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Transmembrane proteins and multi-domain proteins together make up more than 80% of 

the total proteins in any eukaryotic proteome. Therefore accurately classifying such 

proteins into functional classes is an important task. Furthermore, understanding the 

molecular evolution of multi-domain proteins is important because it shows how various 

domains fuse to form more complex proteins, and acquire new functions possibly 

affecting the organismal level of evolution. In this thesis, I first investigated the 

performance of several protein classifiers using one of the most divergent transmembrane 

protein families, the G-protein-coupled receptor (GPCR) superfamily, as an example. 

Alignment-free classifiers based on support vector machines using simple amino acid 

compositions were effective in remote-similarity detection even from short fragmented 

sequences. While a support vector machine using local pairwise-alignment scores showed 

very well-balanced performance, profile hidden Markov models were generally highly 

specific and well suited for classifying well-established protein family members. We 

suggested that different types of protein classifiers should be applied to gain the optimal 

mining power. Including some of these methods, combinations of multiple protein 

classification methods were applied to identify especially divergent plant GPCRs (or 

seven-transmembrane receptors) from the Arabidopsis thaliana genome. We identified 

394 proteins as the candidates and provided a prioritized list including 54 proteins for 



further investigation. For multi-domain protein families, the distribution of urea 

amidolyase, urea carboxylase, and sterol-sensing domain (SSD) proteins across kingdoms 

was investigated. Molecular evolutionary analysis showed that the urea amidolyase genes 

currently found only in fungi among eukaryotes are the results of a horizontal gene 

transfer event from proteobacteria. Urea carboxylase genes currently found in fungi and 

other limited organisms were also likely derived from another ancestral gene in bacteria. 

Finally we showed the possibility of the bacterial origin of the eukaryotic SSD-containing 

proteins and that these ancestral sequences evolved into four different SSD-containing 

proteins acquiring specific functions. Two groups of SSD-containing proteins seemed to 

have been formed before the divergence of fungal and metazoan lineages by domain 

acquisition.  
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Chapter 1 

Introduction 

 

 

 



 

 

2 

1.1 Objectives 
 

The rapidly growing number of sequenced genomes warrants an efficient and 

dependable way of classifying the protein sequences into functional groups. The 

distribution of different types of protein sequences in different organisms allows us to 

study the evolution of protein sequences. This in turn allows us to understand how certain 

changes in the sequence affected the protein function and how these changes over time 

affected organismal evolution.  To classify new protein sequences, we utilize the 

information that is already known. Thousands of protein sequences have already been 

characterized with structure and function. By comparing the features of known protein 

sequences to those of unknown ones, we can assess the degree of similarity, and by 

which we can assign potential functional classes to the new proteins. By performing 

phylogenetic analyses including these newfound proteins, for example, we can infer the 

evolutionary history of these proteins, when the proteins were formed, and how they have 

diverged and acquired various functions.  

Two broad categories of protein families are used in this study. These are the 

transmembrane proteins and the multi-domain proteins. Divergent transmembrnae 

proteins such as the G-protein coupled receptor are difficult to identify, hence serve as 

excellent examples to study protein classifier performance. The molecular evolutionary 

study of multi-domain proteins are important because it can show how different domains 

could have come together to form a larger and more complex protein thereby changing 

the evolutionary path.  

In this study I first analyzed and compared the accuracy of various protein 

classification methods to classify an extremely diverged family of proteins, the G-protein 
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coupled receptors (GPCRs). These methods were then utilized to identify putative 

GPCRs from a model plant Arabidopsis thaliana. I also studied the distribution of multi-

domain proteins, urea carboxylase and urea amidolyase, in all kingdoms of life and 

studied its evolutionary history. I examined another set of proteins consisting of sterol-

sensing domain in all kingdoms of life to understand its evolution and formation of 

proteins that possess this domain.  

 

1.2 Transmembrane proteins  

Transmembrane proteins make up 20-30% of the total proteins in a genome [1]. 

They function in detecting and conveying signals from outside into the cell thereby 

allowing cells to interact and respond to environmental signals [2]. These proteins are the 

targets for ~60% of the pharmaceuticals used today [3]. The transmembrane domains 

which embed these proteins into the membrane are predominantly alpha-helices, where 

each helix is made up of 20-25 hydrophobic amino acids. Analysis of transmembrane 

proteins in humans by Almen et al. [2] resulted in 1,352 receptors, 817 transporters and 

533 enzymes.  Two thirds of all the human transmembrane receptors were G-protein 

coupled receptors, a large superfamily of signal transducing proteins having seven 

transmembane domains. Detailed description of this superfamily is given in the later 

sections in this chapter.  A survey of transmembrane proteins in eukaryotes, eubacteria 

and archaebacteria showed that these organisms have similar proportions of alpha-helical 

membrane proteins within their genomes [3]. Various methods have been developed to 

predict the transmembrane regions in a protein. These include HMMTOP [4], TMHMM 

[1] and Phobius [5].  
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1.3 Multi-domain proteins  

Domains are functional units of protein sequences that are evolutionarily 

conserved. Two different families of proteins that serve different functions can share a 

common domain. Multi-domain proteins make up about 80% of eukaryotic proteins and 

about 65% of prokaryotic proteins [6]. One of the most important functions of a protein is 

its ability to interact with other proteins in order to carry out certain functions. These 

interactions are often carried out by domains, which are units of larger proteins [7].  

Therefore any change in an interacting domain can affect the function of the protein, 

resulting in either loss of function or neofunctionalization. It has been proposed that 

organismal complexity especially in eukaryotes could be the result of complex domain 

organizations of proteins. Complex domain organizations allow for the increase in 

potential interactions between these domains and formation of signal transduction 

pathways [8].  The creation of new proteins by bringing in different domains is termed as 

domain shuffling. Kawashima et al. [9] identified 1,227 new domain pairs in the 

vertebrate lineage, among them 137 domain pairs were shared by all seven vertebrate 

species examined, pointing out that some of these pairs occur in vertebrate specific 

proteins, thereby linking domain shuffling with the evolution of vertebrates.  Databases 

that store information of protein domains include: Pfam [10] that stores multiple 

alignments and profile hidden Markov models of families of protein domains, Prosite 

[11] that stores patterns and profiles that describe conserved protein domains, and SCOP 

[12] that stores domains based on protein structures. Recently, a domain-domain 

interaction database DOMINE was created from interactions inferred from the Protein 

Data Bank and other predicted interactions [13].   
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In my study, I have used multi-domain proteins such as the urea amidolyase, urea 

carboxylase, the sterol sensing domain proteins, and nuclear receptors, to study their 

distribution and molecular evolution. The SSD proteins fall under both categories, they 

are transmembrane proteins as well as multi-domain proteins. The next section describes 

these proteins in detail.  

 

1.4 Protein families used in this thesis 

1.4.1 G-protein coupled receptors 

G-protein coupled receptors (GPCRs) are a superfamily of cell membrane 

proteins found in a wide range of eukaryotes. They act e.g., as light sensing molecules 

(rhodopsins), as odorant receptors, and as taste receptors [14].  They are characterized by 

seven hydrophobic transmembrane regions (Figure 1.1). Each GPCR has an extracellular 

amino terminal (N-terminal) followed by three sets of alternate intracellular and 

extracellular loops, which connect the seven transmembrane regions, and a final 

intracellular carboxyl terminal (C-terminal) region [15]. GPCRs are involved in signal 

transmission from the outside to the interior of the cell through interaction with 

heterotrimeric G-proteins, or proteins that bind to guanine (G) nucleotides. The receptor 

is activated when a ligand that carries an environmental signal binds to a part of its cell 

surface component. A wide range of molecules is used as the ligands including peptide 

hormones, neurotransmitters, pancrine mediators, ions, proteases, etc. 

The heterotrimeric G-proteins have three subunits, namely, alpha, beta, and  

gamma. The G-protein activity is regulated by the alpha subunit, which binds guanine 
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(G) nucleotides. In an inactive state, the GDP (guanine diphosphate) bound alpha subunit 

is bound to the beta and gamma subunits. Ligand binding to the extracellular domain of 

the receptor induces a conformational change in the receptor, which causes the G-

proteins to bind to the intracellular domain of the receptor. This stimulates the exchange 

of the GDP with a GTP (guanine triphosphate) in the binding site of the alpha subunit. 

The activated GTP-bound alpha subunit then dissociates from the beta and gamma 

subunits. The beta and gamma subunits remain bound to each other and function as the 

beta/gamma complex. The beta/gamma complex and the GTP-bound alpha subunit 

interact with their targets, for example, an enzyme or an ion channel, to transmit the 

signal. The bound GTP becomes a GDP due to hydrolysis after the transmission of the 

signal. The GDP-bound alpha subunit reassociates with the beta/gamma complex to form 

a heterotrimeric G-protein, which is ready for another cycle of transmission of a signal 

through a GPCR [16]. 

The GPCRDB, a database system for GPCRs [17], divides the GPCR superfamily 

into five major classes based on the ligand types, functions, and sequence similarities. 

The sequences of different GPCR classes are highly diverged from each other, except that 

they share one common structural feature, that is, they all have seven hydrophobic 

transmembrane regions. Identifying the function of GPCR sequences is important in 

biomedical and pharmaceutical research, because GPCRs play key roles in many 

biologically important functions and are related to many diseases (e.g., neurological 

cardiovascular diseases, depression, obesity, pain, and viral infections). However, 

identifying and classifying this membrane protein family is a difficult task due to the high 

levels of divergence observed among the GPCR family members. GPCRs are used in this 
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study due to their scientific importance, and also as an example of highly diverged 

protein families.  

 

1.4.2 Urea degradation enzymes 

Urea is degraded into ammonia and carbon dioxide by two distinct enzymes 

urease and urea amidolyase. Urease breaks down urea in a one-step process while urea 

amidolyase carries out this reaction in a two-step process as shown below: 

[Urea carboxylase]  urea + ATP + HCO3
- → allophanate + ADP + Pi  (i) 

[Allophanate hydrolase (amidase)] allophanate → 2NH3 + 2CO2 (ii) 

[Urease] urea → 2NH3 + CO2  (iii) 

where (i) and (ii) are carried out by two different domains of the urea amidolyase protein, 

namely urea carboxylase and amidase.  

Urease is a nickel-binding enzyme that has been well-studied in plant, bacteria 

and fungi and it has been found to be a virulent factor in numerous bacteria and fungi 

[18]. The bacterial urease protein is a trimer of alpha, beta, and gamma subunits encoded 

by separate genes forming a gene cluster, whereas in eukaryotes a single gene encodes 

the urease protein (~800 amino acids), a fused protein representing the three bacterial 

subunits [19]. Plant and bacterial ureases have also shown anti-fungal properties [20]. 

This enzyme is of a historical importance as it was the first enzyme to be purified and 

crystallized [21], and the first enzyme that was shown to require nickel ions [22].  This 

enzyme is also used in the “rapid urease test” for testing for the presence of Helicobacter 

pylori, which is a bacteria that causes gastrointestinal disorders. A biopsy of the mucosa 

from the stomach is placed into a medium containing urea and the amount of the 
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ammonia is tested (raise in pH) to trace the presence of urease, which indicates the 

presence of the bacterium H. pylori [23].  

Urea amidolyase is an energy dependent biotin-containing enzyme.  It is encoded 

by the DUR1,2 gene and was first characterized in the yeast Candida utilis, now known 

as Pichia jadinii [24]. The activity of this enzyme has been found in certain species of 

fungi and green algae, but the sequence itself is present only in fungi and one species of 

bacteria. This enzyme can be induced in fungal cells by addition of urea or other 

substances that degrade to urea, while it can be repressed by the lowering the amounts of 

urea in the medium [24]. Urea amidolyase is a ~1800 amino acid long protein. As shown 

in Figure 1.2, it consists of the amidase domain (~600aa) (also called allophanate 

hydrolase) and the urea carboxylase domain (~1200) making it a multi-domain protein. 

Both of these domains also exist as stand alone proteins. In many bacterial and green 

algal species, the urea carboxylase gene is in close proximity to the amidase gene, 

therefore implying that their transcription is regulated together. However, there are also 

species where these two genes are far apart, or one of them is missing and that leaves a 

question about its functions.  

The urea carboxylase, which is a member of a biotin-dependent carboxylase 

family of enzymes, is further divided in to smaller domains: the carboxylation domain, 

the allophanate hydrolase subunit 1, allophanate hydrolase subunit 2, and the biotin lipoyl 

domains (Figure 1.2). The carboxylation domain and the biotin-lipoyl domain are also 

common in other biotin carboxylases such as pyruvate carboxylase, acetyl Co-A 

carboxylase, propionyl Co-A carboxylase, and methylcotonyol Co-A carboxylase.  The 

absence of urea amidolyase and urea carboxylase in many eukaryotic lineages lead us to 
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study the molecular evolution of these enzymes. Kanamori et al. [18]  showed that a 

bacteria Oleomonas sagaranensis consists of both pathways for urea utilization and we 

show in Chapter 4 that several fungal species also consist of both the enzymes.  

 

1.4.3 Sterol-sensing domain proteins 

Sterol-sensing domain (SSD) proteins are characterized by the presence of a 180 

amino-acids long region called the sterol-sensing domain. This domain forms five 

hydrophobic membrane spanning helices interconnected with loop regions. The SSD 

region is believed to sense sterol levels in the cell through direct or indirect interaction 

with sterols, or other proteins, and is involved in cholesterol homeostasis in cells. This 

domain has been found to be present in members of six different protein families [25]: 

1. 3-hydroxy-3-methylglutaryl coenzyme A-reductase (HMGCR) 

2. the sterol regulatory element-binding protein (SREBP)-cleavage activating protein 

(SCAP) 

3. Niemann-Pick disease type C1 (NPC1) protein 

4. Patched (Ptc) 

5. Dispatched (Disp) 

6. Ptc-related (PTR) 

Figure 1.3 illustrate these proteins. 

HMGCR: The enzyme HMGCR is the rate-limiting enzyme for sterol synthesis 

and is regulated via negative feedback mechanism. It converts 3-hydroxy-

3methylglutaryl-CoA (HMG-CoA) to mevalonic acid. In animals, HMGCR is rapidly 

degraded when sterol levels are high in the cell. The degradation is mediated by sterol-
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induced binding of HMGCR’s sterol-sensing domain to insigs, proteins in the 

endoplasmic reticulum (ER) [26]. Certain drugs such as statins are used to inhibit the 

function of HMGCR thereby lowering serum cholesterol to reduce the risk of 

cardiovascular diseases [27]. It is not clear whether HMGCR directly binds cholesterol, 

but it has been shown that four phenylalanine residues in the SSD is required for the 

regulated degradation [28]. In yeast, a sterol pathway derivative farnesol causes 

misfolding of Hmg2p (HMGCR isozyme), and this process requires an intact sterol-

sensing domain in Hmg2p [29]. Opposite to animals, the yeast insig homologs, NSG1 

and NSG2, inhibit degradation of Hmg2p by direct interaction with the SSD of Hmg2p 

[30].   

  SCAP: The SCAP protein acts as a chaperone to transport sterol regulatory 

element binding protein (SREBP) from ER to the Golgi for further processing. SREBP is 

a transcription factor for sterol synthesis genes. In mammals, higher cholesterol levels 

cause SCAP to bind to insigs, therefore causing it to not release SREBPs from the ER 

resulting in lower sterol synthesis. It has been shown that cholesterol binds to SCAP at an 

octahelical region, which contains the sterol-sensing domain [31], thereby changing its 

conformation and making it bound to insig, the ER retention protein. The SSD is required 

for the ER retention of SCAP, and the degradation of HMGCR in response to higher 

levels of sterols in the cell [32]. 

NPC1: NPC1 is a protein that is involved in vesicular trafficking of cholesterol 

and other lipids. It is one of the two proteins (NPC1 and NPC2) that when mutated can 

cause Niemann-Pick type C disease where there is accumulation of cholesterol and lipids 

in cells and neurons. The first evidence that a protein containing SSD region binds to a 
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cholesterol analog was shown by Ohgami et al. [33] where a NPC1 protein was shown to 

require an SSD region for cholesterol analog to bind. More recently, a binding site for 

cholesterol and oxysterols have been localized to the first luminal loop of the NPC1 [34]. 

The exact function of the SSD in NPC1 still remains unknown. 

DISP/PTC/PTC-R: The proteins DISP and PTC are key players in the hedgehog 

(Hh) signaling pathway. The Hh pathway is conserved throughout metazoans and 

functions in development, patterning, and growth. Alterations in the signaling of this 

pathway can lead to developmental defects and tumorigenesis [35]. The signaling 

molecule Hh is covalently linked to cholesterol and is released from signaling cells by the 

protein DISP while PTC is its receptor in the receiving cells [36]. Once PTC receives the 

Hh signal, it turns on another protein Smo, thereby turning on a signaling cascade. The 

role of the SSD regions in DISP and PTC are not clear. Another group of proteins similar 

to PTC, are called PTC-R, but their functions are not known. 

The conservation of the SSD in seven different families and the results shown by 

mutational studies [29, 33, 37] indicate the functional importance of this domain in 

cellular activities. In my study, I searched in eukaryotic and prokaryotic genomes to find 

proteins that contain SSD sequences.  

 

1.4.4 Nuclear receptors 

Nuclear Receptors (NRs), a multi-domain protein family of ligand activated 

transcription factors, play a key role in the process of development, metabolism and 

reproduction of the cell. In their inactive state, NRs reside in either the nucleus or the 

cytoplasm. Activation occurs when a ligand binds at the ligand-binding domain (LBD) of 
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the NR. This in turn causes the NR to bind to response elements (promoters) of their 

target genes via DNA-binding domain (DBD). Some NRs like the thyroid receptors are 

always bound to the DNA and are activated by ligand binding. The effect of this reaction 

is the regulation of the expression of the target genes.  

NRs share a common organizational structure as shown in Figure 1.4: the N-

terminal region (A/B domain) that is highly variable and consists of a transactivation 

region AF-1, the DBD (C domain) that is highly conserved and is also involved in the 

dimerization of NRs, the less conserved flexible hinge (D domain), the moderately 

conserved LBD (E domain), the extremely variable and sometimes absent F domain [38]. 

Depending upon the DBD and LBD, NRs are divided into six subfamilies as 

follows: 

1. Thyroid hormone  

2. Hepatocyte nuclear factor 4-gamma 

3. Estrogen 

4. Nerve growth factor 1B 

5. Fushi tarazu-F1 

6. Germ cell nuclear factor 

In addition to these, there are two more subfamilies: 1) Knirps  (NRs with no 

LBD) and 2) DAX (NRs with no DBD). Many of the annotated NRs do not have a known 

ligand and hence are called orphan nuclear receptors. It is likely that the ancestral protein 

of NRs was an orphan receptor and ligand binding was an acquired property of these 

proteins [39]. 
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Natural activation of NRs typically occurs by the binding of lipophilic molecules 

(ligands), such as steroid hormones, bile acids, fatty acids, thyroid hormones, certain 

vitamins and prostaglandins [39]. Many orphan NRs have also been found to be activated 

by synthetic ligands. NRs are also responsible in diseases such as cancer, diabetes, and 

asthma [40]. Their potential to be regulated by exogenous compounds makes them an 

extremely important drug target in human disease [41].  

NRs have been found in diverse metazoans but have been absent in plants and 

fungi [39]. Most likely, NRs in these kingdoms either are so diverged that current 

methods fail to find them, or these organisms may have a different kind of protein that do 

the same function. This hypothesis lead us to explore these genomes in search of proteins 

that are either NRs or a novel family of proteins that has some similarities with the LBD 

and DBD of known NRs.  

 

1.5 Protein classification methods 

Various types of classification methods exist for sequence classification. They can 

be grouped into three categories as below. Methods from each of the categories were 

used in the study. 

 

1.5.1 Pairwise sequence comparison methods 

One of the common sequence comparison methods, Basic Local Alignment 

Search Tool (BLAST) [42], has been used extensively in finding sequence similarity. It 

finds segments of the query sequence that match to segments of sequences in a database. 

It then extends these ‘seeds’ to find longer alignments. BLAST scores the alignments and 
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then ranks its results based on e-values, which is measure of the reliability of the score. 

The e‐value of a database match is the number of times that one would find an 

alignment that has the equal or greater score than the given alignment by randomly 

matching any two sequences. It is dependent on the score of the alignment, the sequence 

database length and the query length. Similar to probabilities, e-values closer to 0 mean 

that such alignments cannot happen simply by chance. The results of BLAST must be 

carefully interpreted, however, as some results can be misleading especially when the 

entire sequences of multi-domain proteins are used for searches. For example, given a 

query protein X that has both domains A and B, when a BLAST search is done to identify 

proteins with a function defined by the domain A, proteins that do not have a domain A 

but another domain B often will show low e-values (high scores). This can introduce 

false positives in the search for proteins with domain A sequences.  

Another local similarity method, SSEARCH [43] , uses the Smith-Waterman 

(SW) pairwise alignment, which uses the dynamic programming algorithm to find the 

optimum local alignment. This method is computationally expensive. Although 

SSEARCH is more sensitive than BLAST, it still produces only relatively close hits. 

Both BLAST and SSEARCH are often useful as the first step in a classification problem. 

BLAST has been used to search for G-protein-coupled receptors (GPCRs) from the 

genome of Magnaporthe grisea and a novel family of GPCR-like proteins was found 

[44]. These pairwise sequence comparison methods are very specific and are not sensitive 

enough when trying to find new proteins whose sequences have diverged significantly 

from the known sequence of a family but whose structure and function have retained 

similarity. For those sequences that have not diverged extremely, however, these methods 
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can efficiently identify them. BLAST is now part of many sequence databases such as its 

original site National Center for Biotechnology Information [45], Universal Protein 

Resource [46], Fungal Genome Initiative [47], and Joint Genome Institute [48].  

 

1.5.2 Generative methods 

A new era of protein sequence classification arose after the introduction of 

generative methods. These methods are based on multiple sequence alignments, and 

include methods such as PSI-BLAST [49] and profile hidden Markov models [50, 51]. A 

set of sequences from a family of interest is used in building the profile that represents 

the family. Profiles contain the position-specific amino acid information from the 

multiple alignment of a family of sequences. New sequences are aligned to this profile 

and the results are ranked based on the score calculated by the method. Higher scoring 

sequences can be thought of as being generated by this profile. These methods are more 

sensitive than pairwise alignment methods because the profile is made from a set of 

sequences, making it more general than methods using pairwise alignments based on a 

single sequence query. While pairwise alignment uses position-independent scoring 

parameters (e.g., BLOSUM scoring matrices), profiles use position-specific parameters 

for amino acid substitutions (e.g., position-specific scoring matrix or PSSM) and gap 

penalties. This property of profiles is important when certain regions of the protein are 

more conserved than other, and when certain regions can acquire more insertions or 

deletions than others. Generative methods have been shown to perform better than the 

pairwise sequence similarity methods in finding remote homology [52, 53].  

Profile hidden Markov models (HMMs) [51] have been used widely in the 
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classification of protein sequences. In biological sequence analysis, profile HMMs are 

built based on a multiple alignment as shown in Figure 1.5. In general, the multiple 

alignments are generated from a training set consisting of positive examples of protein 

sequences that belong to a certain functional family sharing a level of sequence 

similarities. Given a multiple alignment of protein sequences, “match”, “insert”, and 

“delete” states are first identified. If a column of the multiple alignment has less than or 

equal to fifty percent gaps (i.e., a half or more of the sequences emit an amino acid), then 

it is classified as a “match column” (columns 1-3 and 6-10 in Figure 1.5). A non-gap 

entry in a match column is a “match state” in the HMM, while a gap in a match column is 

a “delete state”. Delete states are presumed to be modifications that stem from an amino 

acid sequence losing one or more amino acids in an evolutionary event. The last type of 

state is the “insert” state. “Insert columns” (columns 4 and 5 in Figure 1.5) are similar to 

delete states, except that the evolutionary modification to the amino acid sequence is that 

of gaining amino acids. A non-gap in an insert column is an “insert state”, while a gap in 

an insert column is ignored since it does not represent an event of evolutionary 

significance. As shown in Figure 1.6, a profile HMM, which can be visualized as a finite 

state machine, has a start and an end state in addition to the previously identified match, 

insert, and delete states. Each of these states has position-specific transition probabilities 

for transitioning into each of these states from the previous state (represented by arrows 

in Figure 1.6). Match states have position-specific emission probabilities for each of the 

20 amino acids. Insert states also have position-specific emission probabilities for 

inserting each of the 20 amino acids at that state. When no residue is associated with a 

node, it is a delete state, and no emission probability is associated with it. 
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To obtain the probability that a new sequence belongs to the family of the model, 

the new sequence is compared to the profile HMM by aligning it to the model. The most 

probable path taken to generate the sequence similar to the new sequence gives the 

similarity score. It is calculated by multiplying the emission and transition probabilities 

along the path. The most likely path through the model is computed with the Viterbi 

algorithm or the forward algorithm [54]. One could also generate the most probable 

sequence obtained from a particular HMM by summing over all possible paths and 

choosing the path with the maximum score. In both ways, the most probable path can be 

efficiently and optimally calculated. Two of the most common programs based on profile 

HMMs are SAM [50] and HMMER [51].  

Profiles and profile HMMs can be created using either the entire protein 

sequences or only domains or motifs conserved between proteins belonging to the same 

family. Examples of databases of multiple alignments and profiles/profile HMMs from 

protein families and domains include PROSITE [11], Pfam [10], PANTHER [55], 

SMART [56] and Superfamily [52]. Certain domains belonging to the member proteins 

of a family are functionally constrained, causing these domains to be more conserved 

than other parts of the sequence. In this case, domain-specific profiles work better than 

entire sequence profiles in finding remote homology.  

Wistrand et al. [57] developed a new GPCR detection method, GPCRHMM. It 

incorporates GPCR-specific TM features (e.g., loop-region lengths, different amino acid 

composition among loop and TM regions) in a hidden Markov model architecture.  With 

their method they were able to predict 120 novel GPCRs in various genomes including 

mouse and human.  
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One problem that arises from generative methods is that reliable multiple 

alignments cannot be created from protein sequences of a family whose members are 

highly diverged, such as the nuclear receptors and the G-protein coupled receptors. 

Another problem with these methods is that only positive sequences are used in building 

the models, since negative sequence information cannot be incorporated in building the 

alignments or profiles. Nonetheless, profile HMMs work well with not too extremely 

diverged proteins and have been used widely in protein classification.  

 

The sequence similarity methods and the generative methods rank their scores 

based on e-values. In order to be able to compare the e-values from one database search 

to another using the same method, the “effective database length” needs to be kept 

constant. This is because the database lengths are used in calculating e-values. For 

example, one can use the database length of the NCBI nr database, which is currently 

more than 2.5 x 109 characters, as this parameter so that the e-values from the NCBI nr 

searches can be comparable to those from blast database searches using smaller databases 

whose lengths are significantly smaller in the range of only 2.5 x 106 characters (e.g., 

against a single genome)  

 

1.5.3 Discriminative methods 

Discriminative methods are powerful in that they do not have to depend on 

sequence alignments. Added robustness comes as they are able to incorporate both 

positive and negative data. These methods are trained on positive sequence information 

as well as negative sequence information. Once trained, the methods can then 
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discriminate the test set into positive and negative sequences by using a threshold score. 

Discriminative methods have been shown to be very sensitive, i.e., able to find distantly 

related sequences [58]. One popular discriminative method used today is the support 

vector machine (SVM).  

A support vector machine (SVM) is a learning machine that makes a binary 

classification based on a separating hyperplane on a remapped instance space [59]. The 

goal of the classification is to remap the input vectors onto a multi-dimensional space so 

that the instances are linearly separable. SVMs learn from labeled examples from a 

training set including both positive and negative samples. Depending upon a set of 

attributes, SVMs find a hyperplane that classifies the positive and negative data in the 

training set (Figure 1.7). The hyperplane is optimized in such a way that the distance 

called the margin, between the hyperplane and the closest training example, is 

maximized. The data points nearest to the margin on both sides are called support 

vectors, marked with ‘v’ in Figure 1.7. We assume that there is a mapping or target 

function between the data and their labels the machine will learn [60]. A kernel function, 

which is a dot product that is used in remapping input feature vectors, is used to find the 

hyperplane. Once the hyperplane is found, unlabeled examples from the test set can be 

classified as shown in Figure 1.7. Classification can be done solely based upon the 

support vectors found. Some commonly used kernel function includes: linear, 

polynomial, radial basis, and sigmoid functions.  

Many types of input can be used with the SVMs, e.g., 20 amino acid composition, 

400 dipeptide composition, and physico-chemical properties of the protein sequences. 

These properties represent the protein sequence where important regions have properties 
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that are conserved among functionally similar sequences. Matsuda et al. [61] have used 

localized amino acid compositions (N-terminal, middle, and C-terminal) and the local 

frequencies of distance between successive basic, hydrophobic, and other amino acids for 

cellular localization prediction, yielding 87 percent or higher accuracy. Park et al. [62] 

have used amino acid composition and dipeptide composition for classification of outer 

membrane proteins using SVMs, resulting in 94 percent accuracy. Bhasin and Raghava 

[63] have also used similar methods for classifying the subfamilies of NRs and achieved 

97.5 percent accuracy by using the SVM with only dipeptide composition. Lin et al. [64] 

also used SVMs with amino acid compositions, physico-chemical properties 

(hydrophobicity, normalized Van der Waals volume, polarity, polarizability, charge, 

surface tension, secondary structure, and solvent accessibility) to classify lipid binding 

proteins into functional classes with high accuracies.  

A combination of profile HMM and SVM was introduced by Jaakkola et al. [65], 

and an SVM using pairwise sequence similarity scores was developed by Liao and Noble 

[66]. Both these methods have performed well in their studies. Recently developed 

classification methods based on domain regions by Sadka and Linial [67] have used 

transmembrane (TM) domain regions of many TM proteins to build Gaussian profiles 

using 20 amino-acid composition, and then used SVMs to classify each family of TM 

proteins. Their method is based on the idea that the information encoded at the TM 

domains is enough to classify the protein into a functional family. Their method gave 

good results in classifying polytopic proteins with 80 percent sensitivity and 90 percent 

specificity. Another domain-based method was introduced by Chou and Cai [68] where a 

protein sequence was represented as a 2005-dimensional binary vector, representing 2005 
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functional domains from domain database SBASE-A [69], with 0s for absence and 1s for 

presence of the domain. Then SVM was applied to discriminate between the positive and 

negative sequences resulting in high success rates. This ‘functional domain composition’ 

method using SVMs, and additional nearest neighbor algorithm was used in the 

prediction of the functional class of yeast proteins [70]. 

 

 

1.6 Organization of the dissertation 

This dissertation is divided into the following chapters. In Chapter 1, this chapter, 

I presented the objectives of this dissertation, a brief description on transmembrane and 

multi-domain proteins, and background on protein families and classification methods I 

have used. 

Chapter 2 describes the comparative study of various classification methods. 

Alignment-based classifiers (e.g., profile HMM, support vector machines with Fisher 

score and with pairwise alignment scores) are compared against alignment-free classifiers 

(e.g., support vector machines and decision trees with amino acid composition) using 

extremely divergent G-proteins coupled receptors as an example. This chapter has been 

published in: 

Strope, P. K. and Moriyama, E. N. (2007) Simple alignment-free methods for protein 

classification: a case study from G-protein coupled receptors. Genomics 89: 602-612. 

Chapter 3 involves the application of the methods I studied in mining the putative 

G-protein coupled receptors (also called seven transmembrane receptors) in the 

Arabidopsis thaliana genome. I was involved in training data preparation and prediction 
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of candidate GPCRs using profile hidden Markov models, support vector machines with 

amino acid composition and dipeptide composition. This chapter has been published in: 

Moriyama, E. N., Strope, P. K., Opiyo, S. O., Chen, Z. and Jones, A. M. (2006) Mining 

the Arabidopsis thaliana genome for highly-divergent seven transmembrane receptors. 

Genome Biology 7: R96.  

In Chapter 4, I studied the molecular evolution of related multi-domain protein 

families: urea amidolyase and urea carboxylase in both eukaryotes and prokaryoties. I 

presented the possible horizontal transfer scenario of urea amidolyase from bacteria to 

fungi. This study has been published in: 

Strope, P. K., Nickerson, K. W., Harris, S. D. and Moriyama, E. N. (2011) Molecular 

evolution of urea amidolyase and urea carboxylase in fungi. BMC Evolutionary Biology 

11: 80.  

Chapter 5 reports the study of sterol-sensing domain (SSD) proteins in 

eukaryotes. I thoroughly searched for SSD proteins in bacteria and eukaryotes, and 

performed phylogenetic analyses to understand their evolutionary history. The result 

from this study is in preparation for submission to the journal Genome Biology and 

Evolution.  

Chapter 6 describes the conclusion of my study and future directions. In the 

Appendix, a study of Nuclear Receptors is also described with some preliminary results. 
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Figure 1.1.  A model of G-protein coupled receptor protein. Seven transmembrane regions are 
shown. A ligand is present in the extracellular space and G-proteins (α, β, and γ) are present 
inside of the cell.  
 
 
 
 
 
 
 
 

 
 
Figure 1.2.  Domain structures of urea amidolyase and urea carboxylase. The abbreviations 
and approximate amino-acid lengths are given with the protein names. Amidase and urea 
carboxylase sequences exist as domains within the urea amidolyase protein or as single proteins 
by themselves.   
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Figure 1.3. Topology of the SSD proteins. The lengths and topology of the proteins shown are based on 
the human SSD proteins. The cylindrical structures are the transmembrane regions. The SSD regions are 
indicated in red. The top side of each protein is cytoplasmic. Enzyme names are as follows. HMGCR: 3-
hydroxy-3-methylglutaryl-coenzyme A reductase, SCAP: Sterol regulatory element binding protein 
clevage activating protein, NPC1: Niemann-Pick type C1 protein, PTC: Patched protein, PTC-R: Patched 
related protein, and DISP: Dispatched protein. 
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Figure 1.4. Organization of a typical nuclear receptor (Taken from Escriva Garcia et al. 2003). 
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Figure 1.5: An example multiple alignment to create a profile hidden Markov 
model. A gap is represented by a ‘-‘. Columns 1-3 and 6-10 are “match” columns, 
while the columns 4 and 5 are “insert” columns. 
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Figure 1.6: A profile hidden Markov model with delete (circle), insert (diamond), and 
match (square) states (taken from Hughey and Krogh, 1996). Transitions are allowed along 
each arrow. Delete and match states can only be visited once for each position along a path. 
Delete states do not emit any symbols. Insert states are allowed to insert multiple symbols. 
The alignment at the bottom is used to build the model in this example. The sequences begin 
in the start state. Amino acids a1 and a2 are inserted at the beginning of the sequence. A3 and 
B1 are the first matched symbols, followed by a deletion, where B2 is matched with a gap. A4 
is then matched with B3, b4 is inserted, A5 is matched with B5, and finally the end state is 
reached. 
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Figure 1.7: A hyperplane classifying two classes of data. A new sample of an unknown 
class can be classified based on the hyperplane. In this figure, the training data have two 
dimensions, represented by the x and y axes. Two classes of data are represented by squares 
and circles. The hyperplane that is calculated from these training examples is given by the 
bold dotted line, separated from the closest training vectors (support vectors marked with 
‘v’) by the distance. The classification of an unknown sample (triangle) is done by 
determining which side of the hyperplane the new instance falls. In this example, the 
prediction for the unknown sample would be square.  
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Chapter 2 

Simple Alignment-free Methods for Protein Classification: 

A Case Study from G-Protein Coupled Receptors 
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2.0 Preface for Chapter 2 

Computational methods of predicting protein functions rely on detecting similarities 

among proteins. However, sufficient sequence information is not always available for some 

protein families. For example, proteins of interest may be new members of a divergent 

protein family. The performance of protein classification methods could vary in such 

challenging situations. This chapter describes the comparative study of various classification 

methods using an extrememly divergent superfamily of transmembrane proteins, G-proteins 

coupled receptors, as an example. Alignment-based classifiers (e.g., profile HMM, support 

vector machines with Fisher scores and with pairwise alignment scores) are compared against 

alignment-free classifiers (e.g., support vector machines and decision trees with amino acid 

composition). Alignment-free classifiers based on support vector machines using simple 

amino acid compositions were effective in remote-similarity detection even from short 

fragmented sequences. Although it is computationally expensive, a support vector machine 

classifier using local pairwise alignment scores showed very good balanced performance. 

More commonly used profile hidden Markov models were generally highly specific and well 

suited to classifying well-established protein family members. From these results, we 

suggested that different types of protein classifiers should be applied to gain the optimal 

mining power. This chapter has been published in: 

Strope, P. K. and Moriyama, E. N. (2007) Simple alignment-free methods for protein 

classification: a case study from G-protein coupled receptors. Genomics 89: 602-612. 
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2.1 Background 

Predicting functions of new protein candidates is an essential part of post-genomic 

processing. Many effective protein classification methods have been developed for this 

purpose. Routinely applied methods include Pfam [1], SMART [2], Superfamily [3], 

PANTHER [4], PRINTS [5], and PROSITE [6]. InterPro [7] provides an integrated interface 

for various methods. These methods rely on multiple alignments to compare sequences and 

to build various forms of models. However, generating reliable multiple alignments becomes 

increasingly difficult when more divergent protein sequences are to be incorporated. Another 

disadvantage shared by these multiple alignment-based methods is that their models are built 

only from "positive samples" (protein sequences of interests), and information from 

"negative samples" (unrelated protein sequences) is not directly incorporated. Since 

subsequently found proteins are classified based on these models, possible initial sampling 

bias is kept and possibly reinforced.  

Recent developments in protein classification methods addressed the above-

mentioned problems. Kim et al. [8] and Moriyama and Kim [9] developed classification 

methods based on discriminant function analyses incorporating amino acid composition and 

physico-chemical properties in the descriptors. Their discriminant analysis methods were 

effective in discriminating G-protein coupled receptors (GPCRs) from non-GPCRs especially 

when only partial sequences were available. Support vector machines (SVMs) were used in 

other studies. Karchin et al. [10] used an SVM with a kernel function built on profile hidden 

Markov models (HMMs). Their results showed that their method, SVM_Fisher, could 

classify GPCR subfamilies within the superfamily better than a profile HMM method. 

SVM_pairwise developed by Liao and Noble [11] used pairwise similarity scores as input 

vectors. It performed better than other methods (e.g., profile HMM and SVM_Fisher) for 
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discriminating SCOP protein families [12]. More recently, SVM classifiers were applied 

for GPCR family classification based on amino acid composition and dipeptide frequencies 

by Bhasin and Raghava [13] and Wang et al. [14]. Decision tree and naïve Bayes classifiers 

with n-gram (n-mer or n-residue string) frequencies were also used for GPCR subfamily 

classification by Cheng et al. [15; includes also extensive list of protein classifiers]. Another 

alignment-free descriptors, auto/crosscovariance vectors based on amino acid properties, 

were used with partial least squares regression [16; 17] and with self-organizing maps 

(SOMs, an artificial neural network) [18]. These methods (except for SOMs) are 

discriminative; they generate models based on both positive and negative samples. Remote 

similarity detection has also been studied in relation to protein structure prediction, since 

incorporation of structural information could improve the identification sensitivity [reviewed 

by e.g., 19; 20]. 

One example showing the power of alignment-free classifiers was in the discovery of 

odorant receptor (OR) genes, a divergent member group of GPCRs, from the Drosophila 

melanogaster genome. Although OR protein sequences were previously known in 

vertebrates, due to their extremely low similarities with vertebrate counterparts, Drosophila 

ORs could not be identified until Kim et al. [8] applied their alignment-free discriminant 

analysis method. Sixty-one Drosophila OR as well as gustatory receptors were then newly 

identified [21; 22]. We should also note that alignment-free methods do not require us to 

assume homologous relationship (common ancestry) among similar sequences. Descriptors 

are in general designed to extract sequence properties shared among functionally similar 

proteins regardless of their evolutionary relationships.  

The main purpose of this study is to compare the performance among alignment-

based and alignment-free protein classification methods and to identify their strengths and 
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weakness from the practical perspectives of the users. Using the GPCR superfamily and 

taking advantage of their extreme and various levels of divergence, we designed our 

comparative analyses simulating some practical situations: when a good number of samples 

is available for training classifiers, when only a limited amount of information is available 

for training classifiers, and when short partial sequences need to be identified. Identifying 

short partial sequences helps detecting candidate gene regions based on single-exon 

similarities even if gene prediction methods misidentify these genomic regions. It also 

provides an effective way of exploiting an underutilized short Expressed Sequence Tags 

(ESTs). Due to its economical advantage, not surprisingly EST data comprise currently the 

majority of available genomic information.  

We examined the following classifiers: a profile HMM, SVM_Fisher, SVM_pairwise, 

and simple amino-acid-composition-based classifiers using SVMs and decision trees. 

Performance of the classifiers against short partial sequences was examined using both 

simulated datasets and Drosophila melanogaster EST sequences. The results we obtained 

will be useful to gain the optimal classification power using different protein classifiers for 

various identification problems we encounter in practice. 

 

2.2 Results 

We divided GPCR sequences into two groups: Class A datasets including GPCRs 

belonging to a single large class, and non-Class A datasets including GPCRs from other 

classes (see Table 2.1, and Materials and methods). While Class A GPCRs are relatively 

more conserved, non-Class A GPCRs are extremely heterogeneous. We trained classifiers on 

each group of datasets, and tested against the datasets derived from the same group (within-

class test) or from another group (between-class test). Table 2.2 summarizes the 
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combinations of datasets used in each test. The within-class tests are to examine how well 

classifiers perform if they can be trained on samples sufficiently similar to those to be 

identified. The between-class tests simulate situations when we want to search protein 

sequences distantly related from currently available samples.  

 

2.2.1 Within-class tests 

Fig. 2.1 summarizes the performance of the eight classifiers. The accuracy and false 

positive (FP) rates are plotted with circles and X’s, respectively. All classifiers had 92% or 

higher accuracy for identifying Class A GPCRs (Fig. 2.1a). Similarly high but slightly lower 

accuracy rates (85% or higher) were observed against non-Class A datasets (Fig. 

2.1b). In order to examine sampling effects, we repeated the performance analysis after 

switching datasets used for training and testing. All classifiers showed very similar consistent 

results between the two repeating tests (data not shown). For non-Class A, leave-one-out 

cross-validation tests using a larger dataset including all 162 non-Class A sequences also 

showed the consistent results (data not shown). 

All alignment-based classifiers, SAM (a profile HMM classifier), SVM_Fisher, and 

SVM_pairwise, showed almost perfect discrimination in these within-class tests regardless of 

the GPCR classes. Amino acid composition-based classifiers, SVM_AAs and DT, even 

though they do not rely on alignments to compare sequences, had also very high accuracy 

rates. Among SVM_AAs, SVM_AA(rbf) was the best performer with lower FP rates (higher 

specificity).  

The median and maximum rates of false positives (MedRFPs and MaxRFPs) 

concisely summarize the performance behavior of each classifier (see Materials and 

methods). These FP rates are included in Table A2.1. For all classifiers MedRFPs were 0% 
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or very close to 0%, indicating that a half of GPCR samples were identified correctly 

before any negative samples being misidentified as false positives. SVM_pairwise showed 

very low MaxRFPs, and SVM_AAs had slightly higher MaxRFPs (9% or higher). 

Surprisingly, SAM and SVM_Fisher had very high MaxRFPs for within-non-Class-A tests 

(e.g., 62% for SAM was the average between 49 and 75%). It indicates that some non-Class 

A GPCRs had very low scores, and could not be identified unless setting the threshold score 

very low and allowing many negative samples to become false positives. Consistent with 

this, almost all of the errors made by SAM and SVM_Fisher were false negatives (FNs). 

Higher divergence among non-Class A GPCR sequences must have contributed to these 

results. 

 

2.2.2 Between-class tests 

The results were quite different for between-class tests. As shown in Fig. 2.1 (plotted 

with squares and +’s), the accuracy rates of SAM and SVM_Fisher were only around 70-

80%. Low Matthews correlation coefficients (MCC < 60%; Table A2.2) of both classifiers 

reflect very low sensitivity (high FN rates) even though specificity was not quite low. It 

implies that SAM and SVM_Fisher could not identify sequences only weakly similar to their 

trained models. MaxRFPs of these classifiers were 100% or close to 100%, indicating some 

non-Class A GPCRs scored lower than almost all of the non-GPCR test sequences. Since 

their MedRFPs (<24%) were lower, at least a half of positive samples were found before too 

many negative samples being misidentified. 

Surprisingly, SVM_pairwise, even though it uses pairwise alignments to compare 

sequences, performed the best (higher than 90% accuracy), closely followed by alignment-

free SVM_AA(rbf) or SVM_AA(pol). All of the amino acid composition based classifiers 
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(SVM_AAs and DT) performed better than SAM and SVM_Fisher. Accuracy levels of 

SVM_AAs were constantly close to 90% or higher. Although their MaxRFPs were 

sometimes higher than those of SVM_pairwise, their MedRFPs were still very close to 0%.  

 

2.2.3 Subsequence test 

Figs 2.2 and 2.3 summarize the performance (accuracy rates) of the eight classifiers 

against short subsequences. Overall patterns were consistent among different classifiers; 

performance increased when the subsequence lengths became longer. Fig. 2.2 shows that for 

the within-class tests, profile HMM-based SAM and SVM_Fisher had the advantage over the 

other classifiers. Even against 50 or 75-amino acid (aa) subsequences, these classifiers 

maintained the accuracy at 94% or higher (for Class A) or 88% or higher (for non-Class A). 

The performance of SVM_pairwise was slightly lower than these two classifiers. Among the 

amino-acid composition based classifiers, DT showed the lowest accuracy rates. The 

accuracy rates of SVM_AAs were close to but slightly lower than those of SVM_pairwise.  

Consistent with the results obtained for the full sequence analysis, for the between-

class tests, SAM and SVM_Fisher gave the worst performance regardless of the subsequence 

lengths (Fig. 2.3). Both SVM_pairwise and SVM_AAs performed similarly and constantly 

better than SAM, SVM_Fisher, and DT. Their discrimination performance was better when 

SVM_AAs were trained on non-Class A. On the contrary, SAM performed worse when 

trained on non-Class A. SVM_AAs maintained around 80% accuracy even against 50-aa 

subsequences.  

 

2.2.4 D. melanogaster EST analysis 

Since almost all EST sequences contain fragments of both non-translated exons as 

well as coding sequences, identifying their family memberships is more challenging than 
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subsequence identification. Table 2.3 compares the performance between SAM and 

SVM_AA(rbf). The majority of D. melanogaster ESTs that contained GPCR coding 

sequences were in fact derived from Class A GPCRs (1,937 out of 2,103). Against these 

Class A GPCR containing ESTs, SAM performed very well when trained on the same Class 

A (~90% accuracy). However, none of them was correctly identified when training was done 

using the non-Class A dataset. Similarly, when training was done with the Class A dataset, 

none of non-Class A containing ESTs was correctly identified. "Frizzled/smoothened" and 

"odorant/gustatory receptors" are another distant GPCR groups and these sequences were not 

included in our training data. Predictably, SAM failed to identify the majority of the ESTs 

containing these sequences. In the cases where SAM failed, SVM_AA(rbf) showed better 

identification performance. Furthermore, the majority of the Class A containing ESTs in fact 

coded highly conserved opsin proteins (1,807 of 1,937). Against the remaining 130 Class A 

ESTs, SAM showed only a slight advantage. In total, SVM_AA(rbf) identified more GPCR 

containing ESTs (145) than SAM did (95). Note that, although SVM_AA(poly) seemed to 

perform better than SVM_AA(rbf) for short subsequences (Figs 2.2 and 2.3), in this EST 

analysis, SVM_AA(poly) showed extremely high FP rates (50% or higher from 370,488 

negative ESTs). 

 

2.3 Discussion 

Profile HMMs are currently the most used method in protein classification (e.g,. 

Pfam, SMART, Superfamily, PANTHER). Profile HMMs are built on multiple alignments 

generated from known protein families. Therefore, they cannot be optimized directly for 

discriminating positive samples from negative samples. SVM_Fisher developed by Jaakkola 

et al. [23] combines the power of generative model building of HMMs with the 
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discriminative power of SVMs. Our results showed only a small improvement of 

performance with SVM_Fisher over SAM when the classifiers were trained and tested to 

identify more diverged non-Class A GPCR sequences. Both profile HMM-based classifiers 

performed poorly in between-class tests and they misidentified many GPCRs as false 

negatives. While the higher specificity of profile HMMs contributed to very low errors when 

classification was against the same group of sequences they were trained on, such high 

specificity may have prevented profile HMMs to identify distantly related sequences not 

well-represented in their models. SVM_pairwise surpassed profile HMM-based classifiers, 

especially for between-class tests. It appears to combine the strength in profile-HMMs (high 

specificity) and flexibility in SVM_AAs. The simple use of amino acid frequencies with 

SVMs is completely free from alignments and was very effective for discriminating GPCRs 

from non-GPCRs regardless of how they were trained.  

Based on the different results we obtained in this study, profile HMMs have an 

advantage when training and testing can be done using sufficiently similar sequences. 

SVM_AAs perform better when currently available sample proteins do not represent well the 

remotely similar new proteins that are needed to be identified. It is beneficial for the users to 

know how remote is too remote to select the best classifier for their interest. In order to 

examine further the relationships between the level of similarity and classifier performance, 

we performed the similar analyses using different families among Class A GPCRs as shown 

in Table 2.4 (see Materials and methods). Three major families (Amine/Rhodopsin, Peptide, 

and Olfactory) were chosen from Class A. One of these Class-A-family datasets was used for 

training, and the testing was done against the other two Class-A-family datasets. As shown in 

Table 2.5, SAM and SVM_pairwise performed better than SVM_AA(rbf). Such results were 

expected since the difference among these Class A families are not as great as between-class 
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tests. In fact, sensitivities of SVM_AA(rbf) were very close to those of SAM. Performance 

decrease observed in SVM_AA(rbf) was mainly caused by the misclassification of negative 

samples but not positives. Furthermore, the performance by SAM trained with the Olfactory 

family dataset (OL), the most conserved datasets, was the lowest, showing a possible 

overfitting effect. Compared to SAM and SVM_AA(rbf), SVM_pairwise showed again 

consistently almost perfect classification performance. 

The disadvantage of using SVM_pairwise is its computational expense. It requires 

generating all combination of Smith-Waterman local pairwise alignments both in training 

and testing. It becomes computationally significantly expensive especially against larger 

datasets (e.g., genomes). On the contrary, SVM_AA is quick and simple, requiring only 

amino acid composition from each protein. There are many public softwares that can be used 

to obtain amino acid composition from protein sequences. Using SVM_AA is easy and more 

practical especially for large-scale (e.g., genome-scale) analyses. 

We should note that the results shown so far were obtained at the minimum error 

point (MEP). It shows the best possible performance each classifier can produce, and such 

performance cannot be expected in the real life. In the reality, we have to rely on the 

classifiers optimized based on the training set used. When we used the results simply 

produced by each classifier as a default output (using e-value = 0.05 as the threshold for 

SAM), the results for within-class tests were close to those obtained at the MEP (see 

Supplementary Materials). However, the accuracy rates for between-class tests by SAM, 

SVM_Fisher, and SVM_pairwise were lower by as much as 20%. The difference was much 

smaller for SVM_AAs.  

In Kim et al. [8] and Moriyama and Kim [9], they reported the performance of their  

alignment-free classifiers to be better than that of profile HMMs (Pfam) especially for short 

subsequence identification. The datasets they used to train and test their classifiers were 
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randomly sampled across the entire GPCR classes. For profile HMMs, however, multiple 

models were collected from the Pfam database, with each model corresponding to a different 

GPCR class (e.g., 7tm_1 for the rhodopsin family). Therefore, their results for profile 

HMM/Pfam were equivalent to results combined from within and between-  

class tests in this study. In fact, this is generally what happens when we submit query 

sequences to profile HMM databases such as Pfam. For example, currently 22 GPCR 

proteins are known from Arabidopsis thaliana [24; 25; 26; 27]. Using multiple profile 

HMMs constructed from 14 GPCR groups, Fredriksson and Schioth [28] identified only six 

Arabidopsis GPCRs. In their recent study, Ono et al. [29] reported that combining profile 

HMMs with other methods including BLAST [30] and PROSITE [6], they could identify 21 

of the Arabidopsis GPCRs. Compared to such a small number of GPCRs found in 

Arabidopsis, animal genomes encode much larger numbers of GPCRs (e.g., >800 in human 

and ~1000 in Caenorhabditis elegans; [25]). It indicates either that the number of GPCRs 

exploded only in metazoan lineages after plants and metazoa parted their evolutionary 

histories, or that distant plant members have not been identified properly. Combining various 

alignment-free classifiers and transmembrane prediction methods, for example, our group 

recently identified about 400 GPCR candidates from the A. thaliana genome [31]. Although 

knowing how many of these candidates are actual GPCRs (true positives) needs experimental 

confirmation, relying only on highly specific results produced by profile HMMs does not 

allow us to explore such possibilities. 

Recently a new alignment-free GPCR detection method, GPCRHMM, was developed 

by Wistrand et al. [32]. The authors analyzed TM topologies among GPCRs, and compared 

differences in loop lengths and amino acid composition between different GPCR regions. A 

hidden Markov model is built based on these regional features. Since their classifier was 

trained using positive samples collected across the entire GPCR families (except for plant 

Mlo and insect odorant receptor families), it is not possible to compare the results from our 
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within- and between-test analyses directly with those by GPCRHMM. Nevertheless such 

comparisons would be beneficial for the users when choosing classifiers. Therefore, we 

applied GPCRHMM against all of our datasets (Table A2.4). As expected, GPCRHMM 

discriminated Class A and non-Class A GPCRs from non-GPCRs with very high accuracies. 

All Class A sequences (AR, PE, and OL datasets in Table 2.4) were identified almost 

perfectly. On the other hand, of the two non-Class A GPCR datasets (N1 and N2 in Table 

2.4) 70 sequences each were identified as negative (non-GPCR). This is, however, not 

surprising because the training samples used for GPCRHMM do not include those extremely 

diverged GPCRs such as plant Mlo's and insect odorant receptors. In each of the non-Class A 

GPCR datasets (N1 and N2), 68 sequences were obtained from these families and these 

sequences were missed by GPCRHMM. This result shows again that it is very important to 

understand how classifiers are trained and for what purpose we want to use each classifier. 

 

2.4 Conclusions 

SVM_pairwise is the most balanced classifier that is sensitive to remote similarity 

and can be also highly discriminative for classifying GPCR classes. However, use of 

SVM_pairwise for a large-scale analysis may not be practical for its computational cost. To 

identify member proteins from well-established protein families where a good number of 

representative samples are available, profile HMMs as well as GPCRHMM give highly 

accurate classifications. When protein sequences of our interests are distant members of 

divergent protein families and only a limited amount of information is available for training 

classifiers, SVM_AA(rbf) is the better alternative. Our recommendation is thus to use both 

SAM (or GPCRHMM) and SVM_AA(rbf) for the first stage analysis, and to follow up with 

SVM_pairwise to reduce false positives to achieve a thorough mining of divergent protein 
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family members.  

 

2.5 Materials and methods 

2.5.1 Data sources 

GPCRs are seven-transmembrane proteins involved with G-protein mediated signal 

transduction. They form a large (the largest among eukaryotic transmembrane protein 

families) and highly diverged superfamily. GPCRDB (Information System for G Protein-

Coupled Receptors) [25] divides the superfamily into five major classes (see Table 2.1). 

Class A is by far the most populated GPCR class with more than 4,300 entries in the 

database. Other families not listed in Table 2.1 are, for example, "Frizzled/Smoothened", 

"Insect odorant receptors", and "Plant Mlo receptors" (see http://www.gpcr.org/7tm for the 

complete listing of GPCR families). Other GPCR classification systems exist. For example, 

Fredriksson et al. [28] divide Class B into two major families: "Secretin" and "Adhesion". 

However, for the purpose of our current study, the difference is not significant. Each class is 

further divided into families, subfamilies, and so forth, based on their ligand-specificities as 

well as sequence similarities.  

The GPCR sequences of different classes/families are highly diverged from each 

other. Their lengths are also varied especially in the 5' and 3'-terminal as well as loop 

regions. Such high variation makes reconstructing reliable multiple alignments across 

families or from the entire GPCR superfamily very difficult or practically impossible. This is, 

therefore, an ideal protein family for us to analyze classifier performance at various degrees 

of similarities. GPCRs have been also used in previous classifier developments [e.g., 8; 9; 10; 

13; 14; 15; 16; 17; 18; 32]. 

As shown in Table 2.1, entries in GPCRDB are derived from Swiss-Prot Protein 

Knowledgebase [33], a curated protein database providing high quality annotations, as well 

as its computer-annotated supplement, TrEMBL. In order to use GPCR sequences less likely 
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to be misclassified, for our positive samples, we included only Swiss-Prot derived GPCR 

sequences.  

 

2.5.2 Positive and negative samples 

The lists of accession numbers for the sequences used in each dataset are available in 

Supplementary Materials. All sequences are available from: 

http://bioinfolab.unl.edu/emlab/gpcr/ 

 

Class A datasets 

200 GPCR sequences were randomly sampled from Class A. Such random sampling 

may not represent all groups evenly since some groups are represented by only small 

numbers of entries in the database and other groups include many highly similar sequences. 

In order to examine the effect of training data sampling, we previously examined two other 

sampling methods: a phylogeny-based sampling using a certain cut-off similarity level, and 

family-wise sampling based on the Class A classification by GPCRDB. The phylogeny-based 

sampling avoids redundant representation by highly similar sequences, and the family-wise 

sampling avoids biased representation by large groups. While these sampling methods could 

cover the entire GPCR sequence space more evenly, no significant improvement was 

observed in classifier performance (for detailed descriptions, see Khati [34]). In this study we 

thus used only random sampling for preparing training datasets. Two independent datasets 

were prepared from Class A GPCRs. 

 

Non-Class A datasets 

Positive datasets were also generated by sampling from non-Class A (including 

Classes B, C, D, and E). As shown in Table 2.1, only 162 GPCR sequences were available 
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for non-Class A. One positive dataset was prepared including all of these sequences. Two 

other smaller but non-overlapping positive datasets were also generated by randomly 

dividing the 162 sequences into two (each including 81 non-Class A GPCRs).  

 

Non-GPCR negative datasets 

For negative samples, 200 non-GPCR sequences longer than 100 amino acids were 

randomly sampled from Swiss-Prot. We added also ten bacteriorhodopsin sequences. 

Bacteriorhodopsins are seven-transmembrane proteins. However, they do not couple with G 

proteins, nor function as GPCRs. Adding such somehow similar but unrelated negative 

samples may improve the discriminating power of classifiers, resulting in fewer false 

positives. Note, however, that Khati [34] reported that such performance increase was 

minimal. The total number of sequences in each negative dataset was thus 210. Two 

independent negative sets were prepared. 

 

Datasets used for Class A family analysis 

From Class A GPCRs, we chose four major subfamilies: Amine, Peptide, Opsin 

(rhodopsin), and Olfactory. Clustering patterns were examined by phylogenetic analysis 

using ClustalW multiple alignment [35], protein distance estimation based on the JTT model 

[36], and neighbor-joining phylogenetic reconstruction [37] implemented in Phylip (version 

3.65) [38]. The consistent results were obtained by Fredriksson et al. [39] in their extensive 

analysis of human GPCRs. Amine and Opsin groups were closely clustered and Fredriksson 

et al. [39] included them in a single group α. Therefore, we combined these two groups and 

generated three Class A datasets AR, PE, and OL as shown in Table 2.4. Their average 

pairwise divergence (amino acid substitutions per site estimated by JTT protein distance) was 

the highest among the Peptide (PE) group and the lowest among the Olfactory (OL) group. 

Pairwise protein divergence of 0.3 was used to identify highly similar sequence clusters, and 

from each of such clusters single sequence was randomly chosen and others were excluded. 
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For non-Class A datasets, GPCR sequences were obtained from Classes B-E 

(Table 2.1) as well as "Frizzled/Smoothened", "Ocular albinism proteins", "Insect odorant 

receptors", "Plant Mlo receptors", "Nematode chemoreceptors", "Vomeronasal receptors", 

and "Taste receptors T2R". As before, highly similar sequences were removed by using 

pairwise protein divergence of 0.3 as the cut-off threshold. Two non-overlapped datasets (N1 

and N2 in Table 2.4) were generated and one (N1) was used for training and the other (N2) 

for testing. 

 

2.5.3 Training and test datasets preparation 

Positive and negative datasets were combined to create Class A training and test sets, 

each including 410 sequences, and non-Class A training and test sets, one including 372 and 

two including 291 sequences. The two Class A datasets and the two smaller non-Class A 

datasets were mutually exclusive.  

 

Subsequence test sets 

Based on the average length of GPCRs (374 aa from Class A), six lengths were 

chosen: 50, 75, 100, 150, 200, and 300 aa. One subsequence with a given length was 

randomly taken from each sequence of the dataset. While all GPCR sequences were longer 

than 300 aa, some non-GPCR sequences were shorter than the required lengths and had to be 

replaced with new sequences obtained from Swiss-Prot. Six subsequence test sets were 

generated for one each dataset of Class A and non-Class A, each including 410 and 291 

sequences, respectively. 

 

Drosophila melanogaster EST datasets 

374,229 D. melanogaster EST sequences (337,753 for 5' and 36,476 for 3' ESTs) 
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were collected from the EST division of Genbank (National Center for Biotechnology 

Information; http://www.ncbi.nlm.nih.gov/) in October 2005. Using blastx similarity search 

program (http://www.ncbi.nlm.nih.gov/BLAST/) [40], we compared them against all 304 D. 

melanogaster GPCR protein sequences in GPCRDB. Using 90% for the amino acid identity 

and 5 aa (15 bp) length of HSPs (High-scoring Segment Pairs or regions aligned with GPCR 

coding sequences) as the threshold, we identified 2,103 ESTs (1,994 for 5' and 109 for 3' 

ESTs) that contain fragments of GPCR coding sequences. The average length of these ESTs 

was 557 bp (ranging from 151 bp to 871 bp). The average HSP length was 125 bp, and on 

average an HSP covered 20 – 25 % of each EST. These 2,103 ESTs were translated in three 

reading frames and used for testing classifier performance.  

 

Class A analysis datasets 

For the within-family tests, each of the three Class A datasets (AR, PE, and OL in 

Table 2.4) was randomly divided into two. One was combined with a non-Class A datatset 

N1 and used for training, and the other was combined with another non-Class A dataset N2 

and used for testing. For the between-family tests, each of the three Class A datasets (AR, 

PE, and OL) was combined with the non-Class A dataset N1 for training. Two of the three 

Class A datasets not used for training was combined with another non-Class A dataset N2, 

and used for testing (e.g., if AR+N1 dataset was used for training, PE+OL+N2 dataset was 

used for testing).  

 

2.5.4 Classifiers used 

Profile hidden Markov models (HMMs) 

A profile HMM is a full probabilistic representation of a sequence profile [41]. 
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Sample sequences need to be alignable, and thus only positive sample information is 

directly incorporated. We used the program package of Sequence Alignment and Modeling 

System (SAM version 3.5; http://www.cse.ucsc.edu/research/compbio/sam.html) [42] in this 

study, buildmodel was used to build profile HMMs with the nine-component Dirichlet 

mixture priors [43] and hmmscore was used to calculate scores and e-values. The 

‘calibration’ option (for more accurate e-value calculation) and the fully local scoring option 

(-sw 2) were used. The w0.5 script is to build profile HMMs especially for searching 

remotely similar sequences. We built profile HMMs with and without using the w0.5 script. 

As shown in Appendices, especially for between-class test, w0.5 did not consistently improve 

GPCR discrimination performance. Therefore, we discussed only results obtained without 

using w0.5. 

 

Support vector machines (SVMs) 

SVMs are learning machines that make binary classifications based on a hyperplane 

separating a remapped instance space [44]. Kernel functions are chosen so that the remapped 

instances on a multidimensional space are linearly separable. Both positive and negative 

samples are used in their training.  

SVM_Fisher. This method introduced by Jaakkola et al. [23] combines generative 

models (trained only on positive samples as profile HMMs) with discriminative methods, 

SVMs. If an HMM, H1, is built from a set of positive sequences, the probability model for a 

sequence X is denoted as P(X|H1,θ), and a Fisher score vector (FSV) is given by UX = 

ΔqlogP(X|H1,θ). The detailed derivation of the FSV is given by Karchin et al. [10].  

Given a profile HMM, each sample sequence was compared against it using a SAM 

program, get_fisher_scores, and transformed into a 9n-component FSV based on the nine-
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component Dirichlet mixture (‘matchprior’ option; n is the number of match states). This 

FSV was then used as an input vector for SVMs. A program svm_learn of the SVMlight 

package (version 5.0; http://svmlight.joachims.org/) [45] was used with a radial basis kernel, 

exp(-γ||x-y||2), where γ was set based on the median of Euclidean distances between positive 

examples and the nearest negative example as described in Jaakkola et al. [23]. SVM 

classification was done by another SVMlight program, svm_classify. 

SVM_pairwise. In this method developed by Liao and Noble [11], each sequence is 

compared to every sequence in the data set by the Smith-Waterman local pairwise alignment 

[46]. If n is the total number of proteins in the training set and fxi is the e-value of the Smith-

Waterman similarity score between a sequence X and the i-th training sequence (i = 1, 2, …, 

n), the feature vector corresponding to a sequence X is in the form of FX = [fx1, fx2, ..., fxn]. 

SSearch (version 3.4) [47] was used as an implementation of the Smith-Waterman algorithm 

with the default options (open gap penalty = 12, gap extension penalty = 2, BLOSUM50 

scoring matrix). SVMlight programs were used as above with the set of e-values as the input 

vector and with the radial basis kernel. 

SVMs with amino acid composition. Simple nineteen amino acid frequencies of 

each protein sequence (the 20th amino acid frequency can be explained completely by the 

other 19) were used as an input vector for SVMs. The SVMlight package was used as before. 

Four kernel functions used are the linear kernel, (x • y +1); the polynomial kernel, (kx • y + 

1)p; the sigmoid kernel, tanh(kx • y + c); and the radial basis kernel, exp(-γ ||x-y||2). γ in the 

radial kernel function was set as described before (γ=122 for Class A and γ=126 for non-

Class A were used. Also the regulatory parameter C was set as 0.5002 for Class A and 

0.5003 for non-Class A data sets). The other parameter values were chosen for the most 

optimal discrimination. We call these SVM classifiers SVM_AA(lin), SVM_AA(pol), 

SVM_AA(sig), and SVM_AA(rbf), respectively. 
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Decision trees (DT) 

The nineteen amino acid frequencies were also used as an input vector for decision 

trees. The program C4.5 (release 8; http://www.rulequest.com/Personal/) by Quinlan [48] 

was used. A decision trees classifier with boosting showed only a minimum performance 

gain [34]. Therefore, in this study, we used the decision trees without boosting. 

 

GPCRHMM 

Recently Wistrand et al. [32] developed a new GPCR detection method, GPCRHMM. 

It incorporates GPCR-specific TM features (e.g., loop-region lengths, different amino acid 

composition among loop and TM regions) in a hidden Markov model architecture. 

GPCRHMM is available at http://gpcrhmm.cgb.ki.se/index.html.  

 

2.5.5 Performance Analysis 

Test statistics 

Classification results are grouped as the following four categories: 

• True positive (TP): the number of actual GPCRs predicted as GPCRs 

• False positive (FP): the number of actual non-GPCRs predicted as GPCRs 

• True negative (TN): the number of actual non-GPCRs predicted as non-GPCRs 

• False negative (FN): the number of actual GPCRs predicted as non-GPCRs 

Based on these numbers, following performance measures were calculated: 

• Accuracy: (TP + TN) / (TP + TN + FP + FN) = 1 – error rate 

• Sensitivity: TP / (TP + FN) 

• Specificity: TN / (TN + FP) = 1 – FP rate 
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• Matthews correlation coefficient (MCC) =  

(TP x TN – FP x FN) / {(TP + FN)(TP + FP)(TN + FP)(TN + FN)}1/2 

MCC provides more balanced evaluation of performance (reviewed in, e.g., [49]). 

 

Minimum error point (MEP) 

The minimum error point (MEP) is the threshold score where the classifier produces 

the minimum number of errors (FP + FN) showing the best possible performance. MEP was 

used in Karchin et al. [10]. Unless specified, the performance statistics were obtained at the 

MEP for all classifiers except for DT. 

 

Maximum and median rates of false positives (MaxRFP and MedRFP) 

The maximum rate of false positives (MaxRFP) is the FP rate at a certain threshold 

score where all positive samples are correctly identified. Similarly, the median rate of false 

positives (MedRFP) is the FP rate at a certain threshold score where a half of the positive 

samples are correctly identified. These statistics (used in [23]) concisely summarize the 

behavior of each classifier performance. Therefore, we chose to show these statistics in 

Tables A2.1 and A2.2 instead of receiver operating characteristic (ROC) curves, which is the 

plot between TP rates (sensitivities) against FP rates (1-specificity) with a given range of 

threshold values.  

 

Leave-one-out cross-validation test 

Since non-Class A datasets were much smaller than Class A, and two independent 

datasets prepared from non-Class A included only 81 positive samples, in addition to 

independent test data analysis, we performed leave-one-out cross-validation analysis, too. 
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For non-Class A, the dataset including the entire positive samples (162 sequences) was 

used for this analysis. 
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Table 2.1: The five major classes of G-protein coupled receptors. 

Classes Examples Numbers of entries1 
A: Rhodopsin like rhodopsin, adrenergic receptor 4,350 (1,593) 
B: Secretin like secretin receptor, calcitonin receptor 198 (107) 
C: Metabotropic 

glutamate/pheromone metabotropic receptor 135 (40) 
D: Fungal pheromone fungal pheremone receptor STE2-like 24 (11) 
E: cAMP receptors 

(Dictyostelium) cAMP receptor 5 (4) 
 
1The numbers of entries are based on the GPCRDB July 2004 release. Numbers 
in parentheses are those including only Swiss-Prot derived entries. 

 
 
 
 
 
 
 
 
Table 2.2: Datasets used in within- and between-class tests.1 

Training datasets  Test datasets 
Positive Negative  Positive Negative 

 
[Within-class test]    

Class A (200) Non-GPCR (210)  Class A (200) Non-GPCR (210) 
Non-Class A (81) Non-GPCR (210)  Non-Class A (81) Non-GPCR (210) 

 
[Between-class test] 

   

Class A (200) Non-GPCR (210)  Non-Class A (162) Non-GPCR (210) 
Non-Class A (162) Non-GPCR (210)  Class A (200) Non-GPCR (210) 

 
1The datasets used in training and test are independent to each other. The number of 
sequences included in each dataset is shown in the parentheses.  
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Table 2.3: Identification of D. melanogaster ESTs containing GPCR coding sequences.1 

 Numbers of ESTs identified by the classifiers (%) 
SAM  SVM_AA(rbf) GPCR 

classes2 Class A3 Non-Class A3 Combined4  Class A3 Non-Class A3 Combined4 
A 
(1,937/130) 

1,672/55 
(86.3/42.3) 

0/0 
(0/0)  1,435/45 

(74.1/34.6) 
251/64 

(13.0/49.2) 
Non-A 
(105) 

0 
(0) 

31 
(29.5) 

1,703/86 
(83.4/36.6)  23 

(21.9) 
22 

(21.0) 

1,541/105 
(75.5/44.7) 

Fz (34) 0 
(0) 

0 
(0) 

0 
(0) 

 7 
(20.6) 

24 
(70.6) 

24 
(70.6) 

OR (27) 9 
(33.3) 

0 
(0) 

9 
(33.3)  16 

(59.3) 
12 

(44.4) 
16 

(59.3) 
        
[Total] 
(2,103/296) 

1,681/64 
(79.9/21.6) 

31/31 
(1.5/10.5) 

1,712/95 
(81.4/32.1)  1,481/51 

(70.4/17.2) 
309/122 

(14.7/41.2) 
1,581/145 
(75.2/49.0) 

 
1The numbers (%) of ESTs after excluding possible opsin ESTs are given after '/'. The 
numbers (%) shown in boldface indicate where either of the classifiers has better 
performance compared to the other. 

2A: Class A; Non-A: non-Class A (including B, C, D, and E); Fz: frizzled/smoothened; OR: 
odorant and gustatory receptors. The numbers of ESTs containing GPCR coding sequence 
fragments are shown in the parentheses. 

3The dataset used to train each classifier. 
4The numbers of ESTs identified by the classifier trained with either or both of Class A and 
non-Class A datasets. 
 
 

 

Table 2.4: Datasets used for the Class A family analysis. 

Dataset names (families) Numbers of entries1 Average pairwise divergence ± SD 
[Class A]   

AR (Amine/Rhodopsin) 126 (296) 2.14 ± 0.61 
PE (Peptide) 139 (552) 2.44 ± 0.57 
OL (Olfactory) 309 (476) 1.28 ± 0.33 

   
[Non-Class A]   

N1 158 6.96 ± 3.80 
N2 158 7.81 ± 5.30 

 
1Protein sequences that have pairwise divergence (amino acid substitutions per 
site) lower than 0.3 were excluded. The numbers in parentheses are those 
before the exclusion. The total number of non-Class A entries before such 
exclusion was 597. 
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Table 2.5: Classifier performance for Class A between-family analysis.1 

 
Methods Family2 Errors 

(FP/FN) 
Accu- 
racy 

Sensi- 
tivity 

Speci- 
ficity MCC MaxRFP MedRFP 

SAM AR 6 (1/5) 0.99 0.99 0.99 0.97 0.52 0 
SAM PE 4 (4/0) 0.99 1 0.97 0.98 0.03 0 
SAM OL 89 (38/51) 0.79 0.81 0.76 0.56 0.95 0 
         
SVM_pairwise AR 4 (0/4) 0.99 0.99 1 0.98 0.22 0 
SVM_pairwise PE 4 (3/1) 0.99 1.0 0.98 0.98 0.03 0 
SVM_pairwise OL 8 (2/6) 0.98 0.98 0.99 0.96 0.27 0 
         
SVM_AA(rbf) AR 124 (114/10) 0.80 0.98 0.28 0.39 0.94 0.22 
SVM_AA(rbf) PE 64 (41/23) 0.89 0.95 0.74 0.72 0.65 0 
SVM_AA(rbf) OL 114 (66/48) 0.73 0.82 0.58 0.41 0.97 0 
 
1The results from Class A within-family tests are shown in Table A2.3.  
2The Class A family dataset used to train each classifier. The between-family tests were 
performed using the two families that were not used for the training. See Table 2.4 for these 
datasets. 
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Fig 2.1. Performance comparison among eight classifiers. Classifiers were trained 
on the Class A dataset (a) or trained on the non-Class A dataset (b). Circles and 
squares plot the accuracy rates for the within-class and for the between-class tests, 
respectively. 'X' and '+' show the FP rates for the within-class and for the between-
class tests, respectively. The detailed statistics are listed in Tables A2.1 and A2.2.  
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Fig 2.2. Performance comparison among eight classifiers for within-class subsequence 
tests. Classifiers were trained and tested on the Class A datasets (a) or trained and tested 
on the non-Class A datasets (b). The accuracy rates when classifiers were tested on the 
full test sequences are plotted above ‘full’.  
 

Fig 2.3. Performance comparison among eight classifiers for between-class 
subsequence tests. Classifiers were trained on the Class A dataset and tested on the 
non-Class A dataset (a) or vice versa (b). The accuracy rates when classifiers were 
tested on the full test sequences are plotted above ‘full’.  
 



  71 
 
Additional files  
 
Table A2.1: Classifier performance for within-class tests. 1 

Methods Class2 Errors 
(FP/FN) 

Accu- 
racy 

Sensi- 
tivity 

Speci- 
ficity MCC MaxRFP MedRFP 

SAM A 1 (0/1) 1.00 1.00 1 0.99 0 0 
SAM(w0.5) 3 A 0.5 (0/0.5) 1.00 1.00 1 1.00 0.00 0 
SVM_Fisher A 1 (0/1) 1.00 1.00 1 1.00 0.18 0 
SVM_Fisher 

(w0.5)3 
A 1.5 (1/0.5) 1.00 1.00 1.00 0.99 0.01 0 

SVM_pairwise A 1 (0/1) 1.00 1.00 1 1.00 0.01 0 
SVM_AA(rbf) A 10.5 (4/6.5) 0.97 0.97 0.98 0.95 0.09 0 
SVM_AA(pol) A 14.5 (11.5/3) 0.96 0.99 0.95 0.93 0.25 0.00 
SVM_AA(sig) A 24 (16/8) 0.94 0.96 0.92 0.88 0.18 0.01 
SVM_AA(lin) A 23.5 (16/7.5) 0.94 0.96 0.92 0.89 0.18 0.01 
DT A 33.5 (11.5/22) 0.92 0.89 0.95 0.84 - - 
         
SAM N 4.5 (1/3.5) 0.98 0.96 1.00 0.96 0.62 0 
SAM(w0.5) 3 N 2 (0/2) 0.99 0.98 1 0.98 0.43 0 
SVM_Fisher N 3.5 (0.5/3) 0.99 0.96 1.00 0.97 0.52 0 
SVM_Fisher 

(w0.5) 3 
N 2 (0.5/1.5) 0.99 0.98 1.00 0.98 0.05 0 

SVM_pairwise N 4 (1/3) 0.99 0.96 1.00 0.97 0.04 0 
SVM_AA(rbf) N 12.5 (7.5/5) 0.96 0.94 0.96 0.89 0.26 0.00 
SVM_AA(pol) N 33.5 (27.5/6) 0.88 0.93 0.87 0.75 0.22 0.03 
SVM_AA(sig) N 45 (31.5/13.5) 0.85 0.83 0.85 0.65 0.26 0.06 
SVM_AA(lin) N 44.5 (32.5/12) 0.85 0.85 0.85 0.66 0.26 0.06 
DT N 29.5 (14/15.5) 0.90 0.81 0.93 0.75 - - 
 
1Values shown are the average from two independent tests. Class A and non-Class A datasets 
included 410 and 291 sequences, respectively. 

2The dataset used to train each classifier. A; Class A, N: non-Class A. 
3Results obtained using w0.5 of the SAM package. 
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Table A2.2: Classifier performance for between-class tests. 

Methods Class1 
Errors 

(FP/FN) 
Accu- 
racy 

Sensi- 
tivity 

Speci- 
ficity 

MCC MaxRFP MedRFP 

SAM AN 80 (14/66) 0.78 0.59 0.93 0.57 1.00 0.03 
SAM(w0.5) 2 AN 79 (18/61) 0.79 0.62 0.91 0.57 0.96 0.03 
SVM_Fisher AN 84 (8/76) 0.77 0.53 0.96 0.56 0.99 0.02 
SVM_Fisher 

(w0.5) 2 
AN 69 (20/49) 0.81 0.70 0.90 0.62 0.90 0.03 

SVM_pairwise AN 34 (19/15) 0.91 0.91 0.91 0.81 0.52 0.01 
SVM_AA(rbf) AN 38 (16/22) 0.90 0.86 0.92 0.79 0.66 0.02 
SVM_AA(pol) AN 46 (28/18) 0.88 0.89 0.87 0.75 0.40 0.06 
SVM_AA(sig) AN 54 (42/12) 0.85 0.93 0.80 0.72 0.39 0.08 
SVM_AA(lin) AN 54 (42/12) 0.85 0.93 0.80 0.72 0.40 0.08 
DT AN 89 (14/75) 0.76 0.54 0.93 0.52 - - 
         
SAM NA 125 (26/99) 0.70 0.51 0.88 0.41 1 0.12 
SAM(w0.5) 2 NA 145 (36/109) 0.65 0.46 0.83 0.31 1 0.24 
SVM_Fisher NA 98 (25/73) 0.76 0.64 0.88 0.53 1 0.04 
SVM_Fisher 

(w0.5) 2 
NA 91 (46/45) 0.78 0.78 0.78 0.56 0.88 0.06 

SVM_pairwise NA 25 (14/11) 0.94 0.95 0.93 0.88 0.14 0.00 
SVM_AA(rbf) NA 36 (29/7) 0.91 0.97 0.86 0.83 0.31 0.00 
SVM_AA(pol) NA 23 (15/8) 0.94 0.96 0.93 0.89 0.20 0.01 
SVM_AA(sig) NA 35 (25/10) 0.91 0.95 0.88 0.83 0.30 0.01 
SVM_AA(lin) NA 35 (25/10) 0.91 0.95 0.88 0.83 0.30 0.01 
DT NA 89 (20/69) 0.78 0.66 0.90 0.58 - - 
 
1AN: trained on a Class A dataset and tested on a non-Class A dataset; NA: trained on a non-
Class A dataset and tested on a Class A dataset. Class A and non-Class A datasets included 
410 and 372 sequences, respectively. 

2Results obtained using w0.5 of the SAM package.  
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Table A2.3: Classifier performance for Class A within-family tests.1 

Methods Family2 Errors 
(FP/FN) 

Accu- 
racy 

Sensi- 
tivity 

Speci- 
ficity MCC MaxRFP MedRFP 

SAM AR 0 (0/0) 1 1 1 1 0 0 
SVM_pairwise AR 0 (0/0) 1 1 1 1 0 0 
SVM_AA(rbf) AR 19 (6.5/12.5) 0.91 0.80 0.96 0.78 0.49 0 
         
SAM PE 0 (0/0) 1 1 1 1 0 0 
SVM_pairwise PE 1.5 (1/0.5) 0.99 0.99 0.99 0.98 0.01 0 
SVM_AA(rbf) PE 25.5 (12/13.5) 0.89 0.81 0.92 0.73 0.54 0.01 
         
SAM OL 0 (0/0) 1 1 1 1 0 0 
SVM_pairwise OL 0 (0/0) 1 1 1 1 0 0 
SVM_AA(rbf) OL 6.5 (1/5.5) 0.98 0.96 0.99 0.96 0.06 0 
 
1Values shown are the average from two independent tests.  
2The Class A family dataset used to train and test each classifier. 
 
 
 
 
 
 
Table A2.4: Classification performance of GPCRHMM against various datasets. 1 

Datasets 
(no. samples) 2 

Errors 
(FP/FN) 

Accu- 
racy 

Sensi- 
tivity 

Speci- 
ficity MCC MaxRFP MedRFP 

Class A Training (410) 0 (0/0) 1 1 1 1 0 0 
Class A Test (410) 2 (0/2) 1.00 0.99 1 0.99 0.04 0 
Non-Class A (372) 4 (0/4) 0.99 0.98 1 0.98 0.03 0 

        
AR (126) 1 (-/1) 1.00 - - - - - 
PE (139) 1 (-/1) 1.00 - - - - - 
OL (309) 0 (-/0) 1 - - - - - 
N1 (158) 70 (-/70) 0.44 - - - - - 
N2 (158) 70 (-/70) 0.44 - - - - - 

 
1All statistics were obtained at MEP.  
2Class A and non-Class A datasets include both positive (GPCR) and negative (non-GPCR) 
samples (see Table 2.2). AR, PE, and OL datasets include only Class A GPCR samples, and 
N1 and N2 datasets include only non-Class A GPCR samples (see Table 2.4).  
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Chapter 3 
 
Mining the Arabidopsis thaliana Genome for Highly-

divergent Seven Transmembrane Receptors  
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3.0 Preface for Chapter 3 

In this chapter multiple protein classification methods, including both alignment-

based and alignment-free classifiers, were combined to identify divergent seven-

transmembrane receptor (7TMR) candidates from the Arabidopsis thaliana genome. 

Inclusion of both types of classifiers resolved problems in optimally training individual 

classifiers using limited and divergent samples, and increased stringency for candidate 

proteins. The methods included the ones I studied in the previous chapter as well as some 

new ones. I was involved in the training data preparation and prediction of candidate 7TMRs 

using profile hidden Markov models, and support vector machines with amino acid 

composition and dipeptide composition. We identified 394 proteins as 7TMR candidates and 

highlighted 54 with corresponding expression patterns for further investigation. This chapter 

has been published in: 
Moriyama, E. N., Strope, P. K., Opiyo, S. O., Chen, Z. and Jones, A. M. (2006) Mining the 

Arabidopsis thaliana genome for highly-divergent seven transmembrane receptors. Genome 

Biology 7: R96.  
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3.1 Background 

Seven-transmembrane (7TM)-region containing proteins constitute the largest 

receptor superfamily in vertebrates and other metazoans. These cell-surface receptors are 

activated by a diverse array of ligands, and are involved in various signaling processes such 

as cell proliferation, neurotransmission, metabolism, smell, taste, and vision. They are the 

central players in eukaryotic signal transduction. They are commonly referred to as G 

protein-coupled receptors (GPCRs) because most transduce extracellular signals into cellular 

physiological responses through the activation of heterotrimeric guanine nucleotide binding 

proteins (G proteins) [1]. However, an increasing number of alternative "G protein-

independent" signaling mechanisms have been associated with groups of these 7TM proteins 

[2-5]. Thus, for precision and clarity, we refer to these proteins simply as 7TM receptors 

(7TMRs), and candidate proteins in organisms greatly divergent to humans are designated 

here as 7TM putative receptors (7TMpRs).  

The human genome encodes approximately 800 or more 7TMR, both with known 

cognate ligands and without or so-called orphan GPCRs, thus, constituting >1% of the gene 

complement [6]. More than 1,000 genes or 5% of the Caenorhabditis elegans genome are 

predicted to encode 7TMRs; the majority of them appear to be chemoreceptors [7]. 

Approximately 300 7TMR-encoding genes (about 1-2% of the genome) have been 

recognized in the Drosophila melanogaster genome [6]. Compared to such large numbers of 

7TMRs found in animal genomes, very few 7TMpRs have been reported in plants and fungi. 

Only 22 Arabidopsis 7TMpRs have been described so far. Fifteen of them constitute the 

"mildew resistance O" (MLO) family, whose direct interaction with G-protein a subunit (Ga) 

has not been shown [8, 9]. While another 7TMpR, GCR1 [10], directly interacts with the 

plant Ga subunit GPA1 [11], it has been shown that GCR1 can act independently of the 
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heterotrimeric G-protein complex as well [2]. Hsieh and Goodman [12] recently reported 

five expressed proteins predicted to have 7 TM regions (heptahelical transmembrane proteins 

1-5 or HHP1-5) but these like the other 16 do not have candidate ligands. Finally, an unusual 

regulator of G signaling protein (AtRGS1) has been predicted to have 7 TM regions [13]. 

RGS proteins function as a GTPase activating protein (GAP) to de-sensitize signaling by de-

activating the Gα subunits of the heterotrimeric complex. Because Arabidopsis seedlings 

lacking AtRGS1 have reduced sensitivity to D-glucose [2, 13, 14], the possibility exists that 

AtRGS1 is a novel D-glucose receptor having an agonist-regulated GAP function. Although 

we designate them 7TMpRs here, it should be noted that neither a ligand nor a full signaling 

cascade has been demonstrated yet for any of these plant proteins and only for a barley MLO, 

the 7TM topology was experimentally confirmed [8]. 

None of the reported Arabidopsis 7TMpR proteins share substantial sequence 

similarity to known metazoan GPCRs constituting six different subfamilies. It appears that 

plant 7TMpRs dramatically diverged from known metazoan GPCRs over the 1.6 billion 

years since the plant and metazoan lineages bifurcated. It should be noted that Arabidopsis 

GCR1 shares weak but significant similarity to the cyclic AMP receptor, CAR1, found in the 

slime mold [2, 10, 15]. There is also very weak similarity to the Class B Secretin family 

GPCRs. However, other than GCR1, currently used search methods have not robustly 

identified plant 7TMpR proteins as candidate GPCRs. This great sequence divergence 

highlights the need for new approaches to identify divergent 7TMR candidates in non-

metazoan genomes.  

The human genome contains 16 Gα, 5 Gβ, and 12 Gγ genes. In stark contrast, both 

fungi and plants have much simpler G-protein coupled signaling systems. For example, the 

Arabidopsis genome contains one canonical Gα, one Gβ, and two Gγ genes [16]. Similarly a 
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small number of G-proteins are found in fungi; there are two Gα, one Gβ, and one Gγ in 

Saccharomyces cerevisiae [17-19] while Neurospora crassa and some fungi have more of 

each subunit genes [20-22]. Therefore, it may be reasonable to assume that plants and fungi 

have fewer GPCRs than human, and while ~200 Arabidopsis proteins were predicted to have 

7 TM regions, sequence divergence precludes unequivocal assignment of any as an orphan 

GPCR [23]. However, at least 61 7TMpRs have been recently predicted from the plant 

pathogenic fungus Magnaporthe grisea genome [24], raising the possibility that more 

divergent groups of 7TMpR proteins likely remain undiscovered in non-metazoan taxa. 

 

In this report, we describe our comprehensive computational strategy for identifying 

7TMpR candidates from the entire protein sequence set predicted from the A. thaliana 

genome, and compile their tissue-specific expression and co-expression patterns with G-

proteins. In order to take advantage of different approaches, we combined multiple protein 

classification methods including more specific (conservative) alignment-based classifiers and 

more sensitive alignment-free classifiers to predict candidate 7TMpRs in divergent genomes 

more effectively.  

 

3.2 Results and Discussion 
 

3.2.1 Identifying 7TMpR candidates using various protein classification 

methods 

Among many protein classification methods commonly used, the current state-of-the-

art and most used is the profile hidden Markov models (profile HMMs) [25]. It is used to 

construct protein family databases such as Pfam [26], SMART [27], and Superfamily [28]. 
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However, profile HMMs and other currently used classification methods such as 

PROSITE [29] and PRINTS [30] share an important weakness. These methods rely on 

multiple alignments for generating their models (patterns, profile HMMs, etc.). Generating 

robust multiple alignments is difficult or impossible when extremely diverged sequences are 

included in the analysis. 7TMRs are one such protein family whose sequence similarities 

between subgroups can be lower than 25%. Furthermore, alignments are generated only from 

known related proteins (positive samples), and therefore no information from negative 

samples (unrelated protein sequences) is directly incorporated in the model building process. 

Identifiable “hits” are therefore constrained by initial sampling bias, which becomes 

reinforced when models are iteratively rebuilt from accumulated sequences. Consequently 

the predictive power, especially the sensitivity, of these classifiers decreases when they are 

applied against extremely diverged protein families.   

In order to overcome this disadvantage and to increase sensitivities against such non-

alignable similarities, several alignment-free methods have been proposed recently. These 

methods quantify various properties of amino acid sequences and convert them into a 

descriptor array. Once multiple sequences with different lengths are transformed into a 

uniform matrix, various multivariate analysis methods can be applied. Kim et al. [31] and 

Moriyama and Kim [32] used parametric and non-parametric discriminant function analysis 

methods. Karchin et al. [33] incorporated profile HMMs with support vector machines 

(SVMs) using the Fisher kernel (SVM-Fisher) so that negative sample information can be 

taken into account when training the classifier. SVMs can be applied with completely 

alignment-free sequence descriptors, e.g., amino acid and dipeptide compositions. Such 

alignment-free classifiers are shown to outperform profile HMMs as well as Karchin et al.'s 

SVM-Fisher [34; Strope and Moriyama submitted]. Another multivariate method, partial 
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least squares (PLS) regression, was used by Lapinsh et al. [35] with physico-chemical 

properties of amino acids. We recently re-evaluated the descriptors used with PLS and 

optimized them to discriminate 7TMRs from other proteins [Opiyo and Moriyama 

submitted].  

 

We applied these methods against the entire predicted protein sequence set derived 

from the Arabidopsis thaliana genome. As shown in Table 3.1, among the 28,952 protein 

sequences, SAM, a profile HMM method, predicted only 16 (excluding one alternatively 

spliced gene sequence) as 7TMpR candidates. Fifteen of them are identified as MLO or 

similar to MLO and one as GCR1 in The Arabidopsis Information Resource (TAIR) [36]. It 

clearly shows that SAM is highly specific (discriminating) with no false positive assuming 

that current annotations are correct. SAM failed to identify only one known MLO (MLO4: 

At1g11000). This protein as well as AtRGS1 and five recently-predicted 7TM proteins 

(HHP1-5) were of the 16 previously-predicted Arabidopsis 7TMpRs not included in the 

randomly sampled 500 7TMR training sequences (see Materials and methods). Thus, we 

concluded that the predictive power of SAM alone is insufficient to identify highly diverged 

and potentially novel 7TMpR sequences.  

The results obtained by SAM were compared with those by alignment-free methods. 

As shown in Table 3.1, alignment-free methods (LDA, QDA, LOG, KNN, SVM-AA, SVM-

di, and PLS-ACC) predicted 2,000 – 3,400 proteins as 7TMpR candidates, which is about 

10% of the entire predicted Arabidopsis proteome and about 30-50% of the all possible 

transmembrane proteins (6,475 proteins) [23]. These alignment-free methods clearly call 

many false positives, and need further optimization to improve their discrimination power.  
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One advantage of alignment-free methods to be noted is their sensitivity against 

short or partial sequences [31, 32]. Many of the 28,952 protein sequences used in this study 

are based only on ab-initio gene prediction results, and hence are likely to contain various 

types of errors. If only a part of a 7TMR protein is predicted correctly, alignment-free 

methods could have a better chance to identify it. 

Table 3.1 lists Arabidopsis proteins that were predicted to have 5-10 transmembrane 

regions and bins them by the number of transmembrane regions. Two hundred and one 

proteins were predicted by HMMTOP 2.0 [37] to have 7 TM regions. This number is close to 

a previous prediction (184 proteins) [23]. We should note, however, that no single method 

predicts exactly 7 TMs from all known 7TMRs (see Materials and methods). As mentioned 

above, it is also possible that some deduced Arabidopsis proteins we analyzed do not contain 

the entire coding region correctly. 952 Arabidopsis proteins were predicted to have five to 

nine TM regions. Based on the distribution of predicted TM numbers obtained from the 

entire GPCRDB entries, this range (5-9 TMs) could cover almost all of 7TMR candidates 

(99.1%; see Figure 3.1 and Materials and methods). The 22 previously-predicted Arabidopsis 

7TMpRs were predicted to have seven to ten TM regions (Figure 3.1). If we extend the range 

to 5-10 TMs, the number of Arabidopsis 7TMpR candidates becomes 1,179 proteins. 

 

3.2.2 Choosing 7TMpR candidates by combining prediction results  

Among the ten alignment-free classifiers, LOG misclassified seven previously-

predicted Arabidopsis 7TMpRs. KNN with K set at 5, 10, and 15 missed one, while KNN 

with K set at 20 classified them all correctly (See Materials and methods on KNN). In order 

to reduce the number of false positives (non-7TMRs predicted as 7TMRs) as well as false 

negatives (7TMRs predicted as non-7TMRs) and to obtain a set of 7TMpR candidates with 
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higher confidence, we examined combinations of the prediction results by the remaining 

six alignment-free methods (LDA, QDA, KNN with K=20, SVM-AA, SVM-di, and PLS-

ACC). 652 proteins were predicted as 7TMpR candidates by all six methods (by choosing the 

strict intersection). Using the number of predicted TM regions to be 5-10, 394 (342 after 

removing duplicated entries due to alternative splicing) proteins were identified as 7TMR 

candidates. These Arabidopsis proteins are listed in Additional data file 1 

(http://genomebiology.com/2006/7/10/R96/additional). Twenty of the 22 previously-

predicted 7TMpRs were found in this list. Although HHP4 and HHP5 were not included in 

this list, both were identified by two of the alignment-free methods: KNN and SVM-AA. 

Note that RGS1 and five HHP (as well as nine MLO and GCR1) sequences were excluded 

from the training set, and these six were not identified as candidate 7TMpRs by SAM.  

A further restriction to protein topology of exactly 7 TM regions and an N-terminus 

located extracellularly reduced the candidate number to 64 (54 excluding duplications due to 

alternative splicing). This set included nine of the 22 previously-predicted 7TMpRs. These 

54 7TMpR candidates are the first targets for our further analysis and are summarized in 

Table 3.2 (also listed in Additional data file 2 

http://genomebiology.com/2006/7/10/R96/additional). Eighteen are described as simply 

“expressed proteins” in the TAIR database (except for AT3G26090, which encodes RGS1). 

Interestingly, one of them (AT5G27210) is known to have weak similarity to a mouse orphan 

7TMR. While others are known to belong to certain protein families (e.g., nodlin MtN3 

family), in many cases, their molecular functions have not identified, and further 

investigation on these 7TMpR candidates is warranted.  

The 54 proteins were grouped into families based on similarities to known protein 

sequences. Eight of the 54 7TMpR candidates, including GCR1 and RGS1, are encoded by 
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single copy genes. In addition to the 7 MLO proteins identified, there are 8 nodulin MtN3 

family members, 2 proteins of an unnamed family consisting of 6 expressed proteins, as well 

as multiple (2-3) members from smaller gene families (<=5). All members of the TOM3 

family and the Perl1-like family, as well as the majority of the GNS/SUR4 family and an 

unnamed family consisting of 5 expressed proteins (expressed protein family 2) were 

included in the list. The identification of multiple members from these gene families using 

our alignment-free methods supported the consistency of this approach. However, for most of 

these families, not all members were found. Additionally, 8 single representatives of small 

protein families consisting of 2-5 members and 4 single representatives of large protein 

families were found in the list. Some of these proteins, especially those from large protein 

families, may represent false positives as 7TMpR candidates. This 7TMR mining method can 

be refined, for example, by re-training models as well as using more flexible hierarchical 

classification. 

The five predicted heptahelical proteins (HHP1-5) reported by Hsieh and Goodman 

[12] were identified by sequence similarity to human adiponectin receptors (AdipoRs) and 

membrane progestin receptors (mPRs) that share little sequence similarity to known GPCRs. 

HHP1- 3 were identified in our initial list of 394 but were culled from the final list of 54 

Arabidopsis 7TMpR candidates. This is because HMMTOP predicted HHP1, 2, 4, and 5 to 

have 7 TMs with the intracellular N-termini in contrast to known GPCRs. This unusual 

structural topology was also found in AdipoRs [12, 38]. HHP3 had 8 predicted TM regions. 

Eight of the 15 MLO proteins were also predicted to have 8-10 TM regions by HMMTOP 

(Figure 3.1). Recently, Benton et al. [39] experimentally showed that Drosophila odorant 

receptors, another extremely diverged 7TMR family, have intracellular N-termini. Among 

our 394 candidate list, 23 proteins were predicted to have 7 TM regions with intracellular N-



  84 
termini (Additional data file 1 http://genomebiology.com/2006/7/10/R96/additional). 

Therefore, we consider these 54 as a minimum working set of 7TMpR candidates, and many 

of the other proteins included in the list of 394 should be examined in the second stage.  

 

3.2.3 Expression patterns of genes encoding the 7TMpR candidates and G-

protein subunits 

 
 We utilized the Meta-Analyzer server of Genevestigator web site to study spatial 

expression patterns of Arabidopsis genes encoding the 7TMpR candidates and G-protein 

subunits. Note that the expression of MLO genes were not included in this analysis since we 

reported them recently [40]. As is shown in Figure 3.2, expression patterns of analyzed 

7TMpR candidates can be divided into two major groups; about half of them show distinct 

tissue specificity, whereas the other half either exhibit less distinct expression patterns or 

display ubiquitous expression. All genes encoding G-protein subunits fall into the latter 

major group. Ubiquitous expression of genes encoding G-protein subunits allows overlap 

with genes in both groups, and makes, in principle, co-functioning of G-proteins with these 

7TMpR candidates spatially and temporally possible. All 8 genes encoding the MtN3 family 

proteins appear to have distinct tissue specific expression. Among them, At3g48740 and 

At4g25010 have the highest sequence similarities to At5g23660 and At5g50800, 

respectively. Both pairs of genes share similar or overlapping expression patterns, suggesting 

relatedness/similarity of their functions. Confirming the actual functions of the 7TMpR 

candidates as GPCRs requires further extensive testing. A possible involvement of these 

candidate proteins in "G protein-independent" signaling mechanisms also needs to be 

explored. 
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3.3 Conclusions 
 

We showed that the profile HMM protein classification method, currently one of the 

most used, is overly specific (conservative) when applied to extremely diverged 7TMpR 

proteins. Our premise is that there are more 7TMpRs yet to be identified in the A. thaliana 

and other genomes divergent to humans. The limitations were that the lack of available 

samples limits the effectiveness of profile HMM methods, and while alignment-free methods 

are more sensitive, they have high rates for false positives. The candidate 7TMpR proteins 

provided in this study, for example, can be included to expand the training set and re-

iteration using refined training sets can be done in order to reduce false positive rates. 

However, this is possible only after these new candidates are confirmed as true positives 

experimentally.  

The strategy we described here overcomes the “chicken-or-egg”; predictions by 

multiple protein classification methods and the number of predicted transmembrane regions 

were used to identify more likely and reduced number of 7TMR candidates. By setting up 

various methods as hierarchical multiple filters, one can prioritize target protein sets for 

further experimental confirmation of their functions.  

 

3.4 Materials and methods 
 

3.4.1 Arabidopsis protein data 

28,952 protein sequences were downloaded from The Institute for Genomic Research 

(TIGR; Arabidopsis thaliana Database Release 5, dated on June 10, 2004) [41]. Among the 

28,952 proteins, 2,760 are derived from alternative splicing.  
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3.4.2 Training data preparation for protein classification 

 
Positive training samples (known 7TMR sequences) were obtained from GPCRDB 

(Information System for G Protein-Coupled Receptors, Release 9.0, last updated on June 28, 

2005) [6]. In the GPCRDB, 2,030 7TMRs (originally collected from the Swiss-Prot protein 

database) were grouped into six major classes (Classes A - E plus the Frizzled/Smoothened 

family) and six putative families (ocular albinism proteins, insect odorant receptors, plant 

MLO receptors, nematode chemoreceptors, vomeronasal receptors, and taste receptors). Five 

hundred 7TMR sequences were randomly sampled and used as the positive samples. Note 

that "putative/unclassified" (orphan) 7TMRs and bacteriorhodopsins were not included in 

this dataset. These 500 7TMRs included six of the15 known Arabidopsis MLO proteins. 

Among the 22 currently known Arabidopsis 7TMpRs, in addition to the nine MLO proteins, 

GCR1 as well as six recently identified Arabidopsis 7TMpRs (AtRGS1 and HHP1-5; 

GPCRDB does not list these proteins) were not included in the random 500 7TMR samples. 

Note that the 15 Arabidopsis 7TMpRs not included in the training set can be used to assess 

the classifier performance as test cases. 

For negative samples, 500 non-7TMR sequences longer than 100 amino acids were 

randomly sampled from the Swiss-Prot section of the UniProt Knowledgebase [42]. The 

average length of the 500 non-TMR sequences was 401 amino acids (with the maximum 

length of 2,512 amino acids). Positive and negative samples were combined to create a 

training dataset. Note that only positive samples were used to train the profile HMM 

classifier, SAM (see below). 
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3.4.3 Protein classification methods used 

 
One alignment-based method (profile HMM) and four types of alignment-free 

multivariate methods were included in our analysis. 

 

Profile hidden Markov models (profile HMMs). Profile HMMs are full probabilistic 

representation of sequence profiles [25]. Sample sequences need to be alignable, and thus 

only positive samples can be used for training. Two programs in Sequence Alignment and 

Modeling System (SAM version 3.4) [43] were used: buildmodel to build profile HMMs with 

the nine-component Dirichlet mixture priors [44], and hmmscore to calculate scores and e-

values. The ‘calibration’ option (for more accurate e-value calculation) and the fully local 

scoring option (-sw 2) were used. The e-value threshold was set at 0.01 for choosing 7TMR 

candidates. 

 
Discriminant function analysis. In Moriyama and Kim [32], we described three parametric 

(linear, quadratic, logistic) and nonparametric K-nearest neighbor methods that performed 

better than the profile HMM method. Therefore, we included these four alignment-free 

methods (LDA, QDA, LOG, and KNN) in our analysis. For KNN, K was set at 5, 10, 15, or 

20, where K is the number of neighbors. The four variables used (amino acid index and three 

periodicity statistics) were described in Kim et al. [31]. S-PLUS statistical package 

(Insightful Corporation, version 6.1.2 for Linux) with the MASS module [45] was used for 

the classifier development. 

 

Support vector machines with amino acid composition (SVM-AA). Support vector 

machines (SVMs) are learning machines that make binary classifications based on a 
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hyperplane separating a remapped instance space [46]. A kernel function can be chosen so 

that the remapped instances on a multidimensional feature space are linearly separable. The 

radial basis kernel, exp(-g||x-y||2), was used in this study. The parameter g was set to 102 

based on the median of Euclidean distances between positive examples and the nearest 

negative example as described in Jaakkola et al. [47]. Simple 19 amino acid frequencies (the 

20th amino acid frequency can be explained completely by the other 19) of each protein 

sequence were used as an input vector for SVMs. Programs svm_learn and svm_classify of 

the SVMlight package version 5.0 [48] were used for training and classification by SVM, 

respectively. The default value of the regulatory parameter C (0.5006) was used with svm-

learn. Our comparative analysis showed that SVM-AA performs better than profile HMMs 

when they are applied to remote similarity identification, the same problem we deal with in 

this study (Strope and Moriyama submitted). 

 

Support vector machines with dipeptide composition (SVM-di). We also included an 

SVM classifier with dipeptide composition following Bhasin and Raghava [34]. The SVMlight 

package version 5.0 [48] were used for training and classification as before. The regulatory 

parameter C=1 and the radial basis kernel function parameter g=90 were chosen by the grid 

analysis using 5-fold cross-validation. 

 

Partial least squares with amino acid properties (PLS-ACC). Partial least squares (PLS) 

regression is a projection method that takes into account correlations between independent 

and dependent variables [49]. We used the pls.pcr package, an R implementation developed 

by Ron Wehrens [50], with the SIMPLS method, four latent variables, and cross-validation 

options. Each amino acid in the protein sequences was first converted to a set of five 
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principal component scores developed from twelve physico-chemical properties. The 

auto/cross covariance (ACC) method developed by Wold et al. [51] was then applied to each 

of the converted sequences. ACC describes the average correlations between two residues a 

certain lag (amino acids) apart. The lag size of 30 was chosen for optimal classification 

performance. We found that the performance of PLS-ACC is robust even when only a small 

number of positive samples (5 or 10) are available for training. In contrast, the performance 

of profile HMMs suffered extremely when positive sample size was small. The twelve 

physico-chemical properties used and more details on the use of PLS in protein classification 

are described elsewhere (Opiyo and Moriyama submitted). The cutoff value of 0.4999 was 

used for choosing 7TMR candidates in this study, which was determined as the average of 

the minimum error points [33] obtained from 500 replications of 10-fold cross-validation 

analysis using the training dataset.  

 

3.4.4 Transmembrane region prediction 

HMMTOP 2.0 [37] and TMHMM [originally 52, implemented as S-TMHMM by 53] 

were used for predicting transmembrane regions. Figure 3.1 shows the numbers of TM 

regions predicted by the two methods for the 500 7TMR sequences used for classifier 

training. HMMTOP predicted 7 TMs from 433 7TMRs (86.6%), while only 165 7TMRs 

(33%) were predicted to have 7 TMs by TMHMM. HMMTOP predicted 97% or more of 

7TMRs to have 6-8 TMs, and with 5-9 TMs more than 99% of 7TMRs were included. Using 

TMHMM, in order to include 97% of 7TMRs, the range of predicted TM numbers needs to 

be between 4 and 10. Therefore, we decided to use HMMTOP in our further analysis. With 

HMMTOP using the range of 5-9 TMs, we should be able to cover almost all possible 7TM 

proteins. 
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3.4.5 Grouping of the candidate proteins 

 
The candidate proteins were grouped based on the e-values obtained by BLASTP 

protein similarity search [54] against the Arabidopsis protein database using the default 

parameter set (e.g., BLOSUM62) at the Arabidopsis Information Resource (TAIR) web site 

[55]. The e-value threshold of 10-20 was used to identify protein families similar to the 

candidate proteins.  

 

3.4.6 Expression patterns of genes encoding 7TMR candidates and G-

protein subunits 

Expression patterns of genes encoding 7TMpR candidates and G-protein subunits 

among tissues was studied by using the Meta-Analyzer server of the Genevestigator web site 

(last updated in Nov. 2005) [56]. All data were generated using the 22K Affymetrix ATH1 

Arabidopsis Genome array. Gene expression profiles based on microarray data were 

clustered according to similarity in expression patterns. Hierarchical clustering results were 

generated by default settings using pairwise Euclidean distances and the average linkage 

method.  
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Table 3.1. Numbers of 7TMpR candidates identified by various methods from the A. 
thaliana genome 

Methods Numbers of 7TMpR candidates 1 
HMMTOP  (7TMs) 2 

 (6-8 TMs) 2 
 (5-9 TMs) 2 

 (5-10 TMs) 2 

236 (201) 
633 (545) 

1,091 (957) 
1,343 (1,179) 

SAM 16 (15) 
LDA 3,211 (2,935) 
QDA 2,006 (1,820) 
LOG 2,626 (2,394) 
KNN (K=5) 3,125 (2,839) 
KNN (K=10) 3,202 (2,906) 
KNN (K=15) 3,298 (3,004) 
KNN (K=20) 3,347 (3,043) 
SVM-AA 2,263 (2,043) 
SVM-di 2,004 (1,807) 
PLS-ACC 2,671 (2,466) 

 
1The numbers in parentheses show 7TMpR candidates after removing proteins derived from 
alternative splicing. 

2The numbers of TM regions predicted by HMMTOP. 
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Table 3.2. Summary of the 54 7TMpR candidates identified in this study1 

 Groups2 TAIR locus IDs 
[Multiple members from gene families]  
 Nodulin MtN3 family proteins (8/17) At1g21460, At3g16690, At3g28007, 

At3g48740, At4g25010, At5g13170, 
At5g23660, At5g50800 

 MLO proteins (7/15) At1g11000 (MLO4), At1g26700 (MLO14), 
At1g42560 (MLO9), At2g33670 (MLO5), 
At2g44110 (MLO15), At4g24250 (MLO13), 
At5g53760 (MLO11) 

 Expressed protein family 1 (2/6) At1g77220, At4g21570 

 GNS1/SUR4 membrane family proteins 
(3/4) 

At1g75000, At3g06470, At4g36830  

 Perl1-like family protein (2/2) At1g16560, At5g62130 

 TOM3 family proteins (3/3) At1g14530, At2g02180, At4g21790 

 Expressed protein family 2 (3/5) At1g10660, At2g47115, At5g62960 

 Expressed protein family 3 (2/4) At3g09570, At5g42090 

 Expressed protein family 4 (2/5) At1g49470, At5g19870 

 Expressed protein family 5 (2/5) At3g63310, At4g02690 

  
Single copy genes (8) At1g48270 (GCR1), At1g57680, At2g41610, 

At2g31440, At3g04970, At3g26090 (RGS1), 
At3g59090, At4g20310 

Single member from small gene families (8) At2g01070, At3g19260, At2g35710, 
At2g16970, At1g15620, At1g63110, 
At4g36850, At5g27210 

Single member from big gene families (4) At1g71960, At3g01550, At5g23990, 
At5g37310 

 
1See Additional data file 2 (http://genomebiology.com/2006/7/10/R96/additional) for more 
detailed information. 
2The number of candidates identified in this study belonging to each group is shown in 
parentheses (the number of all proteins in each group is given after '/'). 



  100 

100

200

300

400

0 1 2 3 4 5 6 7 8 9 10

97.6 (97.1)

99.8 (99.1)

Number of TMs

C
ou

nt
s

HMMTOP

TMHMM
13

3
4 2

Figure 3.1. Distribution of transmembrane numbers predicted by HMMTOP (black 
bars) and TMHMM (gray bars) from the 500 7TMR sample sequences. Proportions 
(%) of the proteins predicted to have 6-8 and 5-9 TMs by HMMTOP are shown at 
the top. The percentages shown in parentheses were obtained from the entire 7,674 
7TMR dataset in GPCRDB. The numbers shown on the top of black bars are the 
number of the previously-predicted 22 Arabidopsis 7TMpR proteins. 
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Figure 3.2. Expression patterns of Arabidopsis genes encoding 7TMpR candidates 
and G-protein subunits among tissues. The figure was modified from an output of the 
Meta-Analyzer of Genevestigator (last updated in Nov. 2005), which illustrates 
expression levels of each gene in different organs. Relative expression levels of a gene 
in different organs/tissues are given as heat maps in blue-scale coding that reflects 
absolute signal values, where darker colors represent stronger expression. All gene-
level profiles are normalized for coloring such that for each gene the highest signal 
intensity obtains value 100% (shown in the darkest blue and marked with *) and 
absence of signal obtains value 0 % (shown in white). Probe-sets of five 7TMpR 
candidates (At1g15620. At1g75000, At4g21570, At4g36850, and At5g23990) were 
not present in the 22K chip, and therefore their tissue-specific expression could not be 
assessed. For At2g35710, two probe-sets (265797_ata and 265841_atb) were designed 
on the chip. Gene names for those belonging to the MtN3 family are shown in 
boldface and marked with *. Genes encoding G-protein subunits (AGB1, GPA1, 
AGG1, and AGG2) as well as two reported 7TMpRs (RGS1 and GCR1) are labeled 
accordingly in boldface. 
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Chapter 4  

Molecular evolution of urea amidolyase and urea 

carboxylase in fungi 
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4.0 Preface to Chapter 4 

In this chapter, I studied the molecular evolution of related multi-domain protein 

families: urea amidolyase and urea carboxylase in both eukaryotes and prokaryotes. Urea 

amidolyase contains two major domains: the amidase and urea carboxylase domains. A 

shorter form of urea amidolyase is known as urea carboxylase and has no amidase domain. In 

order to elucidate the evolutionary origin of urea amidolyase and urea carboxylase, we 

studied the distribution of these enzymes across kingdoms. Phylogenetic analysis showed 

that these two enzymes appeared to have gone through independent evolution since their 

bacterial origin. The amidase domain and the urea carboxylase domain sequences from 

fungal urea amidolyases clustered strongly together with the amidase and urea carboxylase 

sequences, respectively, from a small number of beta- and gammaproteobacteria. On the 

other hand, fungal urea carboxylase proteins clustered together with another copy of urea 

carboxylases distributed broadly among bacteria. We concluded that the urea amidolyase 

genes currently found only in fungi are the results of a horizontal gene transfer event from 

beta-, gamma-, or related species of proteobacteria. Urea carboxylase genes currently found 

in fungi and other limited organisms were also likely derived from another ancestral gene in 

bacteria. Our study presented another important example showing plastic and opportunistic 

genome evolution in bacteria and fungi and their evolutionary interplay. This study has been 

published in: 

Strope, P. K., Nickerson, K. W., Harris, S. D. and Moriyama, E. N. (2011) Molecular 

evolution of urea amidolyase and urea carboxylase in fungi. BMC Evolutionary Biology 11: 

80.  
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4.1 Background 

Fungi exhibit great metabolic flexibility in the diversity of carbon and nitrogen 

sources they can use.  We have been especially interested in their nitrogen sources, most 

recently urea [1, 2].  In a previous study [1], a dichotomy was observed with regard to urea 

utilization in fungi. Hemiascomycetes (yeasts and yeast-like fungi; the majority belongs to 

the class Saccharomycetes of the phylum Ascomycota) possess the urea amidolyase 

(DUR1,2; Degradation of URea) genes whereas all other fungi examined possess the nickel-

containing urease sequences.  Urea amidolyase is an energy dependent biotin-containing 

enzyme.  It is encoded by the DUR1,2 gene and was first characterized in the yeast Candida 

utilis, now known as Pichia jadinii [3]. The activity of this enzyme was also detected in 

green algae such as Asterococcus superbus and Chlamydomonas reinhardii. Urease and urea 

amidolyase activities were not observed together in the same green algal species; it was 

either one or the other [4, 5].  This cytoplasmic, biotin-dependent enzyme [6] consists of a 

single polypeptide chain with regions for urea carboxylase (EC 6.3.4.6) and allophanate 

hydrolase (also known as amidase; EC 3.5.1.54) activity. Two adjacent genes (DUR1 and 

DUR2) were originally considered to encode the two enzymes; but later they were renamed 

as a single gene, DUR1,2 [7]. 

Urea amidolyase breaks down urea into ammonia and carbon dioxide in a two-step 

process, while urease (EC 3.5.1.5) does this in a one-step process [1] as shown in the 

following equations: 

[Urea carboxylase]  urea + ATP + HCO3
- → allophanate + ADP + Pi  (i) 

[Allophanate hydrolase (amidase)] allophanate → 2NH3 + 2CO2 (ii) 

[Urease] urea → 2NH3 + CO2  (iii) 
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 There are two forms of urea amidolyase proteins. Figure 4.1 shows the domain 

structure of urea amidolyase and related proteins. A shorter form of urea amidolyase is 

known as urea carboxylase, and has no amidase domain attached to it. This protein is found 

in several fungal species [1], green algae [8], and has been also characterized in bacteria [9].  

The urea carboxylase protein (as well as the domain) is further divided into sub-

domains: the biotin-carboxylation domain, allophanate hydrolase subunit 1 (AHS1) domain, 

allophanate hydrolase subunit 2 (AHS2) domain, and the biotin-lipoyl domain (Figure 4.1). 

The function of the AHS1 and AHS2 domains is still unknown.  The biotin-carboxylation 

domain and the biotin-lipoyl domain of urea carboxylase are commonly found in various 

other carboxylases including pyruvate carboxylase (Pyc), methylcrotonoyl-CoA carboxylase 

(MccA), acetyl-CoA carboxylase (Acc1), and propionyl-CoA carboxylase (PccA) [10]. 

 In Navarathna et al. [1], we suggested that urea amidolyase likely arose before the 

divergence of the hemiascomycetes and the euascomycetes (filamentous fungi; the 

subphylum Pezizomycotina of the phylum Ascomycota), c. 350 - 400 million years ago, by 

insertion of a gene encoding allophanate hydrolase into a methylcrotonyl CoA carboxylase 

(mccA) gene, thus creating DUR1,2 and inactivating mccA.  This suggestion was made 

because of the corresponding dichotomies: the hemiascomycetes have DUR1,2 but do not 

have mccA whereas the rest of the fungi have both urease and mccA [1].  The present paper 

investigates the evolutionary origin of DUR1,2, the urea amidolyase gene, more thoroughly. 

We studied the distribution of urea amidolyase, urea carboxylase, and urease proteins in 

various species across all kingdoms, and biotin-carboxylation domain containing proteins, 

i.e., Acc1, Pyc, PccA, and MccA, in various fungal species. Contrary to our previous 

speculation, an ancestral urea amidolyase gene likely arose in bacteria and then appeared in 

the fungal lineage before the divergence of the subphyla Pezizomycotina and 
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Saccharomycotina by prokaryote-to-eukaryote horizontal gene transfer. There have been 

studies indicating such bacteria-to-fungi horizontal transfers [e.g., 11, 12-15]. Our study adds 

yet another important example showing evolutionary interplays between bacteria and fungi 

and how plastic and opportunistic the fungal genome evolution can be. 

 

4.2 Results and Discussion 

4.2.1 Urea amidolyase is unique to the kingdom fungi among eukaryotes  

We have previously shown that long and short forms of urea amidolyase are present 

in fungi [1]. The urea amidolyase protein of the yeast Saccharomyces cerevisiae (phylum 

Ascomycota; subphylum Saccharomycotina) is 1,835 amino acids (aa) long. As shown in 

Figure 4.1, the first 632-aa region in the N-terminus of the protein consists of the amidase 

domain. The remainder of the sequence is the urea carboxylase domain, which consists of 

four smaller sub-domains. As mentioned before, the shorter form of urea amidolyase lacks 

the amidase domain and the urea carboxylase domain exists as a whole protein. This urea 

carboxylase sequence (1,241 aa) has been identified from a filamentous fungus Aspergillus 

nidulans (phylum Ascomycota; subphylum Pezizomycotina). Using these protein and domain 

sequences, we first examined if these two forms of urea amidolyase exist in eukaryotes 

outside of the fungal kingdom.  

As shown in Table 4.1 (see also Table A4.1), urea amidolyase is absent in non-fungal 

eukaryotic genomes we examined. Blastp similarity search against the NCBI non-redundant 

(nr) database also showed no sequence similar to urea amidolyase from any other eukaryotic 

species. However, urea carboxylase and amidase genes are present in all four green algae we 

examined. In three of the four green algae, the amidase genes are located near the urea 
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carboxylase genes but not adjacent to them. The distance between these two genes ranged 

from 588 to 6,236 bp in these green algae (see Table A4.2). The absence of urea amidolyase 

gene but the presence of urea carboxylase and amidase genes in C. reinhardtii suggests that 

the activity of urea amidolyase seen previously in this species [3-5] is not due to the urea 

amidolyase protein but the combined activity of urea carboxylase and amidase proteins. 

Although we did not find sequences similar to urea carboxylase from any of the metazoan 

genomes we examined, similarity search against NCBI nr database turned up two sequences 

from Hydra (Hydra magnipapillata). One of them, however, was found actually to be a 

sequence of a putative bacterial symbiont. These Hydra sequences are discussed further later. 

No amidase sequence was found from Hydra or any other eukaryotes other than fungi and 

green algae.  

Urease was found in both plant genomes we examined: Arabidopsis thaliana (a dicot) 

and Oryza sativa (a monocot). Similarity search against NCBI nr database also showed a 

wide distribution of urease in higher plants. While none of the green algal genomes we 

examined had urease (Table 4.1), it was identified in distantly related and more ancestral 

types of green algae (Ostreococcus and Micromonas) by searching against NCBI nr database. 

On the other hand, in metazoa, urease was found only in a limited number of genomes. In 

addition to Nematostella vectensis (a sea anemone, Table 4.1), only three metazoan urease 

sequences were found in the NCBI nr database (from Strongylocentrotus purpuratus, 

Branchiostoma floridae, and Ixodes scapularis). These observations are not consistent with 

what we observed earlier in fungi, where all fungi that lack urea amidolyase seemed to 

possess urease ([1]; also described next).  
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4.2.2 Distribution of urea amidolyase and other related proteins among 

fungi 

We searched 64 fungal genomes for urea amidolyase, urea carboxylase, and amidase. 

For selected 27 fungal genomes, we further searched urease as well as proteins that share the 

biotin-carboxylation and the biotin-lipoyl domains (Acc1, Pyc, MccA, and PccA proteins; 

see Figure 4.1). These searches were conducted to examine the earlier hypothesis of 

Navarathna et al. [1] that the fungal urea amidolyase may have been formed by the extension 

of a biotin carboxylation gene that was already present in fungi.  

Our search results are summarized in Tables 4.2 and A4.3 (see also Tables A4.4 and 

A4.5). The results are also mapped on the current consensus of the fungal phylogeny [16, 17] 

in Figure 4.2.  Among the fungi we examined, only the class Sordariomycetes (subphylum 

Pezizomycotina; except for Neurospora crassa and its close relative in the order Sordariales) 

and the class Saccharomycetes (subphylum Saccharomycotina) had the urea amidolyase 

sequences. In one species, Yarrowia lipolytica, there were two copies of urea amidolyase. 

Urea carboxylase was found in many but not all of the species in the Pezizomycotina while 

being completely absent from the Saccharomycotina. Interestingly, except for Fusarium 

graminearum (known also as Gibberella zeae), the species belonging to the order 

Hypocreales (Nectria, Fusarium, and Trichoderma) had both the urea carboxylase and the 

urea amidolyase sequences. Many of these species are found in soils and associated with 

plants [18-20]. Dothideomycetes species did not have urea amidolyase, but many contained 

amidase as well as urea carboxylase sequences. However, the location of these two genes 

(amidase and urea carboxylase) was not near each other in their genomes. They were located 

in different scaffolds or supercontigs (see Table A4.2).  
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Consistent with the earlier observation [1], the urease protein was present in all 

the fungal species examined except for those of the Saccharomycotina. Two species (F. 

graminearum and F. oxysporum) had two copies of this protein. Previously only two 

Sordariomycetes species (Magnaporthe oryzae, previously known as M. grisea, and F. 

graminearum) were observed to possess both of urease and urea amidolyase. We now 

confirmed that all Sordariomycetes species except for N. crassa and closely related species 

have both of these enzymes.  

Why do the Saccharomycetes species use the energy-dependent, biotin-containing 

urea amidolyase system and abandon the urease that accomplishes the same overall reaction 

in a simpler process? This question becomes even more germane when we consider that all 

strains of C. albicans are biotin auxotrophs [21], and it has long been known that 2 to 4 times 

as much biotin is required for maximum growth of S. cerevisiae on urea, allantoic acid, or 

allantoin as sole nitrogen sources [22].  However, the dichotomy in distribution of urease and 

urea amidolyase among some fungal lineages coincides precisely with that for the Ni/Co 

transporter (Nic1p), which is present in those fungi that use urease and absent in those that do 

not [23].  In Navarathna et al. [1], we suggested that the selective advantage of using urea 

amidolyase over using urease is that it allowed the Saccharomycetes species to jettison all 

Ni2+ and Co2+ dependent metabolisms and thus to have two fewer transition metals whose 

concentrations need to be regulated. However, while reasonable for the Saccharomycetes, 

such selective advantages may not be great enough to abandon the use of urease particularly 

in the Sordariomycetes species. Further investigation is needed to elucidate whether retaining 

two types of urea degradation enzymes in the Sordariomycetes species is in fact selectively 

advantageous rather than redundant. 
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We also examined the distribution of biotin-carboxylation domain containing 

enzymes. Acc1 and Pyc were present in all the fungal species we examined. MccA was 

absent almost completely from the Saccharomycetes and Schizosaccharomyces pombe 

(phylum Ascomycota; subphylum Taphrinomycotina), but was present in the rest of the fungi 

we examined. PccA was present in fewer species than MccA was, and was completely absent 

from the classes Saccharomycetes and Sordariomycetes. MccA was present along with urea 

amidolyase and urea carboxylase in three species (Fusarium verticilloides, F. oxysporum, 

and Nectria haematococca), and along with only urea amidolyase in three other species (F. 

graminearum, M. oryzae, and Y. lipolytica). A phylogenetic analysis using the biotin-

carboxylation domains of Pyc, Acc1, MccA, PccA, urea amidolyase, and urea carboxylase 

from fungi showed that these domain sequences were highly diverged. Bootstrap analysis did 

not show any significantly supported clustering of urea amidolyase and urea carboxylase 

with any of the other four enzymes (see Figure A4.1).  Urea amidolyase and urea carboxylase 

appear to have no clear direct origin among the other biotin-carboxylation domain containing 

proteins. Or such divergence may have happened such a long time ago that we can no longer 

identify the origin. 

 

4.2.3 Distribution of urea amidolyase and other related proteins among 

eubacteria 

In order to elucidate further the origin of long and short forms of urea amidolyase 

found in fungi: whether they share a common evolutionary origin or arose independently, we 

performed extensive similarity searches using these protein and domain sequences among 56 

bacterial genomes. As shown in Table 4.3 (see also Table A4.6), the longer form of urea 

amidolyase (~1,800 aa) was found only in one bacterium, Pantoea ananatis (class 
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Gammaproteobacteria). This bacterium, which previously belonged to the genus Erwinia 

but was recently reclassified into the genus Pantoea, is a well-known plant pathogen with a 

reported case of it also being a human-pathogen [24, 25]. This bacterium and its related 

species are usually isolated from soil, fruits, and vegetables [24]. Urea carboxylase (~1,200 

aa), the shorter form of urea amidolyase, was found in bacterial species scattered among a 

wide range of groups. Almost all bacteria with urea carboxylase also had amidase. These two 

enzymes are encoded in two different genes in bacteria, but are located next to each other in 

most of the bacterial genomes we examined (see Table A4.7). In two species (Wolinella 

succinogenes, class Epsilonproteobacteria; and Gloeobacter violaceus, phylum 

Cyanobacteria), the two genes were not adjacent to each other but only 943 bp and 1,701 bp 

apart, respectively, while in another Cyanobacteria species (Cyanothece sp.), the two genes 

were located far apart (979,743 bp). Sorangium cellulosum (class Deltaproteobacteria) and 

Nitrosomonas europaea (class Alphaproteobacteria) had urea carboxylase but lacked 

amidase. Three Gammaproteobacteria species have two urea carboxylase genes, only one of 

which lies next to the amidase gene. P. ananatis, a gammaproteobacteria, which has urea 

amidolyase (the long form), also has urea carboxylase (the short form). Furthermore, P. 

ananatis has no independent amidase gene. The only amidase sequence present in this 

bacterium is the domain of the urea amidolyase gene.  It seems reasonably likely that fusion 

of the amidase and urea carboxylase genes occurred in P. ananatis to generate the long form 

of the urea amidolyase gene similar to those found in fungi.  

The urease protein in bacteria occurs as a trimer of alpha, beta, and gamma subunits 

encoded by separate genes forming a gene cluster, whereas in eukaryotes a single gene 

encodes the urease protein, a fused protein representing the three bacterial subunits [26]. In 

some bacteria, beta and gamma subunits are fused and encoded by one gene (denoted with 
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ß/γ in Table 4.3) while in others either beta- or gamma-subunit gene was missing. As 

shown in Table 4.3, existence of these urease-subunit genes was scattered throughout the 

bacterial groups. Of 56 bacterial genomes we examined, 31 had either or both of urease and 

amidase/urea carboxylase (or urea amidolyase). Only seven of 31 bacterial species had all 

three genes. Consistent with what we observed in fungi, there appears to be a certain degree 

of dichotomy in possession of urease genes or amidase/urea carboxylase (or urea amidolyase) 

genes among bacterial genomes. 

 

4.2.4 Phylogenetic analysis of amidase domain sequences 

In order to elucidate the evolutionary origin of eukaryotic urea amidolyase proteins, 

we performed phylogenetic analysis among amidase, urea amidolyase, and urea carboxylase 

identified across kingdoms. Phylogenies were reconstructed using amidase and urea 

carboxylase sequences separately.  

Figure 4.3 is the maximum-likelihood phylogenetic tree reconstructed from the 

amidase domain sequences from urea amidolyase and the amidase protein sequences from 

fungi, green algae, and bacteria (the minimum-evolution tree is shown in Figure A4.2). It 

shows that the fungal amidase domain from urea amidolyase (shown in blue and denoted by 

UA in Figure 4.3), and the stand-alone fungal amidase protein that exists on its own (shown 

in blue and denoted by A in Figure 4.3) cluster separately, implying that they have evolved 

independently. The amidase sequences from green algae (shown in green in Figure 4.3) 

cluster with the stand-alone amidase protein from fungi, however, with not very strong 

bootstrap support (76%).  

Bacterial amidase sequences also cluster into two groups (shown in red in Figure 4.3). 

Amidases from four gammaproteobacteria species (P. ananatis, Pantoea sp. At-9b, 
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Pectobacterium carotovorum, and Cellvibrio japonicus) and one betaproteobacteria 

species (Achromobacter piechaudii) form a cluster (denoted by A1 in Figure 4.3). Notably, 

the amidase sequence of P. ananatis is part of the urea amidolyase, and the amidase genes of 

the other three gammaproteobacteria species lie immediately adjacent to their urea 

carboxylase genes (see Table A4.7). These bacterial amidases cluster with fungal amidases 

from urea amidolyase with a strong bootstrap support (100%). Compared to the fungal stand-

alone amidases (Fungi A), the fungal amidase-domain sequences from urea amidolyase 

(Fungi UA) are clearly more closely related to the bacterial amidases, especially to those 

from P. ananatis and a small number of gamma- and betaproteobacteria species (Bacteria 

A1).    

 

4.2.5 Phylogenetic analysis of urea carboxylase domain sequences 

Figure 4.4 shows the result of maximum-likelihood phylogenetic analysis using the 

urea carboxylase protein and urea carboxylase domain sequences from urea amidolyase (the 

minimum-evolution tree is shown in Figure A4.3). The urea carboxylase sequence (~1,200 

aa) is twice longer than the amidase sequence (~600 aa), which resulted in a better resolution 

in the reconstructed phylogeny. Bacterial urea carboxylase sequences were clearly divided 

into two clusters (denoted by UC1 and UC2 in Figure4. 4) where both were supported by 

100% bootstrap values. The UC1 group, which consists of the five species of gamma- and 

betaproteobacteria (P. ananatis, Pantoea At-9b, P. carotovorum, C. japonicus, and A 

piechaudii), clustered closely with the fungal urea amidolyase (UA) with a high bootstrap 

value (97%). These five bacterial species are the same five species found in Figure 4.3 (A1) 

whose amidases clustered with the amidase-domain sequences of the fungal urea amidolyase. 

Four of these five bacterial species have a second urea carboxylase gene. Thus, the 
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duplication event that created these two sets of urea carboxylase genes must have 

happened before the divergence of the five proteobacteria. Based on the deep divergence 

between the paralogous groups (UC1 and UC2) and the somewhat slower evolution observed 

in UC1 (the urea carboxylase genes found only in five gamma/betaproteobacteria species), 

we speculate that the close functional association with amidase likely arose in the UC1 group 

to create a fused single gene, urea amidolyase, in P. ananatis, and thus changed the 

evolutionary rate and pattern in this copy of urea carboxylase.  

We also see two separate and strongly supported clusters of urea carboxylase 

sequences in fungi. One cluster is of the urea carboxylase domain from urea amidolyase (UA, 

100% bootstrap support) whereas the other cluster is of the urea carboxylase protein 

sequence (UC, 97% bootstrap support). It shows that the urea carboxylase sequences in the 

two groups have independently evolved over a long period of time. Since urea carboxylase 

was found in the phylum Basidiomycota (represented by Cryptococcus neoformans in Figure 

4.4) and it clustered with other urea carboxylase proteins, the divergence between urea 

carboxylase and urea amidolyase in fungi must have preceded the Ascomycota-

Basidiomycota divergence. As we discuss in the next section, the formation of urea 

amidolyase with acquisition of the amidase domain seems to have happened most likely in a 

bacterial lineage. Note that the urea carboxylases from green algae clustered with the fungal 

urea carboxylases (with 100% bootstrap support) rather than with the fungal urea 

amidolyases. This clustering pattern is consistent with what we observed in the amidase 

phylogeny (Figure 4.3) where green algal genes clustered with the stand-alone version of the 

fungal amidase genes rather than with the amidase-domain sequence of urea amidolyase. 

Although in some green algae, amidase and urea carboxylase genes are located relatively 



  116 
closely (within 588 to 6,236 bp; Table A4.2), their evolution is completely independent 

from urea amidolyase genes found in fungi.  

As mentioned before, two Hydra urea carboxylase sequences were found from the 

NCBI nr database search. One of them was actually found to be a sequence of a putative 

bacterial symbiont, Curvibacter (betaproteobacteria) (described in NCBI gi|260221606 

entry). Phylogenetic analysis clearly showed that this sequence belongs to the bacterial urea 

carboxylase (UC2) group (see Figure A4.4). The other Hydra sequence clustered with urea 

carboxylase sequences from green algae and fungi (93% bootstrap support). 

 

4.2.6 Bacterial origins of the fungal urea amidolyase and urea carboxylase 

Our phylogenetic analysis did not support the previous hypothesis that the fungal urea 

amidolyase and urea carboxylase sequences are formed from fungal biotin-carboxylation 

domain containing proteins such as MccA or PccA. Instead, our conclusion is that the urea 

amidolyase and urea carboxylase genes currently found in fungi and green algae, as well as 

in Hydra, are the results of horizontal gene transfer events from bacteria. This is based on 

observations such as the abundant distribution of the shorter form of urea amidolyase, i.e., 

urea carboxylase, as well as the single occurrence so far of urea amidolyase (the long form) 

in bacteria, coupled with the rarity of both forms of urea amidolyase in eukaryotes except in 

the fungal kingdom, in some green algae, and in Hydra.  

Phylogenetic analysis of amidase and urea carboxylase sequences across kingdoms 

showed that the urea carboxylase domain in urea amidolyase and the urea carboxylase 

protein itself have undergone extensive independent evolution. Fungal urea amidolyase 

proteins are more closely related to one of the two groups of bacterial urea carboxylase. 

Furthermore, one of these bacteria (P. ananatis) has a unique urea amidolyase gene, a 
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product of amidase/urea carboxylase gene fusion. The direction of the horizontal gene 

transfer seems to be from a bacterial lineage to a fungal lineage, since in bacteria other than 

P. ananatis, urea carboxylase and amidase exist as two independent genes although they are 

located next to each other. Inspection of introns in fungal urea amidolyase genes corroborates 

this hypothesis further. Fungal urea amidolyases are either single or double-exon genes (see 

Table A4.2). All Saccharomycetes species except for Y. lipolytica have single-exon urea 

amidolyase genes. While in the three Sordariomyetes species (M. oryzae, N. haematococca, 

and F. graminearum) the single intron was inserted towards the end of the urea carboxylase 

domain, in the duplicated Y. lipolytica genes the single intron was inserted at the beginning 

of the amidase domain. These observations indicate that the introns in these fungal urea 

amidolyase genes must have been acquired independently during their evolution as fungal 

genes. Therefore, fusion of the two genes appears to have happened in the ancestral bacterial 

species close to P. ananatis, and this fused gene must have been transferred to a fungal 

lineage. 

Since so far we found the urea amidolyase protein only in one bacterial species, it is 

probable that the fusion of urea carboxylase and amidase to form bacterial urea amidolyase is 

a recent event specific to this bacterial lineage. If this is the case, the fusion event in P. 

ananatis could be also independent from those that produced fungal urea amidolyases. 

However, we did not find any unfused fungal urea carboxylase sequences clustered with urea 

amidolyase in our phylogenetic analysis (Figure 4.4), nor did we find any unfused fungal 

amidase sequences clustered with urea amidolyase (Figure 4.3). Therefore, if the fusion 

happened in fungal lineage, it must have happened soon after the two bacterial genes 

(amidase and urea carboxylase) were acquired by an ancestral fungal species. Regardless of 

the timing of the fusion event, association between the amidase and urea carboxylase 
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sequences for the urea amidolyase function and subsequent divergence of these 

sequences from the other paralogous set must have started in bacterial lineage. 

Compared to urea amidolyase, urea carboxylase genes in fungi have a wider range in 

the number of exons, 1-16 exons, implying again their independent evolution as well as a 

greater number of accumulated changes. Note that the single introns found in the urea 

carboxylase genes of N. haematococca and F. oxysporum are both at the beginning of the 

genes and of similar lengths (55-56bp; see Table A4.2). It indicates that the common ancestor 

of these species acquired a single intron in the urea carboxylase gene and it happened 

independently from the intron acquisition in N. haematococca urea amidolyase. Interestingly, 

the number of introns in urea carboxylase and amidase genes in green algae is much higher 

than the number of introns in the fungal orthologues. This is in agreement with the 

observation that the Chlamydomonas reinhardtii genome has much higher percentage of 

genes with introns and a much greater number of exons per gene (88% and 7.4) as compared 

to S. cerevisiae (5% and 1) and S. pombe (43% and 2) [27].  

There have been studies presenting cases of bacteria-to-fungi horizontal gene 

transfers. For example, Hall et al. [11] found ten potential such cases in S. cerevisiae and one 

in Ashbya gossypii. Fitzpatrick et al. [12] reported two Candida parapsilosis genes as 

bacterial origin. Garcia-Vallvé et al. [13] showed that many glycosyl hydrolase genes in the 

rumen fungus Orpinomyces joyonii were acquired from bacteria. Schmitt and Lumbsch [14] 

showed that the polyketide synthase in lichen-forming fungi were results of ancient 

horizontal gene transfer from Actinobacteria. A recent study, the largest of its kind, by 

Marcet-Houben and Gabaldón [15] detected 713 transferred genes in 60 fungal genomes. 

Therefore, horizontal gene transfers from bacteria to fungi do not appear to be rare events. 

We identified yet another such example. 
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4.2.7 Proposed model for the urea carboxylase and urea amidolyase 

evolution 

Figure 4.5 illustrates our proposed model for the evolution of urea carboxylase and 

urea amidolyase genes in fungi. As presented in Figure 4.5A, an ancestral urea carboxylase 

sequence in bacteria duplicated in the beta/gammaproteobacteria lineage and evolved into 

two genes (UC1 and UC2). Since in many bacterial genomes, urea carboxylase and amidase 

genes are located adjacent to each other (see Table A4.7), it is plausible that before the 

duplication, the ancestral urea carboxylase gene already had an associated function with the 

amidase gene. However, the creation of duplicated redundant copies of the urea carboxylase 

gene in beta/gammaproteobacteria species appears to have reinforced the association between 

the two genes and changed their evolutionary pattern and rate in these bacteria. This 

amidase-associated copy of bacterial urea carboxylase gene (UC1) was subsequently fused 

with the amidase gene to form a single urea amidolyase gene. The fused gene was later 

transferred to an ancestral ascomycete lineage before the divergence of the Pezizomycotina 

and Saccharomycotina. Alternatively, the gene fusion could have happened in an ancestral 

fungal species soon after the region containing amidase and urea carboxylase genes was 

transferred from bacteria. 

The other bacterial urea carboxylase gene (UC2) may have also been acquired by 

fungi, green algae, as well as Hydra. Since our phylogenetic analysis did not show 

independent origins for these urea carboxylase genes, the acquisition of this enzyme into 

fungi, green algae, and Hydra must have happened around the time of divergence among 

these groups of organisms. It may have been by a single event, likely before the divergence 

of these organisms. Then we cannot eliminate the possibility that what we observed in the 
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urea carboxylase genes is the result of simple vertical evolution from bacteria to 

eukaryotes. Either way, however, many eukaryotes including the entire metazoa and land 

plants must have lost these genes. As we mentioned before (and shown also in Figure 4.5B), 

even within fungi, the urea carboxylase gene is not retained in many species. Considering 

that either scenario requires such a high number of loss events, there would be other possible 

scenarios. One group of organisms (either green algae, Hydra, or fungi) may have acquired a 

urea carboxylase gene from bacteria first. Later this gene may have been transferred to other 

organisms. Although this scenario requires fewer loss events, the main question is how such 

horizontal gene transfers can happen between green algae, Hydra, and fungi, or among any of 

their ancestral organisms.  

In fungi, the introduction of the urea carboxylase gene happened earlier than that of 

the urea amidolyase gene as shown in Figure 4.5B. The urea carboxylase gene (red circle) 

was acquired in fungi before the divergence of the phyla Ascomycota and Basidiomycota. 

The acquisition could have been after the divergence of the phylum Zygomycota or 

alternatively the gene was lost from the Zygomycota lineage. Some Basidiomycota species 

subsequently lost the gene (the lost events are indicated with grey symbols in Figure 4.5B). 

In the phylum Ascomycota, this gene was again lost in the subphyla Taphrinomycotina (it 

includes S. pombe) and Saccharomycotina. Further losses of this gene happened in some 

species of the subphylum Pezizomycotina. The urea carboxylase gene appears to become 

easily dispensable in many species, which may be related to the genomic and metabolic 

environment of the organisms. The same seems to be the case with MccA and PccA. The 

introduction of the urea amidolyase gene (black square) in fungi took place before the 

divergence of the subphyla Pezizomycotina and Saccharomycotina but probably after the 

divergence of the subphylum Taphrinomycotina (at least after the phylum Ascomycota 
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diverged from the ancestral lineage). Within the subphylum Pezizomycotina, the urea 

amidolyase gene was lost in many groups but retained in almost all species in the class 

Sordariomycetes (absent in the order Sordariales species). The urea amidolyase gene was 

retained in all Saccharomycotina species, and even recently duplicated in Y. lipolytica.  

 

4.3 Conclusions 

We have presented a possible scenario of horizontal gene transfer of the urea 

amidolyase and urea carboxylase genes from bacteria to fungi. Plastic and opportunistic 

genome evolution in bacteria and fungi and their evolutionary interplay must have allowed 

the Saccharomycetes fungi to abandon the use of nickel-containing urease. It contributed to 

optimizing these organisms toward Ni2+ (and Co2+)-independent cellular metabolisms. 

Further detailed studies of a wider range of gene families would reveal the importance of 

acquisition of bacterial genes in fungal evolution. 

 

4.4 Methods 

4.4.1 Similarity searches 

Similarity searches for protein sequences were performed using blastp (version 2.2.17 

[28]). For urea amidolyase search, the S. cerevisiae sequence (P32528) was used as a query. 

Search was performed using both the full sequence as well as only the amidase domain of 

this sequence. To search for urea carboxylase sequences, A. nidulans sequence (P38095) was 

used as a query. To search for other urea carboxylase domain containing proteins, the S. 

cerevisiae Acc1 (Q00955) and Pyc (P11154), A. nidulans MccA (Q6T5L7), and Aspergillus 
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related Neosartorya fischeri PccA (A1DF70) were used as query sequences. The urease 

sequence from A. fumigatus (Q6A3P9) was used as a query sequence to search for urease.  

We performed these searches against 56 bacterial genomes, 64 fungal genomes, and 

10 non-fungal eukaryotic genomes (including 4 green algae, 2 land plants, 1 amoebozoa, and 

3 animals). The species names, taxonomical groups, and the sources of the sequences are 

listed in Tables A4.1, A4.4, A4.5 and A4.6. The species were chosen such that all major 

bacterial, fungal, and other eukaryotic groups were represented from a tree of life [e.g., 29].  

For fungi, preliminary search for urea amidolyase, urea carboxylase, and amidase was done 

in 64 genomes and further analysis was done using 27 selected fungal genomes (noted with * 

in Table A4.3). The non-redundant (nr) database at National Center for Biotechnology 

Information (NCBI) was also searched for urea amidolyase, urea carboxylase, and urease 

protein sequences using blastp. 

All protein sequences were highly conserved, and similar sequences were clearly 

identifiable in the results obtained by blastp similarity search. The E-value threshold for each 

protein hit was as follows: 1 x 10-49 for amidase, 0 for urea amidolyase and urea carboxylase, 

1 x 10-12 for urease, 1 x 10-111 for MccA, 1 x 10-115 for PccA, and 0 for Pyc and Acc1. The 

default parameters were used with blastp program (version 2.2.17), which include 

BLOSUM62 scoring matrix, low-complexity filtering, gap-open and gap-extend penalties of 

11 and 1, respectively. In order to obtain the E-values comparable among different genome 

sizes, the "effective length of database" was set to 500,000,000 (using -z option). This also 

makes the E-values obtained from each genome search equivalent to those obtained against 

NCBI nr database. 
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4.4.2 Multiple alignment and phylogenetic analysis 

Multiple alignments of protein sequences were generated using MAFFT (version 

6.240 [30]) with default parameters (FFT-NS-2, a progressive FFT alignment with two tree-

building cycles). The maximum-likelihood phylogeny [31] was reconstructed as 

implemented in raxmlHPC-MPI (version 7.0.4 [32]) using the following options: '-m 

PROTMIXWAG' to use WAG amino-acid substitution model [33] with a fixed number 

approximation followed by a refined gamma-model of rate heterogeneity, '-f a' for a rapid 

bootstrap analysis, '-x 1234' to set the random seed, and '-# 1000' for 1000 pseudoreplicates 

for bootstrap analysis. To gather the bootstrap values, the 'consense' program of the Phylip 

package (v. 3.68 [34]) was used. The minimum-evolution phylogeny [35] was reconstructed 

as implemented in MEGA4 [36] using the JTT amino-acid substitution model [37] with 1000 

pseudoreplicates for bootstrap analysis.  
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Table 4.1. Distribution of urea amidolyase and related proteins in eukaryotic species 

other than fungi.a  

  Enzymesb 
Kingdom Species UA UC Ac Urease 

Plantae (green algae)      
 Chlamydomonas reinhardtii - 1 1+ - 
 Volvox carteri - 1 1+ - 
 Chlorella sp. NC64A - 1 1+ - 
 Coccomyxa sp. C-169 - 1 1 - 
Plantae (land plants)      
 Arabidopsis thaliana - - - 1 
 Oryza sativa - - - (1)d 
Amoebozoa      
 Dictyostelium discoideum - - - - 
Animalia      
 Nematostella vectensis - - - 1 
 Drosophila melanogaster - - - - 
 Homo sapiens - - - - 

 
aSee Table A4.1 for the sequence sources. 
bSee Figure 4.1 for the enzyme name abbreviations. The number of sequences found from 
each genome is shown. '-' indicates that no similar sequence was found. 
cThe amidase gene located close to the urea carboxylase gene (less than 6,250 bp) is 
indicated with +. See Table A4.2 for the distance between the genes. 
dBlastp similarity search against the downloaded rice genome showed no sequence similar to 
urease. However, similarity search against NCBI nr database showed urease from Oryza 
sativa. 
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Table 4.2. Distribution of urea amidolyase and related proteins in fungal species.a  

  Enzymesc 
Taxonomical groupb Species  UA UC Ad Urease MccA PccA 

[Zygomycota] Rhizopus oryzae - - - 1 1 1 
[Basidiomycota] Ustilago maydis - - - 1 1 - 
 Cryptococcus neoformans - 1 - 1 1 - 
 Coprinus cinereus - - - 1 1 1 
[Ascomycota/Taphrinomycotina]       

Schizosaccharomycetes Schizosaccharomyces pombe - - - 1 - - 
[Ascomycota/Pezizomycotina]       

Eurotiomycetes Coccidioides immitis - - - 1 1 1 
 Aspergillus nidulans - 1 - 1 1 1 
 Aspergillus fumigatus - 1 - 1 1 1 
 Aspergillus terreus - 1 - 1 1 1 
 Aspergillus oryzae - - - 1 1 - 
Dothideomycetes Mycosphaerella graminicola - - 1 1 1 1 
 Stagonospora nodorum - 1 1 1 1 1 
 Cochliobolus heterostrophus - 1 1 1 1 1 
Leotiomycetes Botritis cinerea - - - 1 1 1 
Sordariomycetes Neurospora crassa - - - 1 1 - 
 Magnaporthe oryzae 1 - (1) 1 1 - 
 Nectria haematococca 1 1 (1) 1 1 - 
 Fusarium graminearum 1 - (1) 2 1 - 
 Fusarium oxysporum 1 1 (1) 2 1 - 
 Fusarium verticillioides 1 1 (1) 1 1 - 

[Ascomycota/Saccharomycotina]       
Saccharomycetes Yarrowia lipolytica 2 - (2) - 1 - 

 Candida albicans 1 - (1) - - - 
 Candida lusitaniae 1 - (1) - - - 
 Debaryomyces hansenii 1 - (1) - - - 
 Ashbya gossypii 1 - (1) - - - 
 Candida glabrata 1 - (1) - - - 
 Saccharomyces cerevisiae 1 - (1) - - - 
 
aSee Tables A4.4 and A4.5 for the sequence sources. 
bThe phylum/subphylum (in square brackets) and class are given. 
cSee Figure 4.1 for the enzyme name abbreviations. The number of sequences found from 
each genome is shown. '-' indicates that no similar sequence was found. 
dThe amidase sequences that are a part of the urea amidolyase sequences are shown in 
parentheses. 
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Table 4.3. Distribution of urea amidolyase and related proteins in eubacterial 
species.a 
  Enzymesb 

Phylum or Class Species UA UC Ac Ureased 

Alphaproteobacteria Caulobacter crescentus NA1000 - 1 1* - 
 Asticcacaulis excentricus CB 48 - 1 1* - 
 Sinorhizobium medicae WSM419 - - - α,β,γ 
Betaproteobacteria Achromobacter piechaudii ATCC 43553 - 1 1* - 
 Bordetella pertussis Tohama I - - - α,β,γ 
 Nitrosomonas europaea ATCC 19718 - 1 - - 
 Neisseria meningitidis FAM18 - - - - 
 Burkholderia sp. CCGE1001 - 1 1* α,β,γ 
Gammaproteobacteria Escherichia coli O111:H- str. 11128 - - - α,β,γ 
 Yersinia pestis Angola - - - α,β 
 Haemophilus influenzae 86-028NP - - - α,β,γ 
 Pantoea ananatis LMG 20103 1 1 (1) - 
 Pantoea sp. At-9b - 2 1* - 
 Shewanella oneidensis MR-1 - - - - 
 Pseudomonas aeruginosa LESB58 - - - α,β,γ 
 Coxiella burnetii Dugway 5J108-111 - - - - 
 Pectobacterium carotovorum subsp. 

carotovorum PC1 
- 2 1* - 

 Xanthomonas campestris pv. campestris str. 
B100 

- - - - 

 Cellvibrio japonicus Ueda107 - 2 1* - 
 Teredinibacter turnerae T7901 - 1 1* α,β,γ 
 Marinomonas sp. MED121 - 1 1* α,γ 
 Klebsiella pneumoniae 342 - 1 1* α,β,γ 
 Pseudomonas fluorescens SBW25 - - - α,β,γ 
Deltaproteobacteria Geobacter sp. M21 - - - - 
 Sorangium cellulosum 'So ce 56' - 1 - α,β/γ 
Epsilonproteobacteria Helicobacter pylori B38 - - - α,β/γ 
 Wolinella succinogenes DSM 1740 - 1 1+ - 
Acidobacteria Acidobacterium capsulatum ATCC 51196 - - - - 
 Solibacter usitatus Ellin6076 - 1 1* - 
Cyanobacteria Synechococcus sp. PCC 7002 - - - α,β,γ 
 Gloeobacter violaceus PCC 7421 - 1 1+ - 
 Cyanothece sp. PCC 7425 - 1 1 α,β,γ 
Deinococcus-Thermus Thermus thermophilus HB8 - - - - 
 Deinococcus deserti VCD115 - - - - 
Chloroflexi Dehalococcoides ethenogenes 195 - - - - 
Aquificae Aquifex aeolicus VF5 - - - - 
Thermotogae Thermotoga maritima MSB8 - - - - 
Fusobacteria Fusobacterium nucleatum subsp. Nucleatum 

ATCC 25586 
- - - - 

Verrucomicrobia Verrucomicrobium spinosum DSM 4136 - 1 1* α,β,γ 
Chlamydiae Chlamydophila pneumoniae CWL029 - - - - 
 Chlamydia trachomatis B/TZ1A828/OT - - - - 
Bacterioidetes Porphyromonas gingivalis W83 - - - - 
Chlorobi Chlorobium limicola DSM 245 - - - - 
Fibrobacteres Fibrobacter succinogenes subsp. succinogenes - - - - 
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Actinobacteria Mycobacterium tuberculosis F11 - - - α,β,γ 
 Corynebacterium aurimucosum ATCC 700975 - - - - 
 Streptomyces avermitilis MA-4680 - 1 1* α,β,γ; α,β/γ 
 Bifidobacterium longum subsp. infantis  

ATCC 15697 
- - - α,β/γ 

Spirochaetes Borrelia burgdorferi ZS7 - - - - 
 Treponema denticola ATCC 35405 - - - - 
Planctomycetes Rhodopirellula baltica SH 1 - - - - 
Firmicutes Clostridium botulinum A2 str. Kyoto - - - - 
 Mycoplasma hyopneumoniae 7448 - - - - 
 Streptococcus pneumoniae 70585 - - - - 
 Bacillus anthracis str. CDC 684 - - - - 
 Roseburia intestinalis L1-82 - 1 1* - 
 
aSee Table A4.6 for the sequence sources. 
bSee Figure 4.1 for the enzyme name abbreviations. The number of sequences found from 
each genome is shown. '-' indicates that no similar sequence was found. 
cThe amidase gene located next to (within 200 bp) the urea carboxylase gene is indicated 
with *. The amidase gene located close to (within 6,500 bp) but not next to the urea 
carboxylase gene is indicated with +. See Table A4.7 for the distance between the genes. The 
amidase sequences that are a part of the urea amidolyase sequences are shown in parentheses. 
dFor urease, the search results for three subunits (α, β, or γ) are shown. β/γ indicates that the β 
and γ subunits are fused into one gene.   
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Figure 4.1. Domain structures of urea amidolyase and related proteins.  Proteins 
that share the amidase (allophanate hydrolase) or the biotin-carboxylation domain are 
listed. The domains colored in grey are those that are not shared among these proteins. 
The domain structures are based on the InterPro protein domain database [38]. The 
abbreviations and approximate amino-acid lengths are given with the protein names. 
Amidase and urea carboxylase sequences exist as domains within the urea amidolyase 
protein or as single proteins by themselves. Similarly, the biotin-carboxylation sequence 
exists as a domain in various proteins as well as by itself as in the biotin-carboxylase 
protein.  
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Figure 4.2. Distribution of urea amidolyase and related proteins in fungi.  
Existence of urea amidolyase and four other proteins are mapped along the current 
consensus of the fungal phylogeny (summarized from [16, 17]). The estimated 
divergence times (million years ago or mya) are taken from [39]. Refer to Figure 
4.1 for protein name abbreviations. See Tables 4.2 and A4.3 for the complete 
search results. 
 



  135 
Y. lipolytica-2

Y. lipolytica-1
D. hansenii
Can. albicans

Can. lusitaniae
Sac. cerevisiae
Can. glabrata

Ash. gossypii

Nec. haematococca
F. graminearum

F. oxysporum

F. verticillioides
Mag. oryzae

F
u
n
g
i (U

A
)

Pan. ananatis UA
Pantoea sp. (At-9b)

Pec. carotovorum
Ach. piechaudii 

Cel. japonicus

B
a
c
te

ria

(A
1
)

Amino acid substitutions per site

T. turnerae
Burkholderia sp. CCGE1001

K. pneumoniae
Marinomonas sp. MED121

R. intestinalis

W. succinogenes
Sol. usitatus

G. violaceus
Cyanothece sp. PCC 7425

Ast. excentricus
Cau. crescentus

V. spinosum
Str. avermitilis

B
a
c
te

ria
 (A

2
)

Chlorella sp. NC64A

Coccomyxa sp. C-169
Chla. reinhardtii
V. carteri

G
re

e
n

A
lg

a
e

Coch. heterostrophus
Sta. nodorum

Myc. graminicola

F
u
n
g
i

(A
)

Figure 4.3. Maximum-likelihood phylogeny of amidase protein sequences.  The 
maximum-likelihood phylogeny was reconstructed using the protein sequences from the 
amidase domains of the urea amidolyase proteins and the amidase proteins. The numbers 
above or below the internal branches show bootstrap values (%). Only bootstrap values 
equal to or higher than 70% are shown. Branches are colored as follows: blue for fungi, 
green for green algae, and red for bacteria. The bacterial urea carboxylase forms two 
separate groups denoted by A1 and A2. See Tables A4.1, A4.4, and A4.6 for the sequence 
sources. 
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Figure 4.4. Maximum-likelihood phylogeny of urea carboxylase protein sequences.  The 
maximum-likelihood phylogeny was reconstructed using the protein sequences from the urea 
carboxylase domains of the urea amidolyase proteins and the urea carboxylase proteins. The 
numbers above or below the internal branches show bootstrap values (%). Only bootstrap 
values equal to or higher than 70% are shown. Branches are colored as follows: blue for fungi, 
green for green algae, and red for bacteria. The bacterial urea carboxylase forms two separate 
groups denoted by UC1 and UC2. The asterisks beside the bacterial names indicate that their 
urea carboxylase genes are adjacent to the amidase genes in their genomes. See Table A4.7 for 
the distance between these genes. See Tables A4.1, A4.4, and A4.6 for the sequence sources. 
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Figure 4.5. Evolutionary model of urea carboxylase and urea amidolyase in fungi. (A) The 
evolution of the two types of bacterial urea carboxylases, UC1 and UC2, and the subsequent 
transfer of those genes to fungi and green algae. The arrows represent possible horizontal gene-
transfer events. Dashed arrows indicate that both horizontal transfer and vertical transmission are 
possible. (B) Acquisition and loss events of the urea amidolyase and related proteins inferred within 
fungal evolution. The fungal consensus phylogeny and the presence/absence table for five proteins 
are the same as Figure 4.2. Within the tree, the colored symbols indicate gene-acquisition events 
while the grey symbols indicate the deletion of that gene.  
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Additional files  
Table A4.1. Sequence sources for the non-fungal eukaryotic sequences used in this 
study. 

Kingdom  Enzymesb 
Species [genome ver. or Acc #] Sourcea UA UC A Urease 

Plantae (green algae)      
Chlamydomonas reinhardtii [v3.1] JGI - 133000 196482 - 
Volvox carteri f. nagariensis [v1.0] JGI - 98356 98357 - 
Chlorella sp. NC64A [v1.0] JGI - 133810 57824 - 
Coccomyxa sp. C-169 [v2.0] JGI - 19857 30676 - 

Plantae (land plants)      

Arabidopsis thaliana NCBI - - - 15220459 
[NC_003070, NC_003071, NC_003074, NC_003075, NC_003076] 

Oryza sativa v6.1 Rice 
Genome 

- - - - 

Amoebozoa      

Dictyostelium discoideum DictyBase - - - - 

Animalia      

Nematostella vectensis [v1.0] JGI - - - 98292 
Drosophila melanogaster [rel 5.12] Flybase - - - - 
Homo sapiens UniProtKB - - - - 

 

aJGI: Joint Genome Institute (http://www.jgi.doe.gov), Rice Genome: Rice Genome Annotation 
Project (http://rice.plantbiology.msu.edu/), NCBI: National Center for Biotechnology Information 
(http://www.ncbi.nlm.nih.gov/), DictyBase: Dictyostelium discoideum database 
(http://dictybase.org/), Flybase: A Database of Drosophila Genes & Genomes (http://flybase.org/), 
and UniProtKB: The UniProt Knowledgebase (http://www.uniprot.org/). 

bSee Figure 4.1 for the enzyme name abbreviations. The IDs of sequences found from each genome 
are shown. '-' indicates that no similar sequence was found. 
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Table A4.2. Number of exons in urea amidolyase and related genes and their 
distance in eukaryotic genomes. 

Kingdom No. of exons 
 Species UAa UCa Aa 

No. of bp between 
UC and Ab 

Plantae (green algae)     
 Chlamydomonas reinhardtii v3.1  23 9 1,567 (0) 
 Volvox carteri f. nagariensis v1.0  25 6 588 (0) 
 Chlorella sp. NC64A v1.0  32 14 6,236 (3) 
 Coccomyxa sp. C-169 v2.0  25 9 Scaffolds 15 and 20 
Fungi      
 Cryptococcus neoformans H99  16   
 Aspergillus nidulans FGSC A4  8   
 Aspergillus fumigatus Af293  8   
 Aspergillus terreus NIH2624  7   
 Mycosphaerella graminicola v2.0   1  
 Stagonospora nodorum SN15  3 2 Supercontigs 3 and 12 
 Cochliobolus heterostrophus C5  4 1 Scaffolds 1 and 8 
 Magnaporthe oryzae ATCC 64411 2c    
 Nectria haematococca v2.0 2c 2e   
 Fusarium graminearum PH-1 (NRRL 

31084) 
2c    

 Fusarium oxysporumi 4286 1 2e   
 Fusarium verticillioides 7600 1 1   
 Yarrowia lipolytica CLIB122 2d, 2d    
 Candida albicans SC5314 1    
 Candida lusitaniae ATCC 42720 1    
 Debaryomyces hansenii CBS767 1    
 Ashbya gossypii ATCC 10895 1    
 Candida glabrata CBS138 1    
 Saccharomyces cerevisiae S288C 1    
 
aSee Figure 4.1 for the enzyme name abbreviations.  
bThe number of genes present between UC and A genes are given in parentheses. When exact 
distance between the two genes is not known, the locations of the two genes are given. 

cIn these genes, the intron is located towards the end of the urea-carboxylase domain. 
dIn these genes, the intron is located at the beginning of the amidase domain. 
eIn these genes, the intron is located at the beginning of the urea carboxylase sequence. The lengths of 
the intron and second exon in N. haematococca (56 bp and 3,502 bp) is similar to those in F. 
oxysporum (55 bp and 3,499 bp).  
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Table A4.3. Distribution of urea amidolyase, urea carboxylase, and amidase proteins in 64 
fungal species.a 

  Enzymesc 
Taxonomical groupb Species  UA UC Ad 

[Zygomycota]     
Zygomycetes/Mucorales Rhizopus oryzae RA 99-880* - - - 

 Phycomyces blakesleeanus NRRL1555 
v2.0 

- - - 

 Mucor circinelloides CBS277.49, v2.0 - - - 
[Chytridiomycota]     

Chitridiomycetes/Chytridiales Batrachochytrium dendrobatidis JEL423 - - - 
[Basidiomycota/Agaricomycotina]     

Tremellomycetes /Tremellales Cryptococcus neoformans H99* - 1 - 
Homobasidiomycetes/Agaricales Coprinus cinereus okayama7#130* - - - 
 Laccaria bicolor S238N-H82 - - - 
Homobasidiomycetes/Boletales Serpula lacrymans S7.3 v2.0 - 1 - 

[Basidiomycota/Ustilaginomycotina]     
Ustilaginomycetes/Ustilaginales Ustilago maydis 521* - - - 

[Basidiomycota/Pucciniomycotina]     
Microbotryomycetes/Sporidiobolal

es 
Sporobolomyces roseus v1.0 - 1 - 

[Ascomycota/Taphrinomycotina]     
Schizosaccharomycetes/Schizosacc

haromycetales 
Schizosaccharomyces pombe 972h-* - - - 

[Ascomycota/Pezizomycotina]     
Eurotiomycetes/Onygenales Microsporum gypseum CBS118893 - - - 
 Microsporum canis CBS113480 - - - 
 Trichophyton equinum CBS127.97 - - - 
 Coccidioides immitis RS* - - - 
 Coccidioides immitis RMSCC 2394 - - - 
 Coccidioides immitis RMSCC 3703 - - - 
 Coccidioides immitis H538.4 - - - 
 Coccidioides posadasii RMSCC 3488 - - - 
 Coccidioides posadasii str. Silveira - - - 
 Histoplasma capsulatum G186AR - - - 
 Histoplasma capsulatum H143 - - - 
 Histoplasma capsulatum H88 - - - 
 Histoplasma capsulatum NAm1 - - - 
 Blastomyces dermatitidis SLH14081 - - - 
 Blastomyces dermatitidis ER-3 - - - 
 Paracoccidioides brasiliensis Pb01 - 1 - 
 Paracoccidioides brasiliensis Pb03 - 1 - 
 Paracoccidioides brasiliensis Pb18 - 1 - 
Eurotiomycetes/Eurotiales Aspergillus nidulans FGSC A4* - 1 - 
 Aspergillus fumigatus Af293* - 1 - 
 Neosartorya fischeri NRRL 181 - 1 - 
 Aspergillus terreus NIH2624* - 1 - 
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 Aspergillus oryzae RIB40 / ATCC 

42149* 
- - - 

 Aspergillus carbonarius ITEM 5010 v3 - 1 - 
 Aspergillus clavatus NRRL 1 - 1 - 
 Aspergillus flavus NRRL 3357 - 1 - 
 Aspergillus niger ATCC 1015 - 1 1 
Dothideomycetes/Capnodiales Mycosphaerella graminicola v2.0* - - 1 
 Mycosphaerella fijiensis v2.0 - 1 1 
Dothideomycetes/Pleosporales Alternaria brassicicola ATCC 96866 - 1 - 
 Stagonospora nodorum SN15* - 1 1 
 Cochliobolus heterostrophus C5* - 1 1 
 Pyrenophora tritici-repentis Pt-1C-BFP - 1 1 
Leotiomycetes/Helotiales Botrytis cinerea B05.10* - - - 
 Sclerotinia sclerotiorum 1980 - - 1 
Sordariomycetes/Sordariales Neurospora crassa OR74A* - - - 
 Chaetomium globosum CBS 148.51 - - - 
Sordariomycetes/Magnaporthales Magnaporthe oryzae ATCC 64411* 1 - (1) 
Sordariomycetes/Hypocreales Nectria haematococca v2.0* 1 1 (1) 

 Fusarium graminearum PH-1 
(NRRL 31084)* 

1 - (1) 

 Fusarium oxysporum 4286* 1 1 (1) 
 Fusarium verticillioides 7600* 1 1 (1) 
 Trichoderma virens Gv29-8 v2.0 1 1 (1), 1 

[Ascomycota/Saccharomycotina]     
Saccharomycetes/Saccharomycetal

es 
Yarrowia lipolytica CLIB122* 2 - (2) 

 Candida albicans SC5314* 1 - (1) 
 Candida albicans WO1 1 - (1) 

 Candida parapsilosis isolate 317 from 
CDC 

1 - (1) 

 Candida lusitaniae ATCC 42720* 1 - (1) 
 Debaryomyces hansenii CBS767* 1 - (1) 
 Ashbya gossypii ATCC 10895* 1 - (1) 
 Candida glabrata CBS138* 1 - (1) 
 Saccharomyces cerevisiae S288C* 1 - (1) 
 Saccharomyces cerevisiae RM11-1a 1 - (1) 
aSee Table A4.4 for sequence sources.  
bThe phylum/subphylum (in square brackets) and class are given. 
cSee Figure 4.1 for the enzyme name abbreviations. The number of sequences found from each 
genome is shown. '-' indicates that no similar sequence was found.  
dThe amidase sequences that are a part of the urea amidolyase sequences are shown in parentheses. 

*These fungal species are used in our further analysis 
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Table A4.4. Sequence sources of the urea amidolyase, urea carboxylase, and amidase from 64 fungal 
species.  

   Enzymesc 
Taxonomical groupa Species  Sourceb UA UC Ad 

[Zygomycota]      

Zygomycetes/ 
Mucorales 

Rhizopus oryzae RA 99-880* FGI - - - 

 Phycomyces blakesleeanus NRRL1555 
v2.0 

JGI - - - 

 Mucor circinelloides CBS277.49, v2.0 JGI - - - 

[Chytridiomycota]      

Chitridiomycetes/ 
Chytridiales 

Batrachochytrium dendrobatidis 
JEL423 

FGI - - - 

[Basidiomycota/ 
Agaricomycotina] 

     

Tremellomycetes / 
Tremellales 

Cryptococcus neoformans H99* JGI - CNAG_07944 - 

Homobasidiomycetes/ 
Agaricales 

Coprinus cinereus okayama7#130* JGI - - - 

 Laccaria bicolor S238N-H82 JGI - - - 

Homobasidiomycetes/ 
Boletales 

Serpula lacrymans S7.3 v2.0 JGI - 169686 
 

- 

[Basidiomycota/ Ustilaginomycotina]   
Ustilaginomycetes/ 

Ustilaginales 
Ustilago maydis 521* FGI - - - 

[Basidiomycota/ Pucciniomycotina]   
Microbotryomycetes/ 

Sporidiobolales 
Sporobolomyces roseus v1.0 JGI - 21475 - 

[Ascomycota/ Taphrinomycotina]   
Schizosaccharomycete

s/ 
Schizosaccharomycetal
es 

Schizosaccharomyces pombe 972h-* Sanger - - - 

[Ascomycota/ Pezizomycotina]   
Eurotiomycetes/ 

Onygenales 
Microsporum gypseum CBS118893 FGI - - - 

 Microsporum canis CBS113480 FGI - - - 

 Trichophyton equinum CBS127.97 FGI - - - 

 Coccidioides immitis RS* FGI - - - 

 Coccidioides immitis RMSCC 2394 FGI - - - 

 Coccidioides immitis RMSCC 3703 FGI - - - 

 Coccidioides immitis H538.4 FGI - - - 

 Coccidioides posadasii RMSCC 3488 FGI - - - 

 Coccidioides posadasii str. Silveira FGI - - - 

 Histoplasma capsulatum G186AR FGI - - - 

 Histoplasma capsulatum H143 FGI - - - 

 Histoplasma capsulatum H88 FGI - - - 

 Histoplasma capsulatum NAm1 FGI - - - 

 Blastomyces dermatitidis SLH14081 FGI - - - 

 Blastomyces dermatitidis ER-3 FGI - - - 



  144 
 Paracoccidioides brasiliensis Pb01 FGI - PAAG_02163 - 

 Paracoccidioides brasiliensis Pb03 FGI - PABG_02398 - 

 Paracoccidioides brasiliensis Pb18 FGI - PADG_00734 - 

Eurotiomycetes/ 
Eurotiales 

Aspergillus nidulans FGSC A4* FGI - ANID_00887T0 - 

 Aspergillus fumigatus Af293* FGI - Afu1g15520 - 

 Neosartorya fischeri NRRL 181 FGI - NFIA_009890 - 

 Aspergillus terreus NIH2624* FGI - ATET_05246 - 

 Aspergillus oryzae RIB40 / ATCC 
42149* 

FGI - - - 

 Aspergillus carbonarius ITEM 5010 v3 JGI - 10485 - 

 Aspergillus clavatus NRRL 1 FGI - ACLA_019830 - 

 Aspergillus flavus NRRL 3357 FGI - AFL2T_01101 - 

 Aspergillus niger ATCC 1015 FGI - e_gw1_1.1117 fge1_pg_C_12000388 

Dothideomycetes/ 
Capnodiales 

Mycosphaerella graminicola v2.0* JGI - - 75341 

 Mycosphaerella fijiensis v2.0 JGI - 41182 82172 

Dothideomycetes/ 
Pleosporales 

Alternaria brassicicola ATCC 96866 JGI - AB06360.1 - 

 Stagonospora nodorum SN15* FGI - SNOT_02186 SNOT_08324 

 Cochliobolus heterostrophus C5* JGI - 57707 29777 

 Pyrenophora tritici-repentis Pt-1C-BFP JGI - PTRG_09405 PTRG_11638 

Leotiomycetes/ 
Helotiales 

Botrytis cinerea B05.10* FGI - - - 

 Sclerotinia sclerotiorum 1980 FGI - - SS1T_04628 

Sordariomycetes/ 
Sordariales 

Neurospora crassa OR74A* FGI - - - 

 Chaetomium globosum CBS 148.51 FGI - - - 

Sordariomycetes/ 
Magnaporthales 

Magnaporthe oryzae ATCC 64411* FGI MGG_04386 -  

Sordariomycetes/ 
Hypocreales 

Nectria haematococca v2.0* JGI 79968 44732  

 Fusarium graminearum PH-1 (NRRL 
31084)* 

FGI FGSG_10913 -  

 Fusarium oxysporum 4286* FGI FOXG_12848 FOXG_07646  

 Fusarium verticillioides 7600* FGI FVEG_11593T0 FVEG_04571T0  

 Trichoderma virens Gv29-8 v2.0 JGI 53233 67729 42211 

[Ascomycota/ 
Saccharomycotina]      

Saccharomycetes/ 
Saccharomycetales 

Yarrowia lipolytica CLIB122* Géno YALI0E07271g 
YALI0E35156g 

-  

 Candida albicans SC5314* CGD orf19_780 -  

 Candida albicans WO1 FGI CAWT_00928 -  

 Candida parapsilosis isolate 317 from 
CDC 

FGI CPAG_03627 -  

 Candida lusitaniae ATCC 42720* FGI CLUT_00442 -  

 Debaryomyces hansenii CBS767* Géno DEHA2D07040g -  

 Ashbya gossypii ATCC 10895* NCBI 45187924 -  

 Candida glabrata CBS138* Géno CAGL0M05533g -  

 Saccharomyces cerevisiae S288C* SGD YBR208C -  

 Saccharomyces cerevisiae RM11-1a FGI SCRT_02761 -  
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aThe phylum/subphylum (in square brackets) and class/order are given. 
bFGI: Fungal Genome Initiative (http://www.broadinstitute.org/science/projects/fungal-genome-
initiative/fungal-genome-initiative), JGI: Joint Genome Institute (http://www.jgi.doe.gov), Sanger: 
The S. pombe Genome Project (http://www.sanger.ac.uk/Projects/Fungi/), Géno: Génolevures 
Genomic Exploration of the Hemiascomycete Yeasts (http://www.genolevures.org]), CGD: Candida 
Genome Database (http://www.candidagenome.org/), NCBI: National Center for Biotechnology 
Information (http://www.ncbi.nlm.nih.gov), and SGD: Saccharomyces Genome Database 
(http://www.yeastgenome.org/).  

bSee Figure 4.1 for the enzyme name abbreviations. '-' indicates that no similar sequence was found. 

*These fungal species are used in our further analysis. 
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Table A4.5. Sequence sources of the urease, methylcrotonoyl-CoA carboxylase, and 
propionyl-CoA carboxylase from the selected 27 fungal species.a 
 Enzymesb 

Species  Urease MccA PccA 

Rhizopus oryzae RA 99-880 RO3G_06489 RO3G_06576 RO3G_06560 
Ustilago maydis 521 UM06045 UM04382 - 
Cryptococcus neoformans H99 CNAG_05540 CNAG_01680 - 
Coprinus cinereus  okayama7#130 CC1G_10059 CC1G_13741 CC1G_05511 
Schizosaccharomyces pombe 972h- SPAC1952_11c - - 
Coccidioides immitis  RS  CIMT_05193 CIMT_07030 CIMT_05331 
Aspergillus nidulans  FGSC A4 AN10079 AN4690 AN7764 
Aspergillus fumigatus  Af293 Afu1g04560 Afu5g08910 Afu5g07580 
Aspergillus terreus  NIH2624 ATET_03748 ATET_06576 ATET_08368 
Aspergillus oryzae RIB40 / ATCC 
42149 

AO090003000879 AO090020000495 - 

Mycosphaerella graminicola  v2.0 85598 70525 109805 
Stagonospora nodorum  SN15 SNOT_11285 SNOT_09555 SNOT_12342 
Cochliobolus heterostrophus  C5 95543 78650 105664 
Botritis cinerea B05.10 BC1T_13063 BC1T_08870 BC1T_02620 
Neurospora crassa  OR74A NCU03127 NCU00591 - 
Magnaporthe oryzae  ATCC 64411 MGG_01324 MGG_10320 - 
Nectria haematococca  v2.0 65875 92030 - 
Fusarium graminearum  PH-1 

(NRRL 31084) 
FGSG_00740 
FGSG_10627 

FGSG_08688 - 

Fusarium oxysporum 4286 FOXG_01071 
FOXG_17146 

FOXG_03110 - 

Fusarium verticillioides 7600 FVEG_00443 FVEG_01973 - 
Yarrowia lipolytica  CLIB122 - YALI0B14619g - 
Candida albicans  SC5314 - - - 
Candida lusitaniae  ATCC 42720 - - - 
Debaryomyces hansenii  CBS767 - - - 
Ashbya gossypii  ATCC 10895 - - - 
Candida glabrata  CBS138 - - - 
Saccharomyces cerevisiae  S288C - - - 

aSee Table A4.4 for the data source for each genome. 
bSee Figure 4.1 for the enzyme name abbreviations. The sequences IDs found from each genome is 
shown. '-' indicates that no similar sequence was found. 
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Table A4.6. Sequence sources of urea amidolyase, urea carboxylase, and amidase in eubacterial genomes. 
   Enzymesb 

Phylum or Class Species ACC#a UA UC A Urease 

Alphaproteobacteria Caulobacter crescentus NA1000 NC_011916 - 221234842 221234843 - 
 Asticcacaulis excentricus CB 48 NZ_ACQR00000000 - 241771960 241771961 - 
 Sinorhizobium medicae WSM419 NC_009636 - - - 150397583 

150397586 
150397588 

Betaproteobacteria Achromobacter piechaudii ATCC 43553 NZ_ADMS00000000 - 293607215 293607216 - 
 Bordetella pertussis Tohama I NC_002929 - - - 33594086 

33594087 
33594089 

 Nitrosomonas europaea ATCC 19718 NC_004757 - 30250344 
30250340* 

- - 

 Neisseria meningitidis FAM18 NC_008767 - - - - 
 Burkholderia sp. CCGE1001 NZ_ADDJ00000000 - 282888296 282888297 282888448 

282888449 
282888450 

Gammaproteobacteria Escherichia coli O111:H- str. 11128 NC_013364 - - - 260867324 
260867323 
260867322 

 Yersinia pestis Angola NC_010159 - - - 162421917 
162421306 

 Haemophilus influenzae 86-028NP NC_007146 - - - 68249136 
68249137 
68249138 

 Pantoea ananatis LMG 20103 NC_013956 291616199 291619625 291616199 - 
 Pantoea sp. At-9b NZ_ACYJ00000000 - 258639802 

258639881 
258639803 - 

 Shewanella oneidensis MR-1 NC_004347 - - - - 
 Pseudomonas aeruginosa LESB58 NC_011770 - - - 218893963 

218893960 
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218893962 

 Coxiella burnetii Dugway 5J108-111 NC_009727 - - - - 
 Pectobacterium carotovorum subsp. 

carotovorum PC1 
NC_012917 - 253688548 

253688770 
253688549 - 

 Xanthomonas campestris pv. campestris 
str. B100 

NC_010688 - - - - 

 Cellvibrio japonicus Ueda107 NC_010995 - 192360305 
192360281 

192360851 - 

 Teredinibacter turnerae T7901 NC_012997 - 254787389 254787390 254788040 
254788041 
254788042 

 Marinomonas sp. MED121 NZ_AANE00000000 - 87119094 87119095 87120670 
87120669 

 Klebsiella pneumoniae 342 NC_011283 - 206578981 206581101 206580665 
206579658 
206580264 

 Pseudomonas fluorescens SBW25 NC_012660 - - - 229588129 
229588133 
229588130 

Deltaproteobacteria Geobacter sp. M21 NC_012918 - - - - 
 Sorangium cellulosum 'So ce 56' NC_010162 - 162453191 - 162454831 

162454830 
Epsilonproteobacteria Helicobacter pylori B38 NC_012973 - - - 254778798 

254778799 
 Wolinella succinogenes DSM 1740 NC_005090 - 34557492 34557494 - 
Acidobacteria Acidobacterium capsulatum ATCC 51196 NC_012483 - - - - 
 Solibacter usitatus Ellin6076 NC_008536 - 116619994 116619993 - 
Cyanobacteria Synechococcus sp. PCC 7002 NC_010475 - - - 170076824 

170079032 
170077934 

 Gloeobacter violaceus PCC 7421 NC_005125 - 37520527 37520530 - 
 Cyanothece sp. PCC 7425 NC_011884 - 220907713 220908629 220907679 

220907680 
220907681 
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Deinococcus-Thermus Thermus thermophilus HB8 NC_006461 - - - - 
 Deinococcus deserti VCD115 NC_012526 - - - - 
Chloroflexi Dehalococcoides ethenogenes 195 NC_002936 - - - - 
Aquificae Aquifex aeolicus VF5 NC_000918 - - - - 
Thermotogae Thermotoga maritima MSB8 NC_000853 - - - - 
Fusobacteria Fusobacterium nucleatum subsp. nucleatum 

ATCC 25586 
NC_003454 - - - - 

Verrucomicrobia Verrucomicrobium spinosum DSM 4136 NZ_ABIZ00000000 - 171912641 171912640 171911815 
171911816 
171911817 

Chlamydiae Chlamydophila pneumoniae CWL029 NC_000922 - - - - 
 Chlamydia trachomatis B/TZ1A828/OT NC_012687 - - - - 
Bacterioidetes Porphyromonas gingivalis W83 NC_002950 - - - - 
Chlorobi Chlorobium limicola DSM 245 NC_010803 - - - - 
Fibrobacteres Fibrobacter succinogenes subsp. 

succinogenes S85 
NC_013410 - - - - 

Actinobacteria Mycobacterium tuberculosis F11 NC_009565 - - - 148823061 
148823060 
148823059 

 Corynebacterium aurimucosum ATCC 

700975 

NC_012590 - - - - 

 Streptomyces avermitilis MA-4680 NC_003155 - 29833240 29833239 29833648 
29829257 
29829258 
29833647 
29833646 

 Bifidobacterium longum subsp. infantis 

ATCC 15697 

NC_011593 - - - 213691032 
213691031 

Spirochaetes Borrelia burgdorferi ZS7 NC_011728 - - - - 

 Treponema denticola ATCC 35405 NC_002967 - - - - 
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Planctomycetes Rhodopirellula baltica SH 1 NC_005027 - - - - 

Firmicutes Clostridium botulinum A2 str. Kyoto NC_012563 - - - - 

 Mycoplasma hyopneumoniae 7448 NC_007332 - - - - 

 Streptococcus pneumoniae 70585 NC_012468 - - - - 

 Bacillus anthracis str. CDC 684 NC_012581 - - - - 

 Roseburia intestinalis L1-82 NZ_ABYJ00000000 - 240144639 240144640 - 

 
aAll the bacterial sequences were downloaded from National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). 
bSee Figure 4.1 for the enzyme name abbreviations. '-' indicates that no similar sequence was found. 

*This UC sequence was only 780 amino acids long, consisting of incomplete urea carboylase domain. Hence it was not used in 
phylogenetic analysis.  
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Table A4.7. Distance between amidase and urea carboxylase genes in eubacterial 
genomes. 

Species No. of bp between 
UC and Aa 

Caulobacter crescentus NA1000 -2 (0) 
Asticcacaulis excentricus CB 48 0 (0) 
Achromobacter piechaudii ATCC 43553b 18 (0) 
Burkholderia sp. CCGE1001 61 (0) 
Pantoea sp. At-9bb 2 (0) 
Pectobacterium carotovorum subsp. carotovorum PC1b -6 (0) 
Cellvibrio japonicus Ueda107 118 (0) 
Teredinibacter turnerae T7901 -6 (0) 
Marinomonas sp. MED121 25 (0) 
Klebsiella pneumoniae 342 -2 (0) 
Wolinella succinogenes DSM 1740 943 (1) 
Solibacter usitatus Ellin6076 2 (0) 
Gloeobacter violaceus PCC 7421 1,701 (2) 
Cyanothece sp. PCC 7425 979,743 (916) 
Verrucomicrobium spinosum DSM 4136 118 (0) 
Streptomyces avermitilis MA-4680 16 (0) 
Roseburia intestinalis L1-82 16 (0) 
 
aSee Figure 4.1 for the enzyme name abbreviations. The number of genes present between 
UC and A genes are given in parentheses. Negative distances indicate that these two genes 
are overlapped.  

bThese species have two copies of the urea carboxylase (UC) gene. The UC gene in this 
table is the one that is closest to the A gene in the respective genome. 
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Chapter 5 

Molecular Evolution of Sterol-Sensing Domain Proteins 

in Eukaryotes 
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5.0 Preface for Chapter 5 

 In this chapter, I studied the molecular evolution of sterol-sensing domain (SSD) 

proteins in representative species of all kingdoms of life. Sterol-sensing domain is known 

to “sense” sterol-levels in the cell and thereby regulates the synthesis and transport of 

sterols by various different pathways. These proteins include the hydroxymethylglutaryl-

CoA reductase (HMGCR), SREBP (sterol regulatory element binding protein) cleavage 

activating protein (SCAP), and Niemann-Pick C-1 type protein (NPC1). The SSD is also 

a part of signaling proteins Patched (PTC) and Dispatched (DISP), as well as Patched-

related (PTC-R) proteins.  Both PTC and DISP are involved in hedgehog signaling 

pathway for cell differentiation, where a cholesterol-bound ligand molecule is involved. 

The distribution of the SSD domain showed that this is present in all eukaryotes and 

remotely similar sequences are also present in bacteria. Phylogenetic analyses showed 

that these ancestral proteins evolved into DISP, PTC, PTC-R, and NPC1 acquiring their 

specific functions and in some cases getting lost or replaced in various lineages. We also 

showed that HMGCR with SSD, and SCAP may have been formed as results of domain 

acquisition. 
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5.1 Introduction 

Sterols are important components of cell membranes and are precursors to 

hormones. The major sterol of vertebrates and fungi is cholesterol and ergosterol, 

respectively. Plants possess varying compositions of stigmasterol and sitosterol as the 

major sterol [1]. In animals, cholesterol helps to regulate membrane fluidity and create a 

semipermeable barrier between cellular compartments. It modulates functions of 

membrane proteins and plays roles in membrane trafficking and transmembrane-

signaling processes. It also plays significant roles in diabetes, cancers, and other diseases 

related to the heart and brain [2]. For the proper functioning of the cell, the amount of 

sterol present at any time needs to be carefully regulated. Sterol homeostasis is 

maintained by several feedback controls that include transcriptional and post-

transcriptional mechanisms [3].  

The sterol-sensing (or sterol-regulatory) domain is present in multiple proteins 

that have a common property of sterol homeostasis with varying functions. The sterol-

sensing domain (SSD) is  ~180 amino-acids long and conserved in at least six families of 

proteins (see Figure 5.1): hydroxymethylglutaryl-CoA reductase (HMGCR), SREBP 

(sterol regulatory element binding protein) cleavage activating protein (SCAP), Niemann-

Pick C-1 type protein (NPC1), Patched (PTC), Patched-related (PTC-R), and Dispatched 

(DISP) [4]. All these classes of proteins have functions related to sterols. The SSD 

encompasses five transmembrane helices and is involved in sterol-level sensing in the 

cell.  

HMGCR is a sterol biosynthetic enzyme that is degraded when sterol levels are 

high. Along with the SSD, it consists of a catalytic domain about 400 amino acids long. 

SCAP is responsible for regulating SREBP, a transcription factor of cholesterol 

biosynthetic genes. Apart from SSD, the only other known domain this protein has is the 

WD-40 repeat (InterPro: IPR001680). For example, in the human SCAP, there are seven 
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WD repeats spanning 450 amino-acid long region. In both of these proteins, higher levels 

of sterols cause the SSD to bind to Insigs (proteins coded by the insulin induced gene) in 

the endoplasmic reticulum (ER). While Insig-bound SCAP is retained in the ER, Insig-

bound HMGCR is ubiquitinated and degraded [5].  Yabe et al. [6] showed that three 

different point mutations in the SSD of SCAP prevent sterol-induced binding of SCAP to 

Insig.  

NPC1 is responsible for intracellular transport of sterol. Niemann-Pick type C 

disease, caused by mutations in the NPC1 gene, is a fatal lipid storage disorder, which is 

characterized by lysosomal cholesterol accumulation. Millard et al. [7] showed that 

mutations in the SSD regions of NPC1 disrupt normal transportation of cholesterol in the 

cells.  PTC plays a role in cell differentiation during development and morphogenesis. It 

is a receptor of the hedgehog protein, a ligand that is bound to cholesterol [8]. DISP is 

involved in releasing the cholesterol-bound hedgehog from the cell [9]. Both PTC and 

DISP are key proteins of the hedgehog-signaling pathway that is essential for 

development and differentiation.  

The actual binding of cholesterol or cholesterol analog has only been shown in 

NPC1 and SCAP. A functional SSD is required in NPC1 for binding of a cholesterol 

analog [10]. Binding of cholesterol has been demonstrated in SCAP at an octahelical 

region that includes the SSD [11]. Mutations in SSD can be lethal to cells and cause 

various diseases due to the abruption of cholesterol homeostasis in cells and signaling 

pathways. The role of SSD in sterol homeostasis in cells and cell differentiation makes it 

an important target for bio-medical research in understanding and curing cholesterol-

related diseases. 

Among the six different families of SSD proteins in eukaryotes, only HMGCR 

proteins have high sequence similarities to prokaryotic proteins. The prokaryotic 

HMGCR, however, lacks the SSD region. Similarities in membrane topology have been 

found between NPC1 and members of the resistance-nodulation-division (RND) family 
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of prokaryotic permeases [12]. The RND protein superfamily is a ubiquitous group of 

permeases originally identified in bacteria; now known to have representation in all major 

kingdoms [13]. This superfamily has been defined into seven subfamilies by Tseng et al. 

[13]. One of them consists of the eukaryotic sterol homeostasis (ESH) family of proteins, 

which includes HMGCR, SCAP, PTC and NPC1, while the rest of the subfamilies is 

made up of bacterial and archaeal permeases. Expression of human NPC1 in Escherichia 

coli showed that this protein was able to transport acriflavine and fatty acids and act as a 

bacterial permease [14]. There are also RND transporters in bacteria that are predicted to 

have functions related to hopanoid biosynthesis (InterPro: IPR017841).  Hopanoids are 

sterol analogs in bacteria [1]. These results, and the similarities between SSD proteins 

and the other members of the RND superfamily show that the bacterial permeases could 

be the ancestral proteins to the eukaryotic SSD proteins [15].    

Despite its importance, SSD proteins have not been thoroughly studied as a 

protein family distributed among all kingdoms of life. In order to elucidate the molecular 

evolution of SSD and related protein families, we examined SSD sequences in various 

eukaryotic species. While metazoans consisted of all the six types of SSD-containing 

proteins, fungi lacked DISP, PTC, and PTC-R. Land plants consisted of only the NPC1 

while some green algae consisted only of PTC, PTC-R and DISP.  Basal eukaryotes 

possessed NPC1, DISP, PTC and PTC-R.  We also identified HMGCR proteins with and 

without SSDs. Based on the evolutionary relationships among these HMGCR proteins, 

we discussed how their functions and domains have been acquired during the evolution 

of this protein family.  

 

5.2 Materials and Methods  

SSD sequences used 

Seventy-two annotated SSD-containing proteins (Prosite profile PS10156 [16]) 
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were gathered from the UniProt database [17]. The SSD regions predicted from these 

proteins (only those longer than 100 amino acids) were extracted. The resulting 67 SSD 

sequences were used to build a multiple alignment using MAFFT (version 6.240; [18]) 

with default parameters (FFT-NS-2, a progressive FFT alignment with two tree-building 

cycles). The maximum likelihood phylogeny [19] was reconstructed by RAXML (version 

7.0.4 [20]) using '-m PROTMIXWAG' to use WAG amino-acid substitution model [21] 

with a fixed number approximation followed by a refined gamma-model of rate 

heterogeneity and '-x 1234' to set the random seed. Based on the phylogeny identical or 

highly similar SSD sequences were removed. Four bacterial sequences were annotated as 

SSD-containing by Prosite. However, these bacterial sequences are extremely diverged 

compared to the eukaryotic SSD sequences. As they do not align well with the eukaryotic 

SSD sequences, we did not include these bacterial sequences in our training dataset. After 

this, we had a total of 35 SSD sequences: 6 from DISP, 5 from PTC, 5 from PTC-R, 5 

from NPC1, 12 from HMGCR, and 2 from SCAP.  

 

Building the profile hidden Markov model for SSD sequences 

A multiple alignment of these 35 sequences were built using MAFFT (version 

6.240;  [18])  with default parameters (FFT-NS-2, a progressive FFT alignment with two 

tree-building cycles). The alignment was used to build a profile hidden Markov model 

(HMM) using the HMMER software (version 3.0 [22])  with its program hmmbuild using  

default parameters: ‘-fast >=symfrac’ where symfrac = 0.5 (for defining consensus 

columns as those that have at least 50% residues as opposed to gaps); ‘-wpb’ (for using 

Henikoff position-based sequence weighing scheme [23] so that uneven phylogenetic 

representation in the training set will not bias the model); ‘-seed 42’; and a Dirichlet 

mixture priors.   
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Organisms searched 

For both SSD and HMGCR, 98 complete eukaryotic genomes were searched. It 

included 54 fungi, 21 plants (including 9 green algae), 9 basal eukaryotes, and 14 

metazoa. For SSD we also searched in 56 bacterial genomes from 14 phyla as 

representatives for the prokaryotes. These seuqnces were downloaded from the National 

Center for Biotechnology Information [24]. The sequence names and ACC # are given in 

Table 5.S1. 

 

Profile HMM searches for SSD sequences 

The entire predicted protein set from each genome was searched using the profile 

HMM. The program hmmsearch from HMMER(version 3.0 [22]) was used with default 

parameters such as -seed 42, reporting threshold e-value of 10 (-E) and inclusion 

threshold of evalue 0.01 (-incE). The total number of sequences in the database was set to 

50,000 (-Z option) in order to obtain the e-values comparable among different genome 

sizes. The e-value cut-off used for eukaryotic SSD proteins was 1 x 10-11. For bacterial 

SSD hits, it was set at 1 x 10-4 because bacterial proteins are very diverged from 

eukaryotic proteins unless they are results of recent horizontal transfer.  

 

Phylogenetic analysis 

Only the predicted SSD region was used to reconstruct phylogenetic trees. The 

multiple alignments were reconstructed using MAFFT (version 6.240; [18])  with default 

parameters (FFT-NS-2, a progressive FFT alignment with two tree-building cycles). The 

maximum-likelihood phylogeny [19] was reconstructed as implemented in raxmlHPC-

MPI (version 7.0.4; [20]) using the following options: '-m PROTMIXWAG' to use WAG 

amino-acid substitution model [21] with a fixed number approximation followed by a 

refined gamma-model of rate heterogeneity, '-f a' for a rapid bootstrap analysis, '-x 1234' 



  163 

 

to set the random seed, and '-# 1000' for 1000 pseudoreplicates for bootstrap analysis. To 

gather the bootstrap values, the 'consense' program of the Phylip package (v. 3.68, [25]) 

was used. Due to their extreme divergence, the sequences from Branchiostoma floridae 

and Caenorhabditis elegans were removed from the tree reconstruction.  

 

Classification of SSD-containing proteins 

SSD-containing proteins identified were classified into one of the six classes 

based on the phylogenetic clustering and reciprocal BLASTP (version 2.2.17 [26]) results 

as follows. All the search results were first classified according to the clustering pattern 

of the SSD phylogeny. These sequences were used as a query to search against the human 

proteome using BLASTP. When each sequence search resulted in any one of the six 

types of SSD proteins from the human proteome as the top hit(s), that query sequence 

was considered to be an SSD protein of that type. The default parameters were used with 

BLASTP program (version 2.2.17), which include BLOSUM62 scoring matrix, low-

complexity filtering, gap-open and gap-extend penalty of 11 and 1, respectively. In order 

to obtain the E-values comparable across different size of the genomes, the "effective 

length of database" was set to 500,000,000 (using -z option). 

 

 

HMGCR search  

The human HMGCR sequence HMDH_HUMAN (P04035) of length 888 amino 

acids was used to search for HMGCR sequences that had the SSD as well as those that 

did not using BLASTP.  This human HMGCR has the SSD region and the catalytic 

domain (see Figure 5.1). The SSD region was not found in all HMGCR proteins while 

the catalytic domain was present in all HMGCRs. Even though the SSD profile HMM 

search was able to find those HMGCRs with SSD, this BLASTP (version 2.2.17) search 
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was required to find those HMGCRs that lacked the SSD. For HMGCR hits, e-value cut-

off was set at 1x10-16. The parameters used for BLASTP is the same as above. For the 

phylogenetic analysis of HMGCR in fungi, the complete sequences (~880 amino acid) as 

well as only the catalytic domain (~440 amino acid) were used. Phylogenies were 

reconstructed using RAXML with parameters described above. 

 

5.3 Results and Discussion 

5.3.1 Distribution of SSD proteins among eukaryotic genomes 

The SSD was searched in genomes of 14 metazoan species, 54 fungal species, 21 

plant species (including 9 green algae), and 9 basal eukaryotic species. SSD sequences 

were found in all 98 eukaryotic genomes we searched. Table 5.1 shows the distribution of 

SSD proteins found in metazoa. Besides the absence of SCAP in Hydra magnipapillata, 

all the metazoans had 1-2 copies each of HMGCR, SCAP, and NPC1. The HMGCR of 

Nematostella vectensis was missing the catalytic domain but had the SSD region, while 

the Caenorhabditis elegans HMGCR lacked the SSD region and had only the catalytic 

domain. The number of PTC, DISP, and PTC-R varied, with C. elegans and 

Branchiostoma floridae having the most number of PTC-R: 29 and 40, respectively. This 

may be due to similar gene expansions observed for a nuclear receptor gene in C. elegans 

[27] and G-protein coupled receptor genes in B. floridae [28].  

In fungi, only three SSD-containing proteins, HMGCR, SCAP, and NPC1, were 

found (Table 5.2). DISP, PTC, and PTC-R were completely missing from all the 54 

fungal genomes we searched. Furthermore, the SCAP protein is completely absent from 

Eurotiomycetes (phylum Ascomycota; subphylum Pezizomycotina) and Saccharomycetes 

(phylum Ascomycota; subphylum Sachcaromycotina) except for Yarrowia lipolytica. 

Although we did not find the SCAP protein from Chitridiomycetes either, we only have 

one representative (Batrachochytrium dendrobatidis) from this phylum. These results 



  165 

 

indicate that there have been at least two independent gene-loss events during fungal 

evolution. The NPC1 is present in all fungal species except B. dendrobatidis (phylum 

Chitridiomycotina), Schizosaccharomyces pombe (phylum Ascomycota; subphylum 

Taphrinomycotina), and Aspergillus niger (phylum Ascomycota; subphylum 

Pezizomycotina). The loss of the NPC1 gene from A. niger is recent because all its 

closely related species from the Aspergillus group have this gene. However, we cannot 

determine if the loss of NPC1 from B. dendrobatidis and S. pombe is species- or lineage-

specific since we have only one representative species each from the phylum 

Chitridiomycetes and the subphylum Taphrinomycotina. All fungi had a copy of SSD-

containing HMGCR except for Chaetomium globosum  (phylum Ascomycota; 

subphylum Pezizomycotina), which only had the HMGCR that lacked SSD.  Several 

species consisted of both types of HMGCRs, with and without SSD. These occurrences 

were dispersed throughout the fungal kingdom, but seemed to be more prominent in the 

Aspergillus group of species. We will discuss the HMGCR in fungi later. 

In plants, there was a complete absence of SSD-containing HMCGR and SCAP 

(Table 5.3). All higher plants possessed multiple copies of HMGCR without the SSD, 

while all the green algae lacked this enzyme. Green algae are shown to have an 

alternative sterol synthesis pathway called the deoxyxylulose 5-phosphate (DXP) 

pathway, which takes place in their plastids [29]. While fungi, animals and some bacteria 

appear to use the mevalonate pathway, many bacteria (including many human pathogens) 

and green algae appear to rely exclusively on the DXP pathway, and some algae, mosses 

and liverworts, marine diatoms, and higher plants appear to use both pathways [30]. So 

perhaps there is a relation between having the SSD in HMGCR or having an alternate 

sterol synthesis pathway in eukaryotes. 

 Most of the plants had NPC1 except for prasinophyte green algae (Micromonas 

and Ostreococcas species), which is considered to retain features of the ancestral green 
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lineage [31]. While PTC, DISP, and PTC-R were absent from higher plants (with an 

exception of a moss Physcomitrella patens), these genes were present in the prasinophyte 

green algae.  

In basal eukaryotes (Table 5.4), the SSD-containing HMGCR was absent. The 

NPC1 was found in Naegleria gruberi (amoeboflagellate) and in two Dictyostelium 

species (Amoebozoa). PTC was present only in Monosiga brevicolis (Choanozoa). DISP 

and PTC-R were found in the species of Haptophyta, Stramenopiles, and Choanozoa. The 

presence of these genes in these basal eukaryotic organisms indicates that the ancestral 

SSD-containing proteins in eukaryotes may have been similar to NPC1, DISP, PTC, and 

PTC-R. This hypothesis is further discussed in the following sections.  

 

5.3.2 Distribution of SSD proteins among prokaryotes 

We also searched 54 eubacterial genomes for SSD sequences. We found 46 

sequences that were similar to SSD (Table 5.S1). These were distant relatives as shown 

by their higher e-values (e < 1 x 10-4). These proteins were permeases/transporters, and 

they were in various bacterial classes with species having one or more similar sequences 

to the SSD (Table 5.S1). These sequences have high number of transmembrane regions 

(9-14).  Some of these sequences are shorter (~350 amino acids) and are subunits of a 

larger transporter unit. Among the transporters are two sequences (gi|282886364 and 

gi|253699522) annotated as “hopanoid biosynthesis associated RND transporter like”. 

Hopanoids are bacterial pentacyclic compounds whose primary function is in maintaining 

plasma membrane fluidity [1]. This function is similar to what cholesterol does in higher 

eukaryotes. Therefore, these proteins would be very likely candidates for bacterial 

versions of SSD proteins. As was found in our study as well as in a previous study [15], 

these bacterial RND genes were closest to the eukaryotic PTC, DISP, and NPC1 proteins 

in sequence similarity.  
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5.3.3 Phylogenetic analysis of the entire SSD-containing proteins  

Figure 5.2 is the phylogenetic tree based on SSD sequences from all SSD-

containing proteins found both in eukaryotes and in bacteria.  The prokaryotic sequences 

are shown in red. The bootstrap support to separate the cluster of all bacterial proteins 

from eukaryotic proteins is high (93%).  The outermost eukaryotic protein group is the 

DISP sequences (94% bootstrap support). The large number of transmembrane regions in 

DISP proteins (12) is also similar to the ones found in bacterial transporters. Metazoans, 

prasinophyte green algae, and basal eukaryotes have DISP proteins but none of the fungal 

species has it. The last common ancestral species of fungi must have lost this gene. The 

PTC-R and PTC proteins seem to have diverged next, although their phylogenetic 

relationships are not well supported except that the PTC proteins cluster together with 

74% bootstrap support. Neither PTC nor PTC-R proteins were found in fungal species; 

however, metazoans, green algae and basal eukaryotes were well represented in these 

protein groups, as in the case for DISP. It is thus likely that fungi have lost PTC and 

PTC-R genes as well. The inner cluster encompassing NPC1, SCAP, and HMGCR 

protein groups is well supported (82% bootstrap value). The SSD regions of these three 

proteins seem to be more closely related to each other than with DISP, PTC, and PTC-R. 

Fungal and metazoan sequences are represented in all of the NPC1, SCAP, and HMGCR 

groups while basal eukaryotes and plants are represented only in the NPC1 protein group. 

As described later, plants do have HMGCR proteins. However, they lack SSD regions 

and this is why the plant HMCGRs are not included in this SSD-sequence based 

phylogeny. The phylogenetic analysis showed that SSD sequences of HMCGR and 

SCAP proteins are most closely related and their sister relationship is highly supported 

(95% bootstrap value). These proteins also have similar numbers of transmembrane 

regions (7-8, see Figure 5.1). 
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5.3.4 Phylogenetic analysis of HMGCR and SCAP proteins 

We performed more detailed phylogenetic analysis using SSD sequences of 

representative HMGCR and SCAP proteins, the most closely related SSD-containing 

protein groups (Figure 5.3). The bootstrap analysis showed that HMGCR and SCAP 

proteins form strongly supported clusters with the 95% supporting value. These two 

genes were clearly present in the last common ancestor of fungi (colored in blue) and 

metazoans (colored in black). We did not find any duplication events during the SCAP 

gene evolution except for B. floridae. On the other hand, we found several cases of 

duplications in the HMGCR gene: in the Aspergillus group, Saccharomyces cerevisiae, 

Drosophila melanogaster, Takifugu rubripes, and again in B. floridae.   

 

5.3.5 Phylogenetic analysis of DISP, PTC, PTC-R, and NPC1 proteins 

Figure 5.4 shows the phylogenetic analysis of SSD sequences extracted from the 

other four SSD-containing proteins (DIPS, PTC, PTC-R, and NPC1). All DISP proteins 

cluster together with 100% bootstap support. Within the DISP protein group, most of the 

metazoan DISP sequences form a well-supported cluster (93% bootstrap value). Two of 

the human, T. rubripes, Xenopus tropicalis, N. vectensis, and one of Lottia gigantea DISP 

proteins fall in this cluster whereas another DISP copies from these organisms fall 

outside in one of the two different metazoan clades. Among plants, only the prasinophyte 

green algae (Ostreococcus and Micromonas) were found in the DISP group. Interestingly, 

these ancestral types of green algae have all DISP, PTC, and PTC-R. More derived types 

of green algae (Chlamydomonas and Volvox) have only PTC-R. Furthermore, DISP, PTC, 

and PTC-R are also absent in higher plants except for two PTC sequences found in the 

moss P. patens. The higher land plants seem to have lost the DISP, PTC, and PTC-R 

genes after the divergence from green algal lineages. The NPC1 proteins are clearly 

divided into groups specific to higher plants, non-prasinophyte green algae, basal 

eukaryotes, metazoans, and fungi (96%, 98%, 94%, 62%, and 98% bootstrap values, 
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respectively). This shows that NPC1 was present in the last common ancestor of all these 

organisms and they have been maintained in all these organismal groups. NPC1, like 

PTC, PTC-R, and DISP, has high number (13) of transmembrane regions.  

 

5.3.6 Evolution of fungal HMGCR proteins 

As mentioned before, we found many duplicated copies of HMGCR proteins with 

and without SSD in fungi (see Table 5.2). To understand the evolutionary process of such 

duplications, we reconstructed a phylogeny using the entire HMGCR sequences, which 

includes the catalytic domain and the SSD, where available, from representative fungal 

and metazoan species (Figure 5.5).  Trees were also constructed using only the catalytic 

domain (~440 amino acids) of the HMGCR. Probably due to the short length and high 

conservation of this region, the phylogeny did not result in a good resolution (data not 

shown). The phylogeny based on the entire HMGCR protein sequences shows two 

distinct clusters for fungal and metazoan HMGCRs supported by 98% bootstrap support. 

HMGCR sequences shown in red lack SSD while those in black have SSD (Figure 5.5). 

One cluster with high bootstrap support (91%) includes only fungal HMGCR proteins 

that have no SSD (cluster ‘a’). The fungal species included in this cluster also have at 

least one other copy of HMGCR that has SSD. Even within this cluster of HMGCRs with 

no SSD there are various numbers of duplicated HMGCRs identified within the same 

species. In this figure we also see that the Zygomycetes Rhyzopus oryzae and Mucor 

circilloides have undergone duplications most likely before speciation of these two 

species. One of the R. oryzae copy then lost the SSD (R. oryzae-1 in Figure 5.5). Species-

specific duplications are also seen in S. cerevisiae and Laccaria bicolor. While S. 

cerevisiae kept SSD in both its HMGCR, L. bicolor has lost SSD in one of its HMGCR. 

Another loss of SSD can be seen in the only copy of HMGCR in Chaetomium globosum. 

There are multiple duplication events as well as loss of SSD during the evolution of 

fungal species as shown in Figure 5.5. One sub-cluster of cluster ‘a’ has a long branch 
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length indicating the changes in evolutionary rates in these sequences after the 

duplication and loss of SSD. This could be a possiblility of long branch attraction and 

therefore not likely a representation of the true phylogeny reflecting the evolution of 

those SSD sequences. Nonetheless, what we see is that the HMGCR is prone to 

duplication and it also tends to be lost.  Also from Figure 5.3, we see that HMGCR is 

prone to duplication not only in fungi but also in metazoans (D. melanogaster, T. 

rubripes, X. tropicalis, B. floridae). 

 

5.3.7 Evolution of SSD and SSD-containing proteins 

The distribution of the SSD proteins in various eukaryotic lineages is summarized 

in Figure 5.6. Based on a eukaryotic tree of life (Parfrey et al. [32]), we hypothesize the 

evolutionary history of SSD proteins as follows. The presence of SSD sequences in all 

the eukaryotic organisms we examined indicates that SSD existed before the eukaryotic 

divergence. A bacterial permease, member of the RND superfamily, could have been a 

bacterial-sterol transporter or functionally related to hopanoid transporter [15]. This 

protein may have evolved into the ancestral protein of current SSD-containing proteins 

gaining new functions and evolving to contain a domain for sterol-sensing. The transfer 

of this bacterial sequence to eukaryotes could have been either by vertical descent or 

lateral transfer at around the origin of eukaryotes. Among all the SSD-containing proteins, 

the DISP, PTC and PTC-R seems to be the ancestral types, while NPC1 seems to be 

closely related to the more recently formed SSD proteins, HMGCR and SCAP.  From 

NPC1 proteins, the SSD sequence appeared to be transferred to HMGCR proteins, and 

also merged with WD-40 repeat sequences to form SCAP in the lineage before the 

metazoan/fungal divergence.  

The HMGCR without the SSD was already present in a wide range of eukaryotes 

and bacteria. The SSD in HMCGR and SCAP have regulatory functions [4]. These 

regions add another level of control in the cell for sterol homeostasis, and this may have 
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played part in the evolution of the organisms in these lineages. The NPC1 protein, whose 

function is in transporting of sterols in the cell, was found in most of the lineages except 

choanozoa, prasinophyte green algae, haptophyta, and stramenophiles. DISP, PTC, and 

PRC-R, all three occur in metazoa and choanozoa. All three are absent from fungi, 

amoebozoa, heterobolosea, and plants. The PTC and DISP are known to function in body 

patterning. Thus their presence in metazoa and choanozoa are understandable. Only PTC-

R was also found in non-prasinophyte green algae while both PTC-R and DISP was 

found in haptophyta and stramenophiles. Figure 5.6 also shows the dichotomy between 

NPC1 and PTC/PTC-R/DISP proteins except in metazoa where both groups of proteins 

are present. It is possible that PTC/PTC-R/DISP proteins are acting as sterol transporters 

wherever NPC1 is absent.   

 

5.4 Conclusions 

We examined the distribution of the SSD proteins in various organisms. Previous 

studies have indicated their remote relationship with the bacterial permeases [4, 13, 33]. 

Our evolutionary analyses confirmed the possible bacterial origin of eukaryotic SSD 

sequences. We showed that these ancestral proteins evolved into DISP, PTC, PTC-R, and 

NPC1 acquiring their specific functions and in some cases getting lost or replaced in 

various lineages. We also showed that HMGCR with SSD, and SCAP may have been 

formed as results of domain acquisition. In general, the fungi and animals that use the 

mevalonate pathway have SCAP and HMGCR with SSD.  The green algae that use only 

the DXP pathway have neither the SCAP, nor the HMGCR. The plants that use both 

pathways, do not have SCAP but have HMGCR without SSD. Therefore it seems that 

SSD in HMGCR and the SCAP protein is related to having only the mevalonate pathway 

for sterol synthesis where they both provide regulatory functions.  
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Table 5.1. Distribution of SSD proteins in metazoa. 

a See Figure 5.1 for protein name abbreviations. '-' indicates absence of similar protein sequence. Numbers in parentheses indicate that HMGCR 
sequence had no SSD region.  
* This sequence was found to have SSD and clustered along with other HMGCR sequences in the phylogeny. However, no catalytic domain was 
found in this sequence.  

SSD proteinsa Phylum or 
subphylum Species Total SSD 

HMGCR NPC1 SCAP PTC DISP PTC-R 
Placozoa Trichoplax adharaens 5 1 1 1 - 1 1 
Cnidaria Nematostella vectensis (sea anemone) 16 1* 1 1 1 6 6 
 Hydra magnipapillata 7 1 2 - - 2 2 
Mollusca Lottia gigantean (sea snail) 12 1 1 1 1 2 6 
Annelida Hellobdella robusta (leech) 6 1 1 1 1 1 1 
 Capitella teleta (segmented worm) 16 1 1 1 1 8 4 
Nematoda Caenorhabditis elegans (roundworm) 39 (1) 2 1 5 2 29 
Arthropoda Drosophila melanogaster 8 2 2 1 1 1 1 
 Daphnia pulex 8 1 2 1 1 1 2 
Chordata         

Cephalochordata Branchiostoma floridae (lancelet) 51 2 1 2 2 4 40 
Urochordata Ciona intestinalis (sea squirt) 6 1 2 1 1 1 - 
Vertebrata Takifugu rubripes (pufferfish) 13 2 2 1 2 3 3 
Amphibia Xenopus tropicalis (Western clawed frog) 12 1 2 1 2 3 3 
Mammalia Homo sapiens 12 1 2 1 2 3 3 
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Table 5.2. Distribution of SSD proteins in fungi.   
 

SSD proteinsa 

Taxonomical group Species Total SSD 
HMGCR NPC1 SCAP 

[Zygomycota]      
     Zygomycetes/Mucorales Rhizopus oryzae 3 1 (1) 1 1 
     Phycomyces blakesleeanus 4 1 1 2 
     Mucor circinelloides 6 3 1 2 
[Chytridiomycota]      
     Chitridiomycetes/Chytridiales Batrachochytrium dendrobatidis 1 1 - - 
[Basidiomycota/Agaricomycotina]      
     Tremellomycetes /Tremellales Cryptococcus neoformans 3 1 1 1 
     Homobasidiomycetes/Agaricales Coprinus cinereus 3 1 1 1 
      Laccaria bicolor 3 1 (1) 1 1 

       Pleurotus ostreatus 3 1 1 1 
     Homobasidiomycetes/Russulales Heterobasidion annosum 3 1 1 1 
     Homobasidiomycetes/Boletales Serpula lacrymans 3 1 1 1 
[Basidiomycota/Ustilaginomycotina]      
     Ustilaginomycetes/Ustilaginales Ustilago maydis 3 1 1 1 
[Basidiomycota/Pucciniomycotina]      
      Microbotryomycetes/Sporidiobolales Sporobolomyces roseus 3 1 1 1 
[Ascomycota/Taphrinomycotina]      

Schizosaccharomycetes/Schizosaccharomycetales Schizosaccharomyces pombe 2 1 - 1 
[Ascomycota/Pezizomycotina]      

Eurotiomycetes/Onygenales Microsporum gypseum 2 1 1 - 
 Microsporum canis 2 1 (1) 1 - 
 Trichophyton equinum 2 1 1 - 
 Coccidioides immitis RS 2 1 1 - 
 Coccidioides posadasii str. Silveira 2 1 1 - 
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 Histoplasma capsulatum H143 2 1 1 - 
 Blastomyces dermatitidis ER-3 2 1 1 - 
 Paracoccidioides brasiliensis Pb01 2 1 1 - 
Eurotiomycetes/Eurotiales Aspergillus nidulans 2 1 (1) 1 - 
 Aspergillus fumigatus 3 2 1 - 
 Neosartorya fischeri 3 2 (1) 1 - 
 Aspergillus terreus 3 2 (2) 1 - 
 Aspergillus oryzae 2 1 (4) 1 - 
 Aspergillus carbonarius 4 3 (1) 1 - 
 Aspergillus clavatus 2 1 1 - 
 Aspergillus flavus 3 2 (3) 1 - 
 Aspergillus niger 2 2 (2) - - 
Dothideomycetes/Capnodiales Mycosphaerella graminicola 3 1 1 1 
 Mycosphaerella fijiensis 3 1 1 1 
Dothideomycetes/Pleosporales Alternaria brassicicola 3 1 1 1 
 Stagonospora nodorum 3 1 1 1 
 Cochliobolus heterostrophus 3 1 1 1 
 Pyrenophora tritici-repentis 3 1 1 1 
Leotiomycetes/Helotiales Botrytis cinerea 3 1 1 1 
 Sclerotinia sclerotiorum 3 1 1 1 
Sordariomycetes/Sordariales Neurospora crassa 3 1 1 1 
 Chaetomium globosum 2 (1) 1 1 
Sordariomycetes/Magnaporthales Magnaporthe oryzae 3 1 1 1 

     Sordariomycetes/Hypocreales Nectria haematococca 3 1 1 1 
 Fusarium graminearum 3 1 1 1 
 Fusarium oxysporum 3 1 (4) 1 1 

 Fusarium verticillioides 3 1 1 1 
 Trichoderma virens 3 1 1 1 

[Ascomycota/Saccharomycotina]      
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     Saccharomycetes/Saccharomycetales Yarrowia lipolytica 3 1 1 1 
     Candida albicans SC5314 2 1 1 - 
     Candida parapsilosis 2 1 1 - 
     Candida lusitaniae 2 1 1 - 
     Debaryomyces hansenii 2 1 1 - 
     Ashbya gossypii 2 1 1 - 
     Candida glabrata 2 1 1 - 
     Saccharomyces cerevisiae 3 2 1 - 

 
 
a See Figure 5.1 for protein name abbreviations. '-' indicates absence of similar protein sequence. Numbers in parentheses indicate that these 
HMGCR sequences had no SSD region.  
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Table 5.3. Distribution of SSD proteins in plants. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a See Figure 5.1 for protein name abbreviations. '-' indicates absence of similar protein sequence. Numbers in parentheses indicate that these 
HMGCR sequence had no SSD region.  

SSD proteinsa 

Plant Group Species Total SSD 
HMGCR NPC1 SCAP PTC DISP PTC-R 

Green algae 
(prasinophytes) Micromonas pusilla 4 - - - 1 3 - 

 Micromonas RCC299 8 - - - - 6 2 
 Ostreococcus lucimarinus 5 - - - 1 3 1 
 Ostreococcus tauri 6 - - - 1 4 1 
 Ostreococcus RCC809 6 - - - 1 4 1 

Green algae Chlorella sp. NC64A 1 - 1 - - - - 
 Coccomyxa sp. C-169 1 - 1 - - - - 
 Chlamydomonas reinhardtii 3 - 1 - - - 2 
 Volvox carterii 2 - 1 - - - 1 

Spikemoss Selaginella moellendorffii 2 (2) 2 - - - - 
Moss Physcomitrella patens 4 (3) 2 - 2 - - 

Grass Sorghum bicolor 1 (3) 1 - - - - 
 Oryza sativa 1 (3) 1 - - - - 
 Brachypodium distachyon 1 (3) 1 - - - - 
Flowering plants Arabidopsis thaliana 2 (2) 2 - - - - 
 Arabidopsis lyrata 2 (2) 2 - - - - 
 Cucumis sativus 3 (3) 3 - - - - 
 Mimulus guttatus  1 (6) 1 - - - - 
 Ricinus communis (castor) 2 (3) 2 - - - - 
 Manihot esculenta (cassava) 3 (6) 3 - - - - 
Tree Populus trichocarpa 3 (6) 3 - - - - 
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Table 5.4. Distribution of SSD proteins in basal eukaryotes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
a See Figure 5.1 for protein name abbreviations. '-' indicates absence of similar protein sequence. Numbers in parentheses indicate that those 
HMGCR sequence had no SSD region.  
 
 
 

SSD proteinsa 

Plant Group Species Total SSD 
HMGCR NPC1 SCAP PTC DISP PTC-R 

Haptophyta Emiliania huxleyi CCMP1516 10 (3) - - - 8 2 
Stramenopiles (Heterokonta)        

microalga Aureococcus anophagefferens 8 - - - - 6 2 
diatoms Fragilariopsis cylindrus 3 (1) - - - 2 1 

 Phaeodactylum tricornutum 3 (1) - - - - 3 
 Thalassiosira pseudonana 3 (1) - - - 2 1 

Heterobolosea 
(amoebaflagellate) Naegleria gruberi  1 (2) 1 - - - - 

Amoebozoa  Dictyostelium discoideum 2 (2) 2 - - - - 
 Dictyostelium purpureum 2 (2) 2 - - - - 
Choanozoa 

(choanoflagellate) Monosiga brevicollis 4 (1) - - 2 1 1 
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Figure 5.1. Topology of the SSD proteins. The lengths and topology of the proteins 
shown are based on the human SSD proteins. The cylindrical structures are the 
transmembrane regions. The SSD regions are indicated in red. The top side of each 
protein is cytoplasmic. Enzyme names are as follows. HMGCR: 3-hydroxy-3-
methylglutaryl-coenzyme A reductase, SCAP: Sterol regulatory element binding protein 
clevage activating protein, NPC1: Niemann-Pick type C1 protein, PTC: Patched protein, 
PTC-R: Patched related protein, and DISP: Dispatched protein. 
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Figure 5.2. Maximum-likelihood phylogeny of the SSD protein family. Sequences marked 
in red are bacterial, blue is fungi, gray is metazoans, green is plants, and magenta is basal 
eukaryotes. Numbers at the nodes are the bootstrap support values (%). Only values higher 
than 65% are shown for major nodes. See Figure 5.1 for protein name abbreviations.  
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Figure 5.3. Maximum-likelihood phylogeny of the SSD regions of SCAP and HMGCR. 
Sequences marked in blue are fungi and those in black are metazoans. Numbers at the nodes 
are the bootstrap support values (%). Only values higher than 65% are shown for major 
nodes. See Figure 5.1 for protein name abbreviations.  
 



  185 

 

 

 

 
 
 
Figure 5.4. Maximum-likelihood phylogeny of the SSD regions of DISP, PTC, PTC-R, and 
NPC1. Sequences marked in blue are fungi, black are metazoans, cyan are prasinophyte green 
algae, green are plants and other non-prasinophyte green algae, and magenta are basal eukaryotes. 
Numbers at the nodes are the bootstrap support values (%). Only values higher than 60% are 
shown for major nodes. See Figure 5.1 for protein name abbreviations.  
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Figure 5.5. Maximum-likelihood phylogeny of the fungal HMGCR protein sequences. Sequences 
in red are HMGCRs that lack the SSD region while the sequences in black have the SSD region. 
Numbers at the nodes are the bootstrap support values (%). Only values higher than 70% are shown for 
major nodes. 
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Figure 5.6. Distribution of the SSD-containing proteins among eukaryotes. The 
eukaryotic tree is based on Parfrey et al. [32]. The polytomies are due to the uncertainties 
of the placement of those groups in the tree of life. Green algae-1 include Chlorella 
vulgaris, Chlamydomonas reihnardtii, Volvox carteri, and Coccomyxa sp. Green algae-2 
include the prasinophytes Micromonas and Ostreococcus species. The solid box 
represents the HMGCR with SSD, and the open box represents the HMGCR without SSD. 
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Table 5.S1. Bacterial species used in the study and the presence of SSD-like sequences.  
 

Phylum or Class Speciesa ACC# SSD-like 
Alphaproteobacteria Caulobacter crescentus NA1000 NC_011916 - 
 Asticcacaulis excentricus CB 48 NZ_ACQR00000000 - 
 Sinorhizobium medicae WSM419 NC_009636 - 
Betaproteobacteria Achromobacter piechaudii ATCC 43553 NZ_ADMS00000000 - 
 Bordetella pertussis Tohama I NC_002929 - 
 Nitrosomonas europaea ATCC 19718 NC_004757 1 
 Neisseria meningitidis FAM18 NC_008767 - 
 Burkholderia sp. CCGE1001 NZ_ADDJ00000000 1 
Gammaproteobacteria Escherichia coli O111:H- str. 11128 NC_013364 - 
 Yersinia pestis Angola NC_010159 - 
 Haemophilus influenzae 86-028NP NC_007146 - 
 Pantoea ananatis LMG 20103 NC_013956 1 
 Pantoea sp. At-9b NZ_ACYJ00000000 - 
 Shewanella oneidensis MR-1 NC_004347 1 
 Pseudomonas aeruginosa LESB58 NC_011770 1 
 Coxiella burnetii Dugway 5J108-111 NC_009727 - 
 Pectobacterium carotovorum subsp. carotovorum PC1 NC_012917 - 
 Xanthomonas campestris pv. campestris str. B100 NC_010688 - 
 Cellvibrio japonicus Ueda107 NC_010995 2 
 Teredinibacter turnerae T7901 NC_012997 3 
 Marinomonas sp. MED121 NZ_AANE00000000 3 
 Klebsiella pneumoniae 342 NC_011283 - 
 Pseudomonas fluorescens SBW25 NC_012660 - 
Deltaproteobacteria Geobacter sp. M21 NC_012918 1 
 Sorangium cellulosum 'So ce 56' NC_010162 2 
Epsilonproteobacteria Helicobacter pylori B38 NC_012973 - 
 Wolinella succinogenes DSM 1740 NC_005090 1 
Acidobacteria Acidobacterium capsulatum ATCC 51196 NC_012483 - 
 Solibacter usitatus Ellin6076 NC_008536 1 
Cyanobacteria Synechococcus sp. PCC 7002 NC_010475 - 
 Gloeobacter violaceus PCC 7421 NC_005125 - 
 Cyanothece sp. PCC 7425 NC_011884 - 
Deinococcus-Thermus Thermus thermophilus HB8 NC_006461 - 
 Deinococcus deserti VCD115 NC_012526 2 
Chloroflexi Dehalococcoides ethenogenes 195 NC_002936 1 
Aquificae Aquifex aeolicus VF5 NC_000918 - 
Thermotogae Thermotoga maritima MSB8 NC_000853 1 
Fusobacteria Fusobacterium nucleatum subsp. nucleatum ATCC 25586 NC_003454 - 
Verrucomicrobia Verrucomicrobium spinosum DSM 4136 NZ_ABIZ00000000 - 
Chlamydiae Chlamydophila pneumoniae CWL029 NC_000922 - 
 Chlamydia trachomatis B/TZ1A828/OT NC_012687 - 
Bacterioidetes Porphyromonas gingivalis W83 NC_002950 1 
Chlorobi Chlorobium limicola DSM 245 NC_010803 - 
Fibrobacteres Fibrobacter succinogenes subsp. succinogenes S85 NC_013410 3 
Actinobacteria Mycobacterium tuberculosis F11 NC_009565 5 
 Corynebacterium aurimucosum ATCC 700975 NC_012590 - 
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 Streptomyces avermitilis MA-4680 NC_003155 4 
 Bifidobacterium longum subsp. infantis ATCC 15697 NC_011593 - 
Spirochaetes Borrelia burgdorferi ZS7 NC_011728 1 
 Treponema denticola ATCC 35405 NC_002967 3 
Planctomycetes Rhodopirellula baltica SH 1 NC_005027 3 
Firmicutes Clostridium botulinum A2 str. Kyoto NC_012563 1 
 Mycoplasma hyopneumoniae 7448 NC_007332 - 
 Streptococcus pneumoniae 70585 NC_012468 - 
 Bacillus anthracis str. CDC 684 NC_012581 2 
 Roseburia intestinalis L1-82 NZ_ABYJ00000000 1 
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Chapter 6  

Conclusions 
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In this dissertation, alignment-based and alignment-free protein classification 

methods were compared for their accuracy in classifying highly divergent transmembrane 

proteins, and study of molecular evolution of multi-domain proteins were performed.  

In Chapter 2, I examined various protein classification methods and carried out 

comparative performance analyses of these methods in classifying a group of 

transmembrane protein families, G-protein coupled receptors (GPCRs). The methods 

included profile hidden Markov model (HMM), GPCRHMM, decision trees, and support 

vector machines using the following input vectors: Fisher scores (derived from profile 

HMMs), amino acid compositions, and pairwise alignment scores. We tested the 

classifiers’ performance to identify GPCRs when the classifiers were trained using highly 

similar or only remotely similar GPCRs, to identify short subsequences of the GPCRs, 

and also to identify GPCRs from the actual Drosophila EST sequences (including mostly 

short partial sequences). Our results showed that using simple amino acid compositions 

with support vector machines was effective in classifying GPCRs from non-GPCRs even 

when only small fragments of protein sequence was available. The computationally 

expensive method using sequence pairwise alignment scores with support vector 

machines (SVM_pairwise) is the most balanced classifier that is sensitive to remote 

similarity and can be also highly discriminative for classifying GPCR classes. However, 

use of SVM_pairwise for a large-scale analysis may not be practical for its computational 

cost. To identify member proteins from well-established protein families where a good 

number of representative samples are available, profile HMMs as well as GPCRHMM 

give highly accurate classifications. We suggested that a combination of protein sequence 
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classifiers be used in order to achieve a thorough mining of divergent protein family 

members.  

Chapter 3 described an application of some of these methods in predicting 

putative GPCRs (also known as seven transmembrane receptors) from the Arabidopsis 

thaliana genome. The following six classifiers were utilized: linear and quadratic 

discriminant analysis, K-nearest neighbor, two different support vector machines with 

amino acid composition and dipeptide composition, and partial least squares with amino 

acid properties. Candidate proteins included in the intersection of the positives identified 

by these classifiers were then filtered according to the number of predicted 

transmembrane regions resulting in 54 proteins expanding the number of GPCR 

candidates in Arabidopsis from current 22 proteins. We showed that the strategy of 

combining different classifiers effectively provides prioritized lists of GPCR candidates 

for further experimental analyses to analyze their functions.  

In the second part of the dissertation I examined the distribution of multi-domain 

proteins such as urea amidolyase, urea carboxylase, and sterol-sensing domain proteins in 

various species across kingdoms to elucidate their evolutionary history. In Chapter 4, I 

examined the distribution of urea amidolyase and urea carboxylase in eukaryotes as well 

as in prokaryotes. Phylogenetic analyses using amidase and urea carboxylase domain 

sequences revealed an interesting evolutionary pathway that eventually formed these 

proteins through gene fusion and also bacteria-to-fungus horizontal gene transfer. Urea 

amidolyase probably entered the fungal kingdom by horizontal gene transfer from a 

proteobacterial species either as a single gene, or as two separate genes (urea carboxylase 

and amidase) that later fused in the fungal lineage. Urea carboxylase could have either 
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evolved into fungi, green algae, and hydra through vertical descent followed by a large 

number of losses in various eukaryotic lineages, or is another case of bacterial gene 

transfer to these organisms. Acquisition of genes in this way may have important 

implications on the fungal evolution adaptability to newer environments. 

The analyses of sterol-sensing domain (SSD) containing proteins in Chapter 5 

showed that this domain is present in all the eukaryotes and has remote similarity with 

bacterial permeases. Our phylogenetic analyses showed that it is likely that the bacterial 

permease evolved into four different types of SSD-containing proteins, namely 

Dispatched, Patched, Patched-related and Niemann-Pick type C-1 acquiring specific 

functions in eukaryotes. I showed that some of these proteins have been lost on various 

lineages. The dispatched, patched, and patched-related proteins are completely absent 

from fungi but are present in some green algae and basal eukaryotes. Two types of SSD 

proteins, hydroxymethylglutaryl-CoA reductase and sterol regulatory element binding 

protein cleavage activating protein, seem to have formed by domain acquisition just 

before the divergence of fungi and metazoans.  

The methods used in these studies can be applied to many other protein families 

to study their distribution and evolutionary history. For future works, such evolutionary 

analyses can be carried out for the nuclear receptor proteins. I have preformed a 

preliminary data mining of these proteins in eukaryotes and the results are presented in 

the Appendix. Both methods applied (profile HMMs and support vector machines using 

pairwise similarity scores) performed well in identifying the nuclear receptors from 

Drosophila species, but profile HMMs were able to give more remotely similar sequences 

to nuclear receptors in plants and fungi. However, more analysis is required to see if 
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these are distantly related to nuclear receptors or false positives. These proteins are also 

multi-domain and it would be interesting to see how the different domains have arrived to 

form this group of proteins. Additionally, differences in certain domains in nuclear 

receptors can be studied to understand the variation in function of these types of proteins. 

Another future work is the evolutionary study of biotin ligase proteins in fungi. These 

proteins modify the carboxylase proteins such as urea amidolyase and urea carboxylase 

by attaching biotin to it. The distribution and evolutionary information of these ligases 

can possibly tie with the results of urea amidolyase and urea carboxyase proteins that I 

have already worked with. It will be interesting to see if fungi has more than one biotin 

protein ligase, and if the distribution pattern of these biotin ligases match with the 

distribution pattern we have seen with urea amidolyse and urea carboxylase.   
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Appendix  

Identification of candidate nuclear receptor proteins in 

the eukaryotic species using multi-domain information 
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Introduction 

Nuclear Receptors (NRs), a multi-domain protein family of ligand activated 

transcription factors, play a key role in the process of development, metabolism and 

reproduction of the cell. In their inactive state, NRs reside in either the nucleus or the 

cytoplasm. Activation occurs when a ligand binds at the ligand-binding-domain (LBD) of 

the NR. This in turn causes the NR to bind to response elements (promoters) of their 

target genes via DNA binding domain (DBD). Some NRs like the thyroid receptors are 

always bound to the DNA and are activated by ligand binding. The effect of this reaction 

is the regulation of the expression of the target genes.  

NRs share a common organizational structure as shown in Figure A1: the N-

terminal region (A/B domain) that is highly variable and consists of a transactivation 

region AF-1; the DBD (C domain) that is highly conserved and is also involved in the 

dimerization of NRs; the less conserved flexible hinge (D domain); the moderately 

conserved LBD (E domain); the extremely variable, and sometimes absent, F domain [1].  

Depending upon the DBD and LBD, NRs are divided into six subfamilies as 

follows: 

1. Thyroid hormone  

2. Hepatocyte nuclear factor 4-gamma 

3. Estrogen 

4. Nerve growth factor 1B 

5. Fushi tarazu-F1 

6. Germ cell nuclear factor 
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In addition to these, there are two more subfamilies: 1) Knirps  (NRs with no 

LBD) and 2) DAX (NRs with no DBD). Many of the annotated NRs do not have a known 

ligand and hence are called orphan nuclear receptors. It is likely that the ancestor protein 

of NRs was an orphan receptor and ligand binding was an acquired property of these 

proteins [2]. 

Natural activation of NRs typically occurs by the binding of lipophilic molecules 

(ligands), such as steroid hormones, bile acids, fatty acids, thyroid hormones, certain 

vitamins and prostaglandins [2]. Many orphan NRs have also been found to be activated 

by synthetic ligands. NRs are also responsible in diseases such as cancer, diabetes, and 

asthma [3]. Their potential to be regulated by exogenous compounds makes them an 

extremely important drug target in human disease [4].  

NRs have been found in diverse metazoans but have been absent in plants and 

fungi [2]. Most likely, NRs in these kingdoms either are so diverged that current methods 

fail to find them, or these organisms may have a different kind of protein that do the same 

function. This hypothesis lead us to explore these genomes in search of proteins that are 

either NRs or a novel family of proteins that has some similarities with the LBD and 

DBD of known NRs. One such possibility can be found in Candida albicans. A quorum-

sensing molecule, farnesol, has been found to be produced by this organism [5], although 

no farnesol-binding protein has been found. This is interesting since farnesol and its 

metabolites are generated in the cell and is required during the synthesis of cholesterol, 

bile acids, steroids, retinoids, and farnesylated proteins [6], and are ligands for some 

mammalian NRs. Based on this, we expect to find farnesol-binding proteins in the fungal 

genomes, specifically in Candida albicans, as putative NRs. Recently, proteins with LBD 
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that is similar to animal NRs was discovered in yeast, and their function also resembles 

the function of PPAR-alpha/RXR which belongs to the NR superfamily [7]. This shows 

that there is a possibility that NRs are present in yeast and other fungal genomes. 

At the time of this research, it was found that humans had 48 nuclear receptors 

[4], sea squirt had 17 [8], pufferfish had 70 [9], Drosophila had 21 [10], and C. elegans 

had more than 250 [4]. We wanted to see if by using a protein classification method that 

is different from the commonly used sequence similarity method Blastp, we can trace 

some NR-like protein sequences in fungi and plants.  

 

Materials and Methods 

Training data 

Training sequences were gathered from the swissport database. 370 NR sequences 

were downloaded. Not all of these sequences were labeled to have both DBD and LBD. 

The numbers are given in Table 1. Negative data, 250 protein sequences that are not NRs, 

were also gathered from swissprot.  

 

Classification methods 

Two different methods were chosen for protein classification: profile hidden 

Markov models (HMMs) and support vector machines (SVMs). These methods have 

been shown to identify related proteins very accurately. For both of these methods, we 

chose to only use the LBD and the DBD regions because they are the most invariable 

regions among these proteins, and functionally very important.  



 

 

199 

For the profile HMM method, a multiple alignment is first required. Two multiple 

alignments were first created, each from all the 345 DBD sequences, and from all the 277 

LBD sequences (see Table A.1). Similar multiple alignments (for LBD and DBD) were 

created using sequences from the 7 NR subfamilies. Since one subfamily had no LBD 

sequences annotated, we ended up with a total of 13 subfamily-level multiple alignments. 

Clustalw (version 2.0) was used to build these multiple alignments. These alignments 

were then used to build a profile HMM using HMMER (version 2.3.2). The profile HMM 

was calibrated using “hmmcalibrate” command, which takes the HMM and empirically 

determines parameters that are used to make searches more sensitive, by calculating more 

accurate e-values. A database size of 50,000 was used so that all the e-values using 

different databases could be comparable to each other. The subfamily-level profile HMM 

was used separately to classify sequences, and the results were all combined together. 

The combination of all the subfamily-level profile HMMs are called multi-HMM in the 

Result section.  

Two models, each for LBD and DBD was created using SVM. The pairwise 

alignment e-value between two sequences were used as input to the SVM. This method, 

SVM-pairwise (SVM-pw), was explained in Chapter 2. SVM requires negative data for 

training. Since we are only using the LBD or DBD regions, random subsequences of 

similar lengths were gathered from the negative datasets.  We used SSearch to make 

pairwise alignments of all the training sequences (both positive and negative sequences). 

Their e-values were used in creating a matrix of input data for the SVM. The radial basis 

kernel function was used as the kernel function. We did not make subfamily-level SVM 

models because from our previous work in Chapter 2, we found that SVM-pairwise was 
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able to classify well sequences from sister subfamilies even when it wasn’t trained on 

them.  

 

Genomic data 

We searched the genomes including: 10 fungal species, 6 Drosophila species, and 

7 plants species (including one green alga). The list of these species, the number of 

proteins and their sources are listed in Tables A.2, A.3 and A.4. 

 

Results 

Among the Drosophila genomes we examined, the SVM-pw classifiers and the 

family and subfamily-level profile HMMs (multi-HMM), found hits for all the six species 

(Table A.7). The numbers for NRs identified from the D. melanogaster genome included 

those that have been already known (21). This shows that our methods are working to 

find NRs. As we see, not all NRs in Drosophila have both the DBD and LBD in one 

protein. Among the 21 Drosophila NRs, only 17 had LBDs based on the profile HMM 

and SVM-pairwise results. Whether the rest of them have LBD or not is a question that 

can be answered with further study. It could be that they either lack an LBD, or that these 

sites are very different from what we know, so that our models could not trace them. 

From the combined results of profile HMM and SVM-pairwise methods, we found that 

three Drosophila species (D. melanogaster, D. ananassae, and D. willistoni) had 21 NRs 

with DBD region while the other three species (D. pseudoobscura, D. virilis and D. 

grimshawi) had 22 NRs with DBD region. Again, three of the Drosophila species (D. 

melanogaster, D. willistoni, and D. virilis) had only 17 NR sequences with LBD while 
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the rest of the three species (D. ananassae, D. pseudoobscura and D. grimshawi) had 18 

NRs with LBD. Most of the time, the profile HMM methods classified more sequences as 

LBD and DBD, than the SVM-pairwise method. The sequences that were classified as 

having DBD or LBD by any one of the methods but not all, are the ones that need to be 

looked at again to see if they are remote homologs of NRs in these species. 

For fungal genomes, the SVM-pw classifiers found no hits for either the DBD or 

the LBD. The LBD profile HMM (family-level) did not find any hits from the fungal 

genomes using the e-value threshold of 1, but at threshold of 10, five fungal species 

(Rhyzopus oryzae, Schizosaccharomyces pombe, Aspergillus nidulans, Neurospora crassa 

and Ashbya gossypii) had hits (Table A.5). Similarly, there were three fungal species with 

hits for the DBD profile HMM (family-level) at the e-value threshold of 1, while seven 

fungal species (Rhyzopus oryzae, Ustilago maydis, Schizosaccharomyces pombe, 

Aspergillus nidulans, Magnaporthe grisea, Neurospora crassa and Saccharomyces 

cerevisiae) had hits at the e-value threshold of 10. Using multi-class profile HMMs, one 

fungal species (Rhyzopus oryzae) had both DBD and LBD hits at the e-value threshold of 

1, while another species (Schizosaccharomyces pombe) only had the DBD hits. Raising 

the e-value threshold to 10 gave 8 fungal species to have both LBD and DBD hits, and 

two species to have only DBD hits. Even though very strong hits were not found in the 

fungal genomes for both DBD and LBD, these hits could be remotely similar to the 

metazoan NRs and further analysis could determine the confidence in these sequences. 

For plant genomes, as shown in Table A.6, the SVM-pw classifiers showed two 

DBD hits only for rice. No other hit was found neither for DBD nor LBD from any other 

plant genomes. Using the profile HMMs, at the e-value threshold of 1, there was one hit 
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each for DBD in the Chlamydomonas and poplar genomes. Raising the e-value threshold 

to 10, we found DBD and LBD hits from all except the maize genome, which only had 

hits of DBD. Using the multi-class HMMs, at the e-value threshold of 1, the P. patens 

had one hit each for LBD and DBD, while A. thaliana and poplar had four and one hit(s) 

for DBD only, respectively. Raising the e-value threshold to 10 resulted in hits for DBD 

and LBD for all plant species. The number of DBD hits was 171 for the maize genome, 

which seems too high compared to what we have seen on other plants. This could be the 

result of errors in sequencing and annotations of this genome.  

 In this analysis, we found that profile HMMs give more probable remote 

homologs than SVM-pairwise although these could be false positives. SVM-pairwise 

seems to be more specific.  

Even though an NR-like activity was traced in fungi by a previous study, we 

found no such hits with high confidence. These organisms may have a very different type 

of NR-like proteins that perform similar functions. More experimental work would be 

needed to characterize such a protein, which would then help bioinformatics study in 

finding similar proteins from other fungal species. 
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Figure A.1: Organization of a typical nuclear receptor (taken from Escriva Garcia et al. 

2003). 
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Table A.1. Number of nuclear receptor sequences and the subfamilies used in the study 

NR subfamily Total With DBD With LBD 

Knirps and DAX 16 5 11 

Thyroid hormone 143 140 119 

Hepatocyte nuclear factor 4-gamma 67 67 32 

Estrogen 107 96 88 

Nerve growth factor 1B 16 16 13 

Fushi tarazu-F1 14 14 14 

Germ cell nuclear factor 7 7 0 

Total 370 345 277 

 

 

Table A.2. List of fungal species used in the study 

Fungal species Phylum 
No. of 

Proteins 
Sequencing group 

Rhyzopus oryzae Zygomycota 17,467 FGI 

Ustilago maydis Basidiomycota 6,522 FGI 

Schizosaccharomyces pombe Ascomycota 5,025 Sanger 

Aspergillus nidulans Ascomycota 10,665 FGI 

Magnaporthe grisea Ascomycota 11,054 FGI 

Neurospora crassa Ascomycota 9,845 FGI 

Fusarium graminearum Ascomycota 13,321 Stanford BRI-NRC of Canada 

Candida albicans Ascomycota 5,993 yeastgenome.org 

Saccharomyces cerevisiae Ascomycota 6,717 NCBI 

Ashbya gossypii Ascomycota 4,714 FGI 
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Table A.3. List of Drosophila species used. Data from flybase.org 

Drosophila species No. of Proteins 

D. melanogaster 21,243 

D. ananassae 15,070 

D. pseudoobscura 16,071 

D. willistoni 15,513 

D. virilis 14,491 

D. grimshawi 14,986 

 

 

 

Table A.4. List of plant species used in the study 

 

 

Plant species Common name 
No. of 

Proteins 
Sequencing group 

Chlamydomonas reinhardtii Green algae 14,598 JGI 

Physcomitrella patens ssp patens  Moss 35,938 JGI 

Selaginella moellendorffii Spikemoss 34,697 JGI 

Oryza sativa Rice 66,710 rice.plantbiology.msu.edu 

Zea Mays Maize 78,966 ftp.maize.sequence.org 

Arabidopsis thaliana Mouse-ear cress 32,615 NCBI 

Populus trichocarpa Poplar 45,555 JGI 
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Table A.5. LBD and DBD identified by HMM and SVM in fungi. 

HMM  
(LBD/DBD) 

Multi-HMM 
(LBD/DBD) Fungal species 

(E <1) (E <10) (E <1) (E <10) 

SVM-pw 
(LBD/DBD) 

Rhyzopus oryzae 0/1 1/3 1/1 3/3 0/0 

Ustilago maydis 0/0 0/1 0/0 1/2 0/0 

Schizosaccharomyces pombe 0/1 3/2 0/1 3/2 0/0 

Aspergillus nidulans 0/0 1/1 0/0 0/2 0/0 

Magnaporthe grisea 0/1 0/1 0/0 1/6 0/0 

Neurospora crassa 0/0 1/2 0/0 1/2 0/0 

Fusarium graminearum 0/0 0/0 0/0 5/1 0/0 

Candida albicans 0/0 0/0 0/0 3/1 0/0 

Saccharomyces cerevisiae 0/0 0/2 0/0 0/2 0/0 

Ashbya gossypii 0/0 1/0 0/0 3/3 0/0 

 

 

Table A.6. LBD and DBD identified by HMM and SVM in plants 

HMM  
(LBD/DBD) 

Multi-HMM 
(LBD/DBD) Species 

(E <1) (E <10) (E <1) (E <10) 
SVM-pw 

(LBD/DBD) 

Chlamydomonas reinhardtii 0/1 2/1 0/0 2/7 0/0 

Physcomitrella patens ssp patens  0/0 1/2 1/1 13/11 0/0 

Selaginella moellendorffii 0/0 4/5 0/0 4/12 0/0 

Oryza sativa 0/0 2/8 0/0 8/22 0/2 

Zea Mays 0/0 0/16 0/0 26/171 0/0 

Arabidopsis thaliana 0/0 2/9 0/4 8/18 0/0 

Populus trichocarpa 0/1 2/10 0/1 6/14 0/0 
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Table A.7. LBD and DBD identified by HMM and SVM in Drosophila 

HMM  
(LBD/DBD) 

Multi-HMM 
(LBD/DBD) Drosophila 

Species 
(E <1) (E <10) (E <1) (E <10) 

SVM-pw 
LBD/DBD 

Commona 
(LBD/DBD) 

D. melanogaster 17/22 18/31 17/22 25/29 17/21 17/21 

D. ananassae 18/22 20/33 18/21 22/28 19/22 18/21 

D. pseudoobscura 18/24 18/34 18/23 23/34 18/23 18/22 

D. willistoni 17/22 18/25 17/21 27/31 17/21 17/21 

D. virilis 17/22 18/28 17/22 23/32 17/22 17/22 

D. grimshawi 18/23 22/28 18/23 23/33 18/22 18/22 
 
a This number is the common sequences (LBD abd DBD) found by all classifiers.  
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