROC curves

(data not shown).

4.2 ldentification of the Other Classes of GPCRs

Since all the positive training data were taken from Class#CRs, it was interesting to see
how well the methods trained on one particular class of GP@®Rgd identify those from

the other classes. The performance from this test couldatelhow well each method can
predict noble GPCRs based on the existing data. This sedtiecribes the performance of

the nine methods tested on the test set including GPCR segsiether than Class A (t2).
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4.2.1 Accuracy rates
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Figure 4.4: Accuracy rates of the nine classification methods traineditberent datasets.

Tests were done on the non-Class A GPCR datasets (t2). Thagaveates are plotted
with each bar showing the range from the minimum to the marimates obtained among
different training sets. The results are summarized frotsl€TA.3. For the method name
abbreviations see the footnotes of Table A.3

The accuracy rates of the nine methods trained on 12 diffetatasets are listed in
Table A.3 in Appendix A. Figure 4.4 summarizes these resultse best methods were
SVM-pairwise and SVM-rbf. Unlike the Class A GPCR identifioa, SAM and SVM-
Fisher performed poorly in this case. This is because bothl 3Ad SVM-Fisher use
HMMs built from the Class A GPCRs, and these models may bdfspexrthat class. The
higher specificity of HMMs contributed to very low errorsyfine Class A GPCR clas-
sification especially low false positive rates of SAM and SVAdher compared to other
non-alignment based methods (e.g., SVM-rbf) as describéae previous section. How-
ever, GPCRs from different classes share low sequenceasitieit and the lengths also

vary among the classes; The average lengths of Classes A dodeBample, are 397 and
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746 amino acids respectively. This could explain why GPGBsfother classes were not
identified well by the HMM based methods. All of the SVM metbaging amino acid fre-
guencies and different kernel functions performed bettantSAM, SVM-Fisher, as well

as the decision trees. Their performance was not affectdidoyse of different training

sets.

The inclusion of bacteriorhodopsin sequences in the trgisets did not show much
difference in performance. The addition of these sequewassnot helpful in increasing

the performance of the methods when identifying non-ClagCRs.

4.2.2 Minimum error point and false positive rate analysis

Table 4.3: The minimum error point, maximum and minimum rates of falssifives for
the non-Class A GPCR test set (t2).

Method Training Set MEP MaxRFP MedRFP
Emrs TP FP TN FN

SAM la 139 63 2 208 137 1 0.224
SVM-Fisher la 122 110 32 178 90 0.995 0.138
SVM-pairwise la 17 197 14 196 3 0.133 0.005
SVM-linear la 68 186 54 156 14 0.748 0.143
SVM-polynomial 1la 55 179 34 176 21 0.652 0.052
SVM-sigmoid la 70 187 57 153 13 0.771 0.148
SVM-radial basis 1la 35 179 14 196 21 0.919 0.019

1 Refer to Chapter 3 for the description of MEP, MaxRFP, and Rfe@l
2 Errs = FP+FN.

As before, Table 4.3 shows only the results from the traiciat set 1a (random sam-
pled data), since using the other training sets did not shgwsagnificant difference. The
best method was SVM-pairwise with only 17 errors. The lowdakRFP and MedRFP

were also found for SVM-pairwise. The second best methodyl$hf, had 35 errors,
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Table 4.4: The minimum error point, maximum and minimum rates of falssitives
when the classification methods were trained on the datasletding bacteriorhodopsin
sequences (1b).

Method Training Set MEP MaxRFF MedRFP
Errs TP FP TN FN

SAM la 139 63 2 208 137 1 0.224
SVM-Fisher 1b 122 110 32 178 90 0.995 0.138
SVM-pairwise 1b 16 198 14 196 2 0.129 0.005
SVM-linear 1b 65 186 51 159 14 0.662 0.110
SVM-polynomial 1b 53 174 27 183 26 0.643 0.048
SVM-sigmoid 1b 69 186 55 155 14 0.690 0.148
SVM-radial basis 1b 35 178 13 197 22 0.914 0.019

1 Refer to Chapter 3 for the description of MEP, MaxRFP, and Rfe@
2 Errs = FP+FN.

twice as many as SVM-pairwise. Note that the higher errax citSVM-rbf was solely
due to its higher false negative rate. This means SVM-rbtedanore GPCR candidates
than SVM-pairwise. This pattern is clearly shown in the vieigh MaxRFP rate (0.9) of
SVM-rbf, whereas SVM-pairwise maintained a low MaxRFP (&t&). On the other hand,
SVM-rbf did not misidentify non-GPCRs more than SVM-pais@i(indicated by the same
number of false positives). The worst methods were SAM anM$sher with 139 and

122 errors, respectively. Their false negative rates weng kigh, and their MaxRFP rates

were 1.0.

When bacteriorhodopsins were added to the training sete thhas a decrease in the

number of errors by only a small number as shown in Table 4.4).

Figure 4.5 shows the ROC curves compared among differertiadst It shows that
some methods are extremely bad while others are good. SANG¥MIFisher were the
worst methods with the least area under their curves. OtkidtsSdid not do too bad.

The best classifier to correctly identify GPCRs and non-G®@®n from non-Class A
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Figure 4.5: The ROC curves of the nine methods for the non-Class A GPQReg$t2).
The methods were trained on the training dataset 1a. Siculaes were obtained when
other training sets were used.

GPCRs was SVM-pairwise. The second best method, SVM-rt&f dfe true positive rate
reached 0.85, showed a very slow increase in the true pes#te while the false positives
accumulate quickly. This illustrates why SVM-rbf sufferiedm a very high MaxRFP rate

as shown in Table 4.3.

4.3 Identification of Subsequences

Kim et al. [25] and Moriyama and Kim [31] had performed expegnts to identify short
subsequences of GPCRs with several different methodsdimgjuheir discriminant anal-
ysis methods. Their discriminant analysis methods baseanuno acid properties out-
performed HMM-based Pfam and other methods even when thesegs were 50 or 75
amino acids long. In order to examine how SVM-based methed®pn for short subse-

guences, similar subsequence analysis was conducted isttiaiy.
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Figure 4.6: Accuracy rates of different methods tested on short sulesexps.

The seven methods including SAM and six SVM-based methadlsetd on Class A
GPCR datasets (1a-6a) were tested against the six subseqiesh sets whose lengths
range from 50 to 300 amino acids and prepared from the Clas®B8FGtest set (t1) as
described in Chapter 3. Figure 4.6 summarizes the perfarenafithe methods trained on
the random sampling dataset (1a). No significant differengerformance was observed
among methods trained on different training sets. The tvst beethods for identifying
short subsequences were HMM-based SAM and SVM-Fisher. eTtves methods per-
formed consistently better than the other methods. Evemsigaery short 50 or 75 amino
acid subsequences, they maintained higher than 95% agcuddlcer methods including
SVM-pairwise dropped their accuracy to 85-90%. All of thethoels examined recovered

their performance quickly once the sequence length bec@arhino acids or longer.

The results in Figure 4.6 seem to be surprisingly good whempewed to those reported
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in Moriyama and Kim [31] (and Kim et al. [25]). Figure 4.7 ik&n from Moriyama and

Kim [31]. It shows higher performance of their discrimindahction analysis methods
(non-parametric LDA, LDA, and KNN) compared to an HMM (Pfaan)d other methods.
For 50 or 75 amino acid subsequences, discriminant anatysibods performed at 70-

85% accuracy, whereas even HMM-based Pfam showed only &)ac@uracy.

100
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Figure 4.7: Identification rates of discriminant analysis methods careg with other
methods (taken from Moriyama and Kim [31]). Their “% iderd#tion” is the same as
the accuracy rate in this study.

The difference between these two studies can be explaindtebyay classifiers were
trained and tested. In this study, only Class A GPCRs werd tgsrain and test the clas-
sifiers. This made it easier to identify subsequences ofsGdaSPCRs for the classifiers
because information specific to the Class A GPCR sequenaesleaned. It is also re-
markable that in this study multiple alignment and HMM-lzhsgethods, SAM and SVM-
Fisher, outperformed other methods even for the very skeggences. Class A GPCRs

are relatively consistent in length and relatively eaeslitain better multiple alignments.
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Such conservative sequence nature may have given an agedotdiMM-based methods

to identify correctly even short subsequences.

On the other hand, Moriyama and Kim'’s [31] data sets (botimitng and test) were
randomly sampled across the entire GPCR classes. For Pidotlagr existing methods,
no new training was done, since multiple alignments wereossjble from such datasets.
Instead, multiple HMMs, patterns, and fingerprints cougtime entire GPCR classes were
collected from HMM/motif databases and used against thestds they prepared. Their
results (Figure 4.7) illustrate the disadvantage these Hdtif based methods face simi-
lar to what described in the previous section. Therefoiis,iitteresting to perform another
subsequence test using non-Class A GPCR sequences. Irestglthe real advantage of

using SVM-rbf over SAM, SVM-Fisher, or SVM-pairwise may levealed.
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Chapter 5

Conclusion and Future Work

From the experiments performed in this study, it can be caled that SVM-pairwise is the
best method in classifying Class A GPCRs as well as non-@l&RBCRs if full sequences
are available. SVM-pairwise does not depend on an HMM notipialalignments. Both
of the HMM-based methods, SAM and SVM-Fisher, worked exelgmvell in identify-
ing Class A GPCRs, but performed poorly when trained on G}a&$CRs and tested for
classifying non-Class A GPCRs.

Using amino acid frequencies with SVMs, especially withithéial basis kernel func-
tion, was very effective and an easy way to represent a preggjuence. This was evident
from identifying Class A GPCRs with at least 91% accuracy@ma-Class A GPCRs with
at least 81% accuracy. Decision trees methods (boostedtpdidonot perform as well
as SVMs, although the boosted decision trees method waer ltle#in the regular (non-

boosted) decision trees.

The addition of Bacteriorhodopsins in the negative tragrsamples or the use of dif-

ferent sampling schemes of the positive training sampledenvary little difference in
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the performance of the algorithms studied. Especially thssifiers that performed better
(SVM-pairwise, SVM-Fisher, SAM, and SVM-rbf) did not showeeffect of using differ-
ent sampling schemes for training data. Overall, the simgidom sampling for training

data seemed to be good enough for preparing training dated¢anethods studied.

The two HMM-based methods, SAM and SVM-Fisher, worked ssipgly well for
identifying short subsequences of Class A GPCRs. SVM-psérvon the other hand, did
not perform well compared to the HMM-based methods. The SY&tsed on amino acid
composition could identify short subsequences as sho@ agno acids at 85% or higher
accuracy, although their performance was not as good asligrerent-based methods,

SAM, SVM-Fisher, and SVM-pairwise.

It would be interesting to generate short subsequences fiomClass A GPCRs se-
guences (e.g., t2) and compare the performance of the nitteodweused in this study as
well as the discriminant analysis methods developed by Kial.¢25] and Moriyama and
Kim [31]. In such tests, the real advantage of using amind aomposition with SVMs
should become evident. It is also interesting to see hovetB&M methods perform com-
pared to the discriminant analysis methods. Since they ssetw amino acid properties
(hydrophobicity etc.) as well as amino acid compositiontasoaites, their methods may
perform slightly better than the SVM-rbf used in this stu®n the other hand, especially
for short partial sequences, there may be no advantageifay agher amino acid proper-

ties other than simple amino acid composition.

For comparison purposes, it would be interesting to try $¢27] approach with the
kernel-based GMIL method with pairwise alignments and giimino acid properties,

amino acid composition, and pairwise scores between segaeo build the GMIL classi-
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fiers.
The SVM methods described in this thesis will be tested fenidying other types of
proteins in the future. If amino acid composition is enoughdther protein classification,
and if other amino acid properties need to be included forengeneral protein classifica-

tion, need to be examined further.
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Table A.1: Accuracy rates of the nine methods for classifying the CAa&PCRs.

Training Classification methoéls

set SAM SVM-lin SVM-poly SVM-sig SVM-rbf SVM-pw SVM-Fish DT BDT

la 0.998 0.939 0.963 0.924 0.982 0.998 0.997 0.922 0.965
2a 0.998 0.922 0.965 0.919 0.987 0.998 0.995 0.943 0.963
3a 0.998 0.919 0.958 0.914 0.980 0.998 0.992 0.919 0.951
4a 0.998 0.919 0.956 0.917 0.982 0.998 0.997 0.922 0.943
5a 0.998 0.922 0.961 0.914 0.985 0.998 0.990 0.924 0.953
6a 0.998 0.919 0.963 0.917 0.982 0.998 0.995 0.941 0.958
1b 0.998 0.953 0.965 0.939 0.982 0.998 0.997 0.922 0.961
2b 0.998 0.934 0.973 0.924 0.990 0.998 0.995 0.943 0.958
3b 0.998 0.929 0.963 0.919 0.980 0.998 0.992 0.943 0.951
4b 0.998 0.931 0.963 0.919 0.982 0.998 0.997 0.922 0.948
5b 0.998 0.931 0.963 0.924 0.985 0.998 0.992 0.924 0.951
6b 0.998 0.936 0.970 0.924 0.985 0.998 0.995 0.939 0.970

! For each training set, refer to Table 3.2.

2 The method name abbreviations are as follows. SVM-lin: SVith\inear kernel function, SVM-poly:
SVM with polynomial kernel function, SVM-sig: SVM with sigaid kernel function, SVM-rbf: SVM
with radial basis kernel function, SVM-pw: SVM-pariwisey8-Fish: SVM-Fisher, DT: Decision trees,

and BDT: Boosted decision trees.
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Table A.2: Accuracy rates of cross-validation test for classifying tGlass A

GPCRs!
Training Classification methods
set SVM-lin SVM-poly SVM-sig SVM-rbf SVM-pw SVM-Fish
la 0.905 0.937 0.897 0.970 0.990 0.992
2a 0.895 0.935 0.895 0.962 0.989 0.994
3a 0.877 0.910 0.885 0.927 0.990 0.990
4a 0.902 0.907 0.892 0.947 0.990 0.980
5a 0.897 0.910 0.897 0.957 0.990 0.990
6a 0.902 0.917 0.895 0.957 0.992 0.992
1b 0.914 0.936 0.890 0.970 0.990 0.992
2b 0.890 0.937 0.877 0.963 0.989 0.994
3b 0.902 0.907 0.882 0.934 0.990 0.990
4b 0.907 0.909 0.897 0.946 0.990 0.980
5b 0.914 0.914 0.892 0.958 0.990 0.990
6b 0.904 0.922 0.890 0.961 0.992 0.992

1 See the footnotes of Table A.1



Table A.3: Accuracy rates of nine methods for classifying the non-€CAR$SPCRS:

Training Classification methods

set SAM SVM-lin SVM-poly SVM-sig SVM-rbf SVM-pw SVM-Fish DT BDT

la 0.661 0.834 0.865 0.829 0.914 0.958 0.702 0.741 0.746
2a 0.629 0.843 0.865 0.836 0.890 0.963 0.700 0.722 0.739
3a 0.726 0.829 0.861 0.822 0.900 0.956 0.724 0.700 0.726
4da 0.751 0.822 0.853 0.817 0.892 0.956 0.697 0.704 0.690
5a 0.739 0.831 0.851 0.829 0.890 0.963 0.741 0.651 0.719
6a 0.758 0.829 0.853 0.829 0.904 0.958 0.758 0.751 0.775
1b 0.661 0.841 0.870 0.831 0.914 0.961 0.702 0.741 0.756
2b 0.629 0.841 0.878 0.829 0.892 0.963 0.702 0.722 0.734
3b 0.726 0.829 0.868 0.819 0.900 0.956 0.724 0.734 0.726
4b 0.751 0.824 0.865 0.817 0.897 0.956 0.695 0.704 0.729
5b 0.739 0.824 0.865 0.817 0.892 0.963 0.741 0.651 0.714
6b 0.758 0.822 0.865 0.812 0.904 0.958 0.756 0.729 0.802

1 See the footnotes of Table A.1
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