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In protein sequences, domains are identified as conserved unit of structure, function and 

evolution. Identification of protein domains is important for the functional analysis of 

proteins. To achieve more sensitive and accurate domain discovery, we developed novel 

probabilistic modeling of multi-domain protein architectures. In our hidden Markov 

model (HMM) and Double-chain Markov model (DCMM), we incorporate not only 

domain dependency but also inter-domain linker information. The HMM using domain 

dependency with linker lengths (HMM-DL) successfully harnesses domain dependency 

and inter-domain linker lengths observed in the training dataset to predict divergent and 

non-overlapping domains on protein sequences. Moreover, a simulation procedure has 

been developed, which allows us to estimate false discovery rates and false positive rates 

to assess our approaches. We also present DCMM using domain dependency with linker 

lengths and linker-length dependency (DCMM-DLL) for the predictions of domains. By 

using DCMM, which has not been used in the field of bioinformatics, we are able to 

remove the limitation of the conditional independence assumption between observations 

and improve domain discovery performance. To increase the number of correct domain 

identifications, HMM-DL and DCMM-DLL were also extended to allow some 

overlapping domain identifications.  
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Chapter 1  

Introduction 

	

1.1  Biological background 

The rapid development of high-throughput sequencing technologies has led to an 

overwhelming increase in sequence data. Proteins coded by genes are polymers 

composed of amino acids linked together through peptide bonds. They play a variety of 

critical roles in living cells (e.g., antibody, enzyme, messenger, structural component and 

transport). However, understanding the specific biological functions of these proteins 

remains a challenge. Experimentally validating protein functions takes time and is highly 

expensive. In bacteria, for example, approximately 30% of genes lacks functional 

annotation (Meier et al., 2013). In eukaryotes, over 40% of proteins encoded in their 

genomes are not assigned functions (Peña-Castillo and Hughes, 2007; Dhanyalakshmi et 

al., 2016).  Therefore, development of reliable and efficient computational approaches to 

infer protein functions from protein sequences is needed. 

 

1.1.1 Protein domains 

 In protein sequences, domains are identified as conserved sequence regions, and are 

units of structure, function and evolution (Vogel, Bashton, et al., 2004). Proteins typically 

consist of one or more domains. Each domain can fold independently to form a stable  
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Figure 1.1: The three domains of the rabbit pyruvate kinase (PDB: 1PKN) 
(Rose et al., 2015). Each domain forms a compact three-dimensional structure and 
often can be independently folded (Larsen et al., 2002). 
 

three-dimensional structure (Fig. 1.1) (Kelley and Sternberg, 2015). A group of domains 

that have similar sequences, usually by descent from a common ancestral sequence, is 

known as a domain family (Punta et al., 2011; Wilson et al., 2009; Letunic et al., 2015). 

Compared to protein databases, domain family databases grow more slowly (Ochoa, 

2013). Thus, identification of protein domains can be efficiently used for functional 

classification and annotation.  

In eukaryotes, 70% or more of proteins contain two or more domains (Apic et al., 2001; 

Chothia et al., 2003; Vogel, Bashton, et al., 2004; Marsden et al., 2006; Chothia and 
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Gough, 2009; Levitt, 2009). Such multi-domain proteins are thought to have evolved 

from a limited set of simpler single-domain proteins by combination of events such as 

duplication, divergence and recombination (Vogel, Bashton, et al., 2004).  Among multi-

domain proteins, not only domain composition but also their orders in the protein 

sequences are often conserved (Vogel, Berzuini, et al., 2004; Apic et al., 2001). 

Therefore, understanding of the domain content and arrangement in proteins is very 

important for functional prediction and studies of evolution of protein functions.   

 

1.1.2 Inter-domain linkers 

In multi-domain proteins, the neighboring domains are connected by inter-domain linkers 

(Fig. 1.2). The inter-domain linkers are often unstructured. They play important roles in 

inter-domain interactions, functional regulation of proteins, protein stability, folding rates 

and domain-domain orientation (George and Heringa, 2002; Zhang et al., 2009). Several 

properties of inter-domain linkers, such as the length, amino acid composition, 

hydrophobicity and glycosylation status, have been shown to affect protein stability and 

function (van Leeuwen et al., 1997; Robinson and Sauer, 1998; Gustavsson et al., 2001; 

Arai et al., 2001; Zhang et al., 2009; George and Heringa, 2002; Chen et al., 2013).  

 

1.1.3 Identification of protein domains 
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Figure 1.2: Multi-domain protein architecture. In this example, co-occurring 
domains 1, 2, and 3 are joined via linkers 1 and 2. 

There are two types of widely used approaches to identify protein domains: structure-

based approaches and sequence-based approaches.  Structure-based approaches, such as 

SCOP (Fox et al., 2014) and CATH (Sillitoe et al., 2015), classify domains and proteins 

based on their 3D structures.  

 

More often domains are identified based on sequence similarities. The simplest and the 

most used similarity search method is the Basic Local Alignment Search Tool (BLAST) 

(Altschul et al., 1997; Camacho et al., 2009; Altschul et al., 1990). BLAST uses an 

approximation of the Smith-Waterman algorithm that attempts to determine local 

matches between the query and each of the database sequences (Altschul et al., 1990).  

However, it is difficult to identify similar protein sequences using BLAST when 

sequence identities become below 30% (Park et al., 1998; Skewes-Cox et al., 2014). To 

detect such distantly related proteins, a profile was introduced to capture the position-

specific information to descript the consensus of a multiple sequence alignment (Li et al., 

2012; Eddy, 1998; Madera and Gough, 2002; Altschul et al., 1997; Gribskov et al., 1987). The 

profile specifies the frequency of each amino acid in each column of a multiple sequence 

alignment (MSA) and sets positon-specific penalties for gaps in MSA. A successful 
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application of profile is PSI-BLAST, a position-specific-iterated version of BLAST. PSI-

BLAST iteratively uses an position-specific score matrix (PSSM) to search similar 

proteins in database (Altschul et al., 1997). Another widely used profile method is profile 

hidden Markov models (profile HMMs), full probabilistic representations of multiple 

alignments (Durbin et al., 1998; Eddy, 1998). Performance of profile HMMs is typically 

better than PSI-BLAST in detecting distantly related sequences (Park et al., 1998; Madera 

and Gough, 2002). Profile HMMs have been used to identify many protein families and 

domains. Examples of profile-HMM based protein family and domain databases include: 

Pfam (Finn et al., 2013), SMART (Letunic et al., 2015), SUPERFAMILY (Oates et al. 

2015), InterPro (Mitchell et al., 2014), PANTHER (Mi et al., 2013), PRODOM (Bru et 

al., 2005), and Gene3D (Lees et al., 2014). More details on profile HMM will be given in 

section 1.2.2. 

 

1.1.4  Gene Ontology (GO) terms 

The key objective of this dissertation is to develop sensitive domain prediction 

approaches to improve functional annotations of proteins. The Gene Ontology (GO) 

initiative describes gene product attributes across all organisms by using a consistent and 

computable vocabularies (Ashburner et al., 2000). Three sub-ontologies are defined by 

the GO for describing the properties of gene products: molecular function, cellular 

component and biological process. Molecular function describes the activities of a gene 

product at molecular level, cellular component describes the locations of a gene product 

or as a subcomponent of cellular component, and biological process describes sets of 
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molecular events or functions (Harris et al., 2004). The GO is structured by a directed 

acyclic graph (DAG) to describe the parenthood relationship between terms. The children 

of any term represent more specific functions than the parents.  

 

Several attempts have been made to associate domains or domain architectures with GO 

terms. Interpro2GO (including Pfam2GO, which is derived from InterPro2GO) manually 

maps the domains to appropriate GO terms (Burge et al., 2012; Mitchell et al., 2014). 

Several approaches have been developed to assign functions for domains or domain 

architectures automatically. Schug et al (2002) developed rule-based method for 

function-domain associations based on the intersection of GO terms assigned to proteins 

that contain domains at different similarity levels. GOTrees employed decision tree to 

associate the GO terms with Pfam domains (Hayete and Bienkowska, 2005). 

MultiPfam2GO uses a naïve Bayesian network to assign GO terms to domain sets 

(Forslund and Sonnhammer, 2008).  

 

1.2 Probabilistic modelling of biological sequences 

1.2.1 Hidden Markov model 

A hidden Markov model (HMM) is a probabilistic model that describes a series of 

observations by unobserved (hidden) states (Fig. 1.3)  (Rabiner, 1989). In computational 

biology, HMMs have been extensively employed, where the observations are strings of 

nucleotides forming DNA (or RNA) sequence or amino acids forming the primary 

sequence of a protein (Krogh et al., 1994; Yoon, 2009). To simplify calculation of an 
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HMM, two Markov assumptions are applied: 1) the probability of a state depends only on 

the previous state and 2) the observation depends on the state that produced the 

observation and not on other observations or states (Jurafsky and Martin, 2014). These 

are called the first-order hidden Markov assumptions. A first-order HMM can be 

specified by following components (Rabiner, 1989; Ramage, 2007; Jurafsky and Martin, 

2014): 

1. The observed sequence !! X = {x1 ,x2 ,x3…xT }, xt ∈V ,  

where !! V = {v1 ,v2 ,…vn}  is a set of observed symbols and !! t =1…T  

2. The state sequence !! Z = {z1 ,z2 ,z3…zT }, zt ∈S    

 where, !! S = {s1 ,s2 ,…sm}  is a set of states and !! t =1…T  

3. The transition matrix !!A{aij } , 

where !!aij = P(Zt+1 = s j |zt = si ), 1≤ i , j ≤m  

4. The emission probability !!B = {Bi(k)} , 

where !!Bi(k)= P[vk at time t|zt = si ],1≤ i ≤m and1≤ k ≤n   

5. The initial state !!π i = P(z1 = si ),1≤ i ≤m  
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Figure 1.3: A structure of a hidden Markov model. 
 
 

 

HMM can be characterized by the following three fundamental problems 

(Rabiner, 1989; Jurafsky and Martin, 2014): 

 

Likelihood: what is the probability of the observed sequence !! x1 ,x2 ,x3…xT  given the 

model !!λ = (A,B ,π ) ? That is, calculate !!P(X |λ) . 

Decoding: given observation sequence X and HMM , what sequence of 

states has the largest probability. That is, find the state sequence such that  

is maximized.  

Learning: given some data, how do we “learn” a good HMM to describe the data? That 

is, given the topology of a HMM, and observed data, how we find the model which 

maximizes P(X). 

The likelihood can be computed by the forward procedure (Rabiner, 1989). Let the 

forward variable to be  

   (1.1) 

!!λ = (A,B ,π )

!!λ = (A,B ,π )

!!Z * !!P(Z
* |X ,λ)

!! αt(i)= P(x1 ,x2 ,x3…xt |zt = si ,λ)
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 can be solved as follows: 

1. Initialization: 

   (1.2)  

2. Induction: 

   (1.3) 

3. Termination: 

   (1.4) 

 

In a similar way, we can define the backward variable as  

   (1.5) 

can be solved inductively as follows: 

1. Initialization: 

   (1.6) 

2. Induction: 

   (1.7) 

 

The likelihood of observed sequence can be calculated by the forward-backward 

procedure: 

   (1.8) 

!!αt(i)

!!α1(i)=π iBi(x1),1≤ i ≤m

!!αt( j)= Bj(xt ) αt−1(i)aiji=1
m∑ , 1≤ j ≤m 1≤ t ≤T

!!L= αT(i)i=1
N∑

!! βt(i)= P(xt+1 ,xt+2 ,…xT |zt = si ,λ)

!!βt(i)

!!βT( j)=1, 1≤ j ≤m

!!βt(i)= aijB j(xt+1)βt+1( j)j=1
m∑

!! L= αt( j)j=1
m∑ βt( j), t =1,…,T
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For decoding question, the Viterbi algorithm is used. To describe the algorithm, the 

variable 𝛿"(𝑖) is defined as follows(Jurafsky and Martin, 2014; Rabiner, 1989): 

   (1.9) 

For a given state  at time t+1,  is computed as 

   (1.10) 

We use   as an array to track the best sequence path. The Viterbi recursion as 

follows is used to find the most likely state sequence as follows: 

1. Initialization: 

   (1.11) 

   (1.12) 

2. Recursion: 

   (1.13) 

   (1.14) 

3. Termination: 

The best score:  

   (1.15) 

The start of backtrack:  

   (1.16) 

 

!! 
δ t(i)= max

z1 ,z2 ,…zt−1
P(z1 ,z2 ,…zt−1 ,zt = si ,x1 ,x2 ,…xt |λ)

!
s j !!δ t+1( j)

!!δ t+1( j)= [maxiδ t(i)aij ]Bj(xt+1)

!!ψ t( j)

!!δ1(i)=π iBi(x1),1≤ i ≤m

!!ψ 1(i)=0

!!δ t( j)=max1≤i≤m
[δ t−1(i)aij ]Bj(xt ), 2≤ t ≤T and 1≤ j ≤m

!!
ψ t( j)= argmax1≤i≤m

[δ t−1(i)aij ]Bj(xt ), 2≤ t ≤T and 1≤ j ≤m

!!P
* =max

1≤i≤m
(δT(i))

!!
zT
* = argmax

1≤i≤m
(δT(i))
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To solve learning problem, the variable is defined as follows: 

   (1.17) 

Eq. 1.17 can be written in terms of the forward and backward variables: 

   (1.18) 

Let us define the probability  to be !!P(zt = si ,zt+1 = s j |X ,λ). 

 

!!
ξt(i , j)=

αt(i)aijB j(xt+1)βt+1( j)
αt(i)aijB j(xt+1)βt+1( j)j=1

m∑i=1
m∑

  (1.19) 

 

The transition probabilities can be estimated as follows: 

 

!!
âij =

ξt(i , j)t=1
T−1∑

γ t( j)t=1
T−1∑

  (1.20) 

The formula for computing emission probabilities is 

 

!!
B̂ j(νk )=

γ t( j)t=1s .t .xt=νk

T∑
γ t( j)t=1

T∑
  (1.21) 

 
1.2.2 Profile hidden Markov model 

Some positions of protein sequences in a domain family are more conserved, and other 

positions are more divergent. Thus simple pairwise alignments may not capture 

information required to find divergent query sequences (Durbin et al., 1998; Eddy, 1998). 

It is thus desirable to use MSA to capture more positional conservation information (Fig. 

1.4). A “profile”, a position-specific information from MSA, was introduced to represent 

!!γ t( j)= P(zt = si |X ,λ)

!!
γ t( j)=

αt( j)βt( j)
αt( j)βt( j)j=1

m∑

!!ξt(i , j)
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distantly related similar sequences (Eddy, 1998). HMMs provide a coherent theory to 

model profiles derived from MSAs. They are called profile HMMs (pHMMs). 

 

When building a pHMM, a pHMM for MSA can be viewed first as HMM with one 

“match” state (“M”) for each column (Fig. 1.4). Then the model can be extended to 

handle two types of gaps. One type of gap occurs when a portion of sequence that do not 

match anything in MSA, which is an insert state (“I”). The other type of gap is the region 

in MSA that is not present in the sequence, which is a delete state (“D”). Since no residue 

exists in the gap position in the sequence, a gap character ‘-’ is used (Fig. 1.4). The full 

pHMM has the structure shown in Fig. 1.5 (Durbin et al., 1998). Assigning columns to 

match states and insert states is needed. A simple rule is that when more than half of a 

column is occupied by gap characters, the position should be modeled as an insert state. 

	

Figure 1.4: Multiple sequence alignment of C2H2 zinc finger domains. 
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In a full pHMM, the states are connected with arrows, representing transition 

probabilities (Fig. 1.5). For each match state M', it can transition to an insert state (I'), a 

delete state (D'*+), or the next match state (M'*+). Each insert state I' can transition to the 

next match state (M'*+) or has a self-transition allowing multiple insertions of residues. 

The transitions between insert states and delete states are allowed although these 

situations are quite rare. Each delete state D' can transition to an insert state (I'), the next 

delete state (D'*+), or the next match state (M'*+).  

 

Based on the probability of a given residue at the position in an MSA, there are emission 

probabilities associated with the match state in that position. The insert states also have 

emission distribution. However, the emission probabilities for insert states are set as the 

background probabilities. Since delete states do not emit any residues, delete states are 

silent states and have no emission probabilities.  
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Figure 1.5: The full structure of profile HMM(Eddy,2003). Mi is the ith match 
state, Ii is the ith insert state, and Di is the ith delete state. Delete states are silent and 
does not emit any residues. 
	
Once pHMM is established, we need to estimate transitions probabilities between states, 

and emission probabilities for match and insert states.  The transition probabilities are 

assigned as follows:  

 
!
akl =

Akl
Ak ′l′l∑   (1.22) 

 

And the emission probabilities are computed as follows: 

 
!!
ek(a)=

Ek(a)
Ek( ′a )
′a∑   (1.23) 

 

 

It is possible that some transitions and emissions are never observed in an MSA. 

However, assigning these probabilities to be zero can be a problem in the future 

computation. For example, if only leucine is observed at a certain position of MSA, then 

the emission probability for leucine would be 1 and the probability would be zero for all 

other amino acids at this position. However, it is often found that valine tends to 
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substitute leucine without serious alteration of function. The probability of the query 

sequence with valine substituted for leucine at this position becomes zero (or minus 

infinity when using log-odds). Thus, this model cannot recognize any similar sequences if 

it does not have leucine at this position (Krogh, 1998). In order to avoid such over-fitting 

problems, a simple method is to use pseudocounts instead of the real counts (0). Simply 

using a constant as the pseudocount and add it to all the counts is based on a priori 

assumption that all amino acids are equally likely. However, it is not true since amino 

acids have different physical and chemical properties and some share similar properties. 

In order to include this prior knowledge, PSI-BLAST use substitution matrices (such as 

BLOSUM62) to calculate pseudocounts (J. G. Henikoff and S. Henikoff, 1996).  

However, there are two weakness in using substitution matrices to determine 

pseudocounts: 1) a substitution matrix does not deal with the context for each amino acid 

required for a specific position and 2) a substitution matrix treats amino acids the same 

when they have the same frequency, which ignores the actual number observed 

(Sjölander et al., 1996). A nine-component Dirichlet mixtures can solve these problems 

by representing a variety of contexts and using actual number of observed residues to 

estimate probabilities of amino acids  (for details see (Sjölander et al., 1996)).  

 

1.2.3 HMMER 

One implementation of pHMM is HMMER, which is a program package used to build a 

pHMM from an MSA of protein or DNA sequences (Durbin et al., 1998; Finn et al., 

2011; Eddy, 2010). The potential membership of a query sequence to a sequence family 

can be identified based on a significant match of a sequence to the pHMM. An example 
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of the C2H2 zinc finger domain that contains two highly conserved cysteines (C) and 

histidines (H) is shown in Fig. 1.4.   

 

In HMMER, the log-odds score is used for asserting a sequence similarity. This is done 

by testing whether a sequence x is more likely to be a homolog of domain family (D) or 

more likely to be a random match (R). The log-odds score is calculated as follows (Eddy, 

2003):  

 
!!
S = log2

P(x |D)
P(x |R)   (1.24) 

The presence of a domain belonging to a domain family in the protein can be asserted if 

the log-odds score is above the given threshold (Finn et al., 2011; Punta et al., 2011). The 

thresholds used in HMMER are called the gathering thresholds (GAs). The gathering 

thresholds (GAs) are family-specific bit score, and they are empirically defined by the 

Pfam curators. GA is typically the higher of the lowest score obtained from the seed 

sequences (considered to be true positives) and the highest score of potential false (one of 

overlapping matches is false positive) positives (Finn et al., 2011; WONG et al., 2011; 

2010; Srivastava et al., 2007; Punta et al., 2011). For each domain family, there are two 

GAs: a sequence GA and a domain GA. They are used to define the significance of a 

sequence and a domain hit, respectively. The domain bit score is the score computed by 

comparing the query protein sequence against a profile HMM. The sequence bit score is 

the sum of all bit scores contributed by all matches of a domain family on the protein 

query (Punta et al., 2011). A domain can be asserted on a protein if both its sequence and 

domain bit scores are equal to or larger than corresponding sequence and domain GAs, 
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respectively. Usually, the domain GAs are set to be lower than sequence GAs based on 

the assumption that a domain prediction is more likely to be correct when observing 

multiple copies of that domain in the same sequence. The GAs are conservative criterion 

due to the complete absence of false positives. Therefore, many domains can be still 

missed from highly divergent proteins.   

 

To assess the statistical significance of log-odds scores when searching a database, the 

expectation value (E-value) is calculated and tested if the score is higher than the one 

obtained by chance from the database (Barrett et al., 1997). The E-value of HMMER is 

calculated based on the stochastic model of Karlin/Altschul (Eddy, 2008): 

 !!P(S ≥ t)=1−exp[−e
−λ(t−µ )]   (1.25) 

𝑆 is a bit score, which is calculated in (1.24) and (1.25) gives the probability of observing 

random sequences with a score 𝑆  > t, where t is the score threshold. This random 

distribution is fitted by estimating 𝜇 and 𝜆.	𝜇 and 𝜆 are summary statistics depend on the 

length and composition of the sequences and on the scoring system. 
!!
µ = logKNL

λ
, here N 

and L are the query sequence length and the database length, respectively. K and 𝜆 are 

statistical parameters estimated from scoring matrix and the amino acid composition of 

sequences.  

 

Although HMMER is more sensitive for identifying distantly related similar sequences 

compared with BLAST, the pHMM implementations were much slower than BLAST. A 

set of heuristic filters have been developed to accelerate pHMM search in the new 
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version of HMMER (HMMER 3) (Eddy, 2011; 2010). The heuristic filter pipeline 

consists of the Multiple ungapped Segment Viterbi (MSV), Viterbi and Forward filters. 

The MSV algorithm is the first filter and the main speed heuristic in HMMER. The MSV 

algorithm is a simplified version of the Viterbi algorithm where the delete and insert 

states in pHMM are ignored (Eddy, 2011). It is used to calculate an optimal sum of 

ungapped high scoring alignment segments by employing Single Instruction Multiple 

Data (SIMD) to decrease the time requirements (Eddy, 2011; 2010). If the MSV score of 

the sequence is above a given threshold, the entire sequence passes onto the next filtering 

process, the Viterbi filter. The Viterbi algorithm is used to calculate the score of gapped 

alignment, which is more sensitive than the MSV score (Eddy, 2010). The sequences 

passing through the Viterbi filter arrive at the third, and final, filtering process, the 

Forward filter. It calculates scores by summing over those of all possible alignments 

(Eddy and Birney, 2001). We ran hmmscan using options --F1, --F2 and --F3 are used to 

control thresholds for passing MSV, Viterbi and Forward filters, respectively (Eddy, 

2010).  

 

1.2.4 Double-chain Markov model 

As introduced in Section 1.2.1, there is an observation independence assumption for 

Markov model (Jurafsky and Martin, 2014): 

!! P(xi |z1 ,…,zi ,…,zT ,x1 ,…,xi ,…,xT )= P(xi |zi )  

Instead of the assumption of observation independence in HMM, Berchtold presented a 

full Markov model called the Double-chain Markov model (DCMM), which assumes a 
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Markov dependency between successive observations under hidden states (Berchtold, 

2009; 2007; Fang et al., 2010). Fig. 1.6 presents a first-order DCMM with the hidden 

state and observation sequences. Since the first observation (𝑥+) depends on the previous 

observation, the initial observation (𝑥1) without a corresponding hidden state is included 

in the model.  

 

Similar to HMM, the first-order DCMM can be described by the following elements 

(Berchtold, 2009): 

1. The observed sequence ,  

where  is a set of observed symbols and   

2. The state sequence   

 where,  is a set of states and  

3. The transition matrix   

where  

4. The emission matrix !!B = {Bj(k ,l)} 				                 

where !!B j(k ,l)= P[xt = vl |xt−1 =νk ,zt = si ], 1≤ i ≤m and 1≤ k ≤n   

5. The initial state !!π i = P(z1 = si ),1≤ i ≤m  

!! X = {x1 ,x2 ,x3…xT } !xt ∈V

!! V = {v1 ,v2 ,…vn} !! t =1…T

!! Z = {z1 ,z2 ,z3 ,…zT },zt ∈S

!! S = {s1 ,s2 ,…sm} !! t =1…T

!!A{aij }

!!aij = P(zt+1 = s j |zt = si ),1≤ i , j ≤m
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Figure 1.6: The structure of a Double-chain Markov model. 
 

Three fundamental problems in section 1.3 can be applied for DCMM (𝜆 = (𝐴, 𝐵, 𝜋)) and 

be solved using similar algorithms (Berchtold, 2009).   

The forward algorithm is used to answer the first question. The forward variable is 

defined as 

 !! αt(i)= P(x1 ,x2 ,x3 ,…xt |zt = si ,λ)   (1.26) 

!!αt(i)  can be solved as follows: 

1. Initialization: 

 !!α1(i)=π iBi(x0 ,x1),1≤ i ≤m   (1.27) 

2. Induction: 

 !!αt( j)= Bj(xt−1 ,xt ) αt−1(i)aiji=1
m∑ , 1≤ j ≤m 1≤ t ≤T   (1.28) 

3. Termination: 

 !!L= αT(i)i=1
N∑   (1.29) 

 

The backward variable used in the backward procedure is defined as  

 !! βt(i)= P(xt+1 ,xt+2 ,…xT |xt ,zt = si ,λ)   (1.30) 
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For !t =T , we have  

 !!βT( j)=1,1≤ j ≤m   (1.31) 

For !! t =1,…,T −1 , 

 !!βt(i)= aijB j(xt ,xt+1)βt+1( j)j=1
m∑   (1.32) 

Thus, the likelihood of an observation given the DCMM can be written as 

 !! L= αt( j)βt( j), t =1,…,T
j=1
m∑   (1.33) 

To answer second question, we use Viterbi algorithm. We define the variable: 

 
!! 
δ t(i)= max

z1 ,z2 ,…zt−1
P(z1 ,z2 ,…zt = si ,x1 ,x2 ,…xt |λ)   (1.34) 

For a given state !
s j  at time !!t +1 ,!!δ t+1( j)  is computed as 

 !!δ t+1( j)= [maxiδ t(i)aij ]Bj(xt ,xt+1)   (1.35) 

We use !!ψ t( j)  as an array to track the best sequence path. The Viterbi recursion is used to 

find the most likely state sequence as follows: 

1. Initialization: 

 !!δ1(i)=π iBi(x0 ,x1),1≤ i ≤m   (1.36) 

 !!ψ 1(i)=0   (1.37) 

2. Recursion: 

 !!δ t( j)=max1≤i≤m
[δ t−1(i)aij ]Bj(xt−1 ,xt ), 2≤ t ≤T and 1≤ j ≤m   (1.38) 

 
!!
ψ t( j)= argmax1≤i≤m

[δ t−1(i)aij ]Bj(xt−1 ,xt ), 2≤ t ≤T and 1≤ j ≤m   (1.39) 

3. Termination: 
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The best score:  

 !!P
* =max

1≤i≤m
(δT(i))   (1.40) 

The start of backtrack:  

 
!!
zT
* = argmax

1≤i≤m
(δT(i))   (1.41) 

 

An Expectation-maximization (EM) algorithm, known as Baum-Welch algorithm, can be 

used to estimate the parameters (𝐴, 𝐵, 𝜋) of DCMM. For !! t =1,…T , we have 

 

!!
γ t( j)=

αt( j)βt( j)
αt( j)βt( j)j=1

m∑
  (1.42) 

 

!!
ξt(i , j)=

αt(i)aijB j(xt ,xt+1)βt+1( j)
αt(i)aijB j(xt ,xt+1)βt+1( j)j=1

m∑i=1
m∑

  (1.43) 

The estimation formulas for 𝐴, 𝐵, 𝜋 are shown as follows: 

 

!!
âij =

ξt(i , j)t=1
T−1∑

γ t( j)t=1
T−1∑

  (1.44) 

 

!!
B̂ j(νkν l )=

γ t( j)t=1s .t .xt−1=νk ,xt=νl

T∑
γ t( j)t=1s .t .xt−1=νk

T∑
  (1.45) 

 

While DCMM has been used successfully in e.g., behavioral analysis (Berchtold and 

Sackett, 2002; Chariatte et al., 2008) and social network analysis (Malmgren et al., 2009), 

it has not been applied yet in bioinformatics. 
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1.3  Objectives and organization of this dissertation  

The key objective of this dissertation is to develop a Markov model that incorporates the 

information of domain structures including inter-domain linkers and to improve the 

sensitivity of protein domain identification. To our knowledge, there is no prior work 

using inter-domain linkers for domain prediction. Incorporating this unused protein 

sequence information, compared to the existing methods, the proposed approaches can be 

a more powerful tool for domain identification.  

 

The organization of the remainder of the dissertation is as follows:  

 

In Chapter 2, a HMM-based approach that incorporates the length of inter-domain linkers 

is developed. A shuffling procedure that allows estimation of the false discovery and 

false positive rates is introduced and used to assess the new method compared with the 

other methods. Results from searching domains in six model organisms showed that our 

method improved non-overlapping domain predictions compared with currently available 

context-based approaches (e..g, dPUC2, DAMA). Newly predicted domains were used to 

enhance the functional annotation of proteins, especially for those which are still left 

“unannotated” (no function is assigned) in Plasmodium falciparum.    

 

Chapter 3 describes the Double-chain Markov model, which removes the limitation of 

independence assumption among observations in Hidden Markov model. DCMM 

incorporates linker-length dependency to improve the sensitivity of domain prediction. 

This method improved domain prediction in C. elegans, D. melanogaster and H. sapiens 
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through allowing some domain overlaps in the final prediction. We showed that this 

method compensated the weakness of the method described in Chapter 2. 

 

In Chapter 4, we discuss these results and describe future work.  
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Chapter 2  

Application of Inter-domain Linker in Identification of Protein Domains 

2.1  Introduction 

	
Proteins often contain multiple conserved domains, where domains are considered to be 

the structural, functional, and evolutionary units. The combinations of domains endow 

the proteins with specific functions. Identification of domains is, therefore, important in 

annotation of protein structures and functions.   

 

Several methods have been developed to identify domains based on structural classes or 

conserved sequences (Murzin et al., 1995; Finn et al., 2007). The majority of the methods 

used to identify domains in protein sequences are based on profile hidden Markov models 

(pHMMs) (Eddy, 1998). The Pfam database, for example, includes pHMMs for protein 

and domain families (Punta et al., 2011). Domains can be identified from a protein 

sequence by performing pHMM search using such as HMMER3 against the Pfam v27 

(downloaded from http://pfam.sanger.ac.uk) (Finn et al., 2011). For an amino acid 

sequence x (𝐴7 ), the bit score S can be calculated as:
 

, where 

 is the probability of the target sequence (𝐴7) given a domain family model 

(M8) and  is the probability of the target sequence (𝐴7) given a random model 

(R). The presence of a domain belonging to a domain family in the protein can be 

asserted if the bit score (or the E-value calculated from it) is above the given threshold. 

!!
S = log2

P(Ax |MD)
P(Ax |R)

!!P(Ax |MD)

!!P(Ax |R)
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The thresholds used with Pfam are conservative due to the complete absence of false 

positives; many highly divergent domains can be missed from the proteins.  

 

When domains are identified using a profile HMM-based method, the information from 

domains coexisting in the same protein is not taken into account. However, the observed 

number of domain combinations is much smaller than the number of all possible domain 

combinations (Apic et al., 2001) indicating that there are some constrains in which 

domains co-exist in proteins. Using domain combination information, therefore, is 

expected to improve accuracy and sensitivity of domain identification. Several methods 

have been developed to take advantage of such information in domain discovery. For the 

Co-Occurrence Domain Discovery (CODD), a list of domain pairs, "conditionally 

dependent pairs" (CDP), showing statistically significantly high co-occurrence was 

generated (Terrapon et al., 2009). A set of potential Pfam domains is identified on a 

protein using a lower (more permissive) threshold. Then the presence of a potential 

domain is considered certified if it, along with another non-overlapping domain in the 

protein, forms a pair that belongs to the list of CDP. dPUC (Domain Prediction Using 

Context) is a graph-theoretic framework where domains are nodes and edges connecting 

domains are weighted based on domain context scores (Ochoa, Llinás, and Singh, 2011a). 

dPUC solves the combinatorial optimization problem with integer linear programming. 

dPUC was shown to outperform CODD with the following advantages: 1) unobserved 

domain pairs are penalized; 2) log-odds scores allow a pair of weak domains to be 

boosted up; and 3) repetitive domains can be identified. dPUC2, an update of dPUC, uses 

directional domain pair context scores (Ochoa, 2013). The directional domain preference 
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has been observed in multi-domain architectures (Apic et al., 2001; Vogel et al., 2004), 

and dPUC2 takes such preferences into account. More recently a multi-objective 

optimization approach is used in DAMA (Domain Annotation by a Multi-objective 

Approach) (Bernardes et al., 2016). It incorporates, not only domain pairs, but multi-

domain co-occurrence in improving domain prediction. DAMA was reported to show a 

better performance compared with both CODD and dPUC. 

 

Although CODD, dPUC, and DAMA incorporate domain co-occurrence information to 

select most likely domain pairs or sets along the protein sequence, they do not consider 

the actual order and adjacency of domains along the sequence. dPUC2 considers 

directional domain contexts. However, dPUC2 still does not incorporate the adjacency 

information of domain pairs. Coin et al. (2003) used a Markov chain model to 

incorporate not only domain co-occurrence information but also their orders in improving 

domain detection. Let D = D+ …D: be a domain sequence in a protein. For simplicity, we 

assume that domain regions are not overlapped in the protein. Given the first-order 

Markov-chain model (MC) and the protein sequence (A), the probability of the domain 

sequence D is defined to be: 

	

!!
P(D|A,MC)= P(D,A,MC)

P(A,MC) = P(A|D,MC)P(D,MC)
P(A|MC)P(MC) = P(A|D)

P(A|MC)P(D|MC) 		 (2.1)	

	
The goal is to find a D that maximizes . Since the model MC considers only 

domain dependency, the protein sequence A is conditionally independent of MC given D. 

!!P(D|A,MC)
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Therefore  is a constant, and replacing it with another constant, , which 

is the probability of the protein sequence A given a random model (R), does not affect 

searching D with the highest probability. Using the prior probability of domain, , 

(Eq. 2.1) can be expressed as: 

 
!!
P(D|A,MC)∝( P(Ai |Di )

P(Ai |R)
P(Di )i∏ )× P(Di |Di−1 ,MC)

P(Di )i∏   (2.2) 

  

where i=1,…,n and 𝐴; is the amino acid sequence of 𝐷;.. Then,  

 

!!

log2P(D|A,MC)

∝ (log2
P(Ai |Di )
P(Ai |R)

− log2(
1

P(Di )
))

i∑ + log2i∑ P(Di |Di−1 ,MC)
P(Di )

  (2.3) 

Here,
 

, is the bit score of the domain D' , and

,  is the score threshold. Then (Eq. 2.3) can be rewritten as: 

 
!!
log2 ∝ (H(Di )−T(Di ))i∑ + log2

P(Di |Di−1 ,MC)
P(Di )i∑   (2.4) 

   

Note that when domain context is not considered, a domain can be detected on a protein 

simply if !!H(Di )>T(Di ).  

 

!!P(A|MC) !!P(A|R)

!!P(Di )

!!
H(Di )= log2

P(Ai |Di )
P(Ai |R) !!H(Di )

!!
T(Di )= log2

1
P(Di ) !!T(Di )
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Note that the implementation of program in Coin’s method is not available. We therefore 

implemented this method, which works with HMMER3 and Pfam versions 27 or higher.    

We call this method "MC-DD" (Markov-chain model for domain dependency).  

 

In addition to domains, the amino acid sequences between domains (linkers) also play 

important roles in, e.g., protein stability, folding rates, domain-domain orientation, and 

functional regulation (Gokhale, 2000; George and Heringa, 2002; Wriggers et al., 2005). 

Therefore, it is highly likely that properties of these inter-domain linkers are constrained 

depending on the types of neighboring domains and such linker information can be 

utilized to enhance domain detection performance. In this study, we developed a novel 

domain detection method, Hidden Markov Model using Domain dependency and Linker 

lengths (HMM-DL). It uses a first-order HMM to incorporate the information of domain 

dependency and linker lengths for sensitive domain discovery. We applied HMM-DL to 

proteomes from six representative organisms and demonstrated its improved sensitivity in 

domain detection compared with other methods. We also presented example cases where 

newly identified domains contributed in functional annotation of proteins.  

 

2.2 Materials and Methods 

2.2.1 Datasets 

Training dataset. We downloaded the UniRef50 protein dataset from the Universal 

Protein Resource (UniProt) protein database (The UniProt Consortium, 2015). Each 

cluster of UniRef50 contains sequences that have at least 50% identity to and 80% 
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overlap with the longest sequence, UniRef50 included 13,597,642 protein sequences.  

Using hmmscan from the HMMER3 software package (hmmer 3.1b2) and the Pfam 

database (rel. 27), we identified 10,501,358 domains belonging to 14,828 Pfam domain 

families. It included 3,644,227 domain pairs (and linkers) in 11,411 types of domain 

family pairs. Linkers were grouped into four categories based on their lengths: short, 

medium, long, and extremely long, in approximately equal numbers (~910,000 linkers in 

each category). Length distributions of linkers for the entire dataset as well as for each 

representative organism are shown in Supplementary Fig. A1 and Fig. A2. In order to 

examine whether linker lengths are conserved or not for the specific domain pairs, we 

gathered the specific domain pairs which were observed 100 or more times in training 

dataset. For each type of domain pair, the occurrence of each length category was 

counted. If linker lengths have no biased distribution depending on the specific domain 

pairs, their frequencies should tend to be around the background probability, ~0.25 (the 

linkers are divided into four equal length categories). Our observations showed it is not 

the case (Fig. A3). It suggests that linker lengths are constrained depending on the type of 

domain pairs.  

 

Proteomes. The proteomes of five representative organisms were downloaded from the 

Reference Proteomes database (http://www.ebi.ac.uk/reference_proteomes) as follows: 

Escherichia coli (UP000000625, taxon ID: 83333; 4,305 proteins), Saccharomyces 

cerevisiae (UP000002311, taxon ID: 559292; 6,720 proteins), Caenorhabditis elegans 

(UP000001940, taxon ID: 6239; 20,274 proteins), Drosophila melanogaster 

(UP000000803, taxon ID: 7227; 13,674 proteins), and Homo sapiens (UP000005640, 
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taxon ID: 9606; 20,882 proteins). The proteome of Plasmodium falciparum (5,542 

proteins) was download from the Plasmodium Genomics Resource (PlasmoDB, release 

26) (Bahl, 2003). The distributions of the number of domains per protein (standard Pfam) 

of E. coli, S. cerevisiae, C. elegans, D. melanogaster, H. sapiens, and P.  falciparum is 

shown in Supplementary Fig. A4, where the most of the proteins have no domain 

annotation or one annotation.  

 

 

2.2.2 Approach 

In multi-domain proteins, domains are connected by inter-domain "linker" sequences 

(Fig. 2.1A). We propose HMM-DL, a domain detection method that uses a first order 

HMM to incorporate the information of domain dependency and linker length (Fig. 2.1B). 

Similar to previous methods, our approach starts with identifying all potential domain 

regions from a protein sequence (see Fig. 2.2 for an illustration). This is done, for 

example, by identifying all potential domain regions from a given protein sequence by 

using HMMER3 with a permissive (higher) E-value threshold against the Pfam database. 

Let	𝐝 = {d+, d@ …	dA} be the set of all the candidate domains with corresponding amino 

acid sequences a+, a@ … aA, where domains are numbered based on their ending amino 

acid positions in the protein sequence. Here, a candidate domain, dD, is defined by the 

Pfam domain family (given as a profile HMM) and the position on the protein. . Let 

H(dD) be the HMMER domain score of domain dD, and T(dD) be the score threshold (see 

section 1.2.3 for the score threshold specific to each domain family used in Pfam). Let 
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D = D+ …D: be a domain sequence without overlap, where {D+, D@ …D:} is the subset 

of the candidate domain set 𝐝  keeping the same numbering order as in d. Let K = 

K+ …K:H+ be a linker-length sequence between domains in a domain sequence (D) (see 

Fig. 2.2).  

 

	

Figure 2.1: Multi-domain protein architecture (A) and HMM-DL representations 
(B). In a given protein, domains are numbered from N- to C-terminals based on the end 
position. Di is the profile HMM for the i-th domain. Ki-1 is the linker length distribution 
between two domains Di and Di+1, which is emitted from the domain pair. 
	

 

Our goal in detecting domains is to seek the most likely domain sequence D∗  with 

appropriate linkers among them given a protein sequence (A) and a first-order HMM 

model (HM): 

 
!!
D* = argmax

D
P(D,K |A,HM)   (2.5) 

where 
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!!

P(D,K ,|A,HM)= P(D,K ,A,HM)
P(A,HM) = P(A|D,K ,HM)

P(A,HM) P(D,K ,HM)

= P(A|D,K ,HM)
P(A|HM)P(HM)P(D,K |HM)P(HM)=

P(A|D,K ,HM)
P(A|HM) P(D,K |HM)

  (2.6) 

Since given D, K's are known and A is independent of the HM model, 

. Thus (Eq. 2.6) can be written as: 

 
!!
P(D,K |A,HM)= P(A|D)

P(A|HM)P(D,K |HM)   (2.7) 

 

Since  is a constant, as before, by replacing it with another constant, , 

it does not affect searching D with the highest probability:: 

 
!!
P(D,K |A,HM)∝ P(A|D)

P(A|R)P(D,K |HM)= (
P(Ai |Di )
P(Ai |R)i∏ )×P(D,K |HM)   (2.8) 

Here,  

 !!P(D,K |HM)= P(Di |Di−1)⋅P(Ki−1 |Di−1 ,Di )i∏   (2.9) 

  

where i=1,…,n. We denote D1  as the 'begin' state, and set  and 

. Then (2.8) can be rewritten as: 

 

!!

P(D,K |A,HM)∝( P(Ai |Di )
P(Ai |R)i∏ )× (P(Di |Di−1)⋅P(Ki−1 |Di−1 ,Di ))i∏

= ( P(Ai |Di )
P(Ai |R)

⋅P(Di )⋅P(Ki−1)i∏ )× (P(Di |Di−1)
P(Di )

⋅
P(Ki−1 |Di−1 ,Di )

P(Ki−1)
)

i∏
  (2.10) 

 

It is equivalent to: 

!!P(A|D,K ,HM)= P(A|D)

!!P(A|HM) !!P(A|R)

!!P(D1 |D0)=1

!!P(K0 |D0 ,D1)=1
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!!

log2P(D,K |A,HM)

∝ (log2
P(Ai |Di )
P(Ai |R)

− log2
1

P(Di )P(Ki−1)
)

i∑ + log2
P(Di |Di−t )
P(Di )i∑

+ log2
P(Ki−1 |Di−1 ,Di )

P(Ki−1)i∑

  (2.11) 

By replacing with , we have: 

 

!!

log2P(D,K |A,HM)∝

(log2
P(Ai |Di
P(Ai |R)

−T(Di ))i∑ + log2
P(Di |Di−1)
P(Di )i∑ + log2

P(Ki−1 |Di−1 ,Di )
P(Ki−1)i∑

 (2.12) 

 

Finally, we define the score for the domain sequence D as:  

 !!S(D)=H(D1)−T(D1)+ (H(Di )−T(Di )+C(Di |Di−1)+L(Di−1 ,Di ))i=2
n∑   (2.13) 

!!
log2

1
P(Di )P(Ki−1) !!T(Di )

 

Figure 2.2:  Potential domains for a query sequence as input for domain prediction 
tools. The potential domains for a query sequence are obtained through running 
hmmscan with permissive E-values. The potential domains are ranked from bottom to 
top by their decreasing E-values. HMM-DL and other tools are applied to potential 
domains to obtain the most likely domain sequence without overlaps. 
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where
!!
H(Di )= log2

P(Ai |Di )
P(Ai |R)

 is the bit score for the domain D' from HMMER and!!T(Di )  

is the score threshold. !!C(Di |Di−1) , the domain dependency score, and !!L(Di−1 ,Di ) , the 

linker emission score, are described next. 

 

The domain dependency score, !!C(Di |Di−1) , is defined as
!!
log2

P(Di |Di−1)
P(Di )

 to match the 

HMMER bit scores. !!P(Di |Di−1)  and !!P(Di )  are the domain transition probability and the 

background probability (used to smooth the domain transition probability estimates), 

respectively. They are defined as
!!
P(Di |Di−1)=

N(Di−1 ,Di )+αN(Di−1)P(Di )
(1+α )N(Di−1)

 and 

!!
P(Di )=

N(Di )
N(D)

D∑ , where N(D')  is the number of domain D'  counted in the training 

dataset, N D'H+, D'  is the number of domain D' following domain D'H+ counted in the 

training dataset, N(D)K  is all domain occurrences in the training dataset, and αN(D;H+) 

is the size of pseudocount which is used to avoid zero probability (α = 0.1 is used) (Coin 

et al., 2003) . 

 

The linker length emission score, L(D'H+, D') , is defined as
!!
log2

P(Ki−1 |Di−1 ,Di )
P(Ki−1)

 and 

calculated as follows. Linker lengths between domain pairs (D'H+ and D') are classified 

into four categories: Extreme	long, Long,Medium	and	Short  (see Training dataset 
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section). The probability distribution of linker length categories emitted from the domain 

pair D'H+ and D' is defined as: 

 
!!
P(Ki−1 |Di−1 ,Di )=

N(Ki−1 |Di−1 ,Di )+ ′α N(Di−1 ,Di )P(Ki−1)
(1+ ′α )N(Di−1 ,Di )

  (2.14) 

𝐾;H+ ∈ (Extreme	long,			Long,Medium, Short) 
  

where!!N(Ki−1 |Di−1 ,Di )  is the number of linker length category !!Ki−1  between the domains

!!Di−1  and !Di  counted in the training dataset, !!N(Di−1 ,Di )  is the number of domain !Di

	following domain !!Di−1  counted in the training dataset, and 0.01 was used for α' to make 

the pseudocount small enough. The background frequency !!P(Ki−1)  is estimated by 

!!
P(Ki−1)=

N(Ki−1)
N(K )

K∑ , where!!N(Ki−1 |Di−1 ,Di )  is the total number of linker length category 

!!Ki−1  in the training dataset. ! ′α =0.01 . 

 

To calculate the domain score !!S(D) , we did not penalize it by using negative linker 

scores. The linker score is thus re-defined as: 

 
!!
L(Di−1 ,Di )=max(s ⋅log2

P(Ki−1 |Di−1 ,Di )
P(Ki−1)

,0)   (2.15) 

where !s  is the scaling factor (described later).  

 

Our goal is to find the domain sequence D∗ that maximizes sequence score S D  from the 

domain candidate set, 𝐝 = {d+, d@ …	dA} , with corresponding amino acid sequences 
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a+, a@ … aA , on the given protein. We define DD  to be the highest scoring domain 

sequence that ends in domain dD and use a dynamic programming technique to find the 

most likely domain architecture as follows: 

1) Initialization 

 
!!

S(D1)=H(d1)−T(d1)
D1 = {d1}

  (2.16) 

2) Recursion: 

 
!!
S(Dj )=H(dj )−T(dj )+ max

1≤i< j ,ai∩aj=φ
(S(Di )+C(dj |di )+L(di ,dj ),0)   (2.17) 

where, !!2≤ j ≤m   

 

!!

If S(Di )+C(dj |di )+L(di ,dj )>0, Dj = {Di ,dj };

otherwise, Dj = {dj }
  (2.18) 

3) Termination: 

 
!!
D* = argmax

1≤ j≤m
(S(Dj ))   (2.19) 

!
ai∩aj =φ in (2.17) ensures that no domain overlap occurs in the resulted domain 

sequence.  

 

As described in Chapter 1, Pfam uses domain-specific gathering thresholds (GAs) at the 

domain level (domain GA) as well as at the sequence level (sequence GA). Following 

Pfam, we uses domain GAs in place of T D' . The use of sequence GAs is implemented 

as follows. We first obtain D∗ as above. Coin et al (2003) equally distributed domain 

dependency score of each domain pair on D method and add this score to the bit score of 
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each domain from corresponding pair. Similarly, we equally distributed domain 

dependency score, !!C(Dj |Di ) , and linker length score, !!L(Di ,Dj ) , of each domain pair on 

D from HMM-DL and add this score to the bit score of each domain from corresponding 

pair (!Di  and !
Dj ). Finally, we sum the new scores of domains in the same family and 

compare this sum with the sequence GA of this family. The domains will be eliminated 

from D if the sum is smaller than the sequence GA.  

 

 

2.2.3 Estimation of the false positive rates (FPRs) and the false discovery rates 

(FDRs) 

To assess the performance of domain detection, we developed a method to estimate false 

positive rates (FPRs) and false discovery rates (FDRs) by shuffling protein sequences. 

Our assumption is  
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Figure 2.3: Illustration of the FDR and the FPR estimation procedure. For each 
original protein sequence, we apply HMMER and then shuffling for each domain is 
performed 20 times. We make predictions on the shuffled sequences and count 
predictions on the shuffled portions of sequences. 
 

that any domains predicted on the shuffled portion of sequences were false positives (FPs) 

whereas predictions on real portion of sequences give us true positive predictions (TPs). 

Since HMM-DL boosts domain prediction by domain dependency and information of 

linker lengths between domains, shuffling procedure was done for each organism tested 

using the protein sequences with two or more domains identified by hmmscan 

(HMMER3, the option: cut_ga). As shown in Fig. 2.3, amino acid residues including 

each domain as well as surrounding linker (or N/C-terminal) regions were shuffled. By 

shuffling amino acid residues, sequences are randomized without changing amino acid 

composition. Each domain region was shuffled 20 times producing (the number of 

domains) x 20 of randomized sequences for each protein. For each of these protein 
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sequences, we applied domain prediction methods. Domains predicted from the shuffled 

portion of the sequence (𝑝;) were counted as FP;, the number of shuffled region without 

any prediction was TN;, and the predictions from non-shuffled regions of the sequence 

(𝑝;) were count as TP;. The FDR and FPR are calculated as: 

!!
FPR =

FPii

Np∑
(FPi +TNi )i

Np∑
 and 

!!
FDR =

FPii

Np∑
(FPi +TPi )i

Np∑
 . 

 

2.2.4 Comparison of different approaches by FPR and FDR curves 

We compared domain detection performance of HMM-DL against non-context method 

(hmmscan, v. 3.1b) (Finn et al., 2011), dPUC2 (Ochoa, Llinás, and Singh, 2011b; Ochoa, 

2013), DAMA (Bernardes et al., 2016), and MC-DD (Coin et al., 2003). Non-context 

method, hmmscan, was used as the baseline method, and used with options: --F1 0.1, --

F2 0.1, --F3 0.0001, --domZ 1, -Z 1, and -E 0.00000001 (the E-value threshold was 

ranged up to 0.0000002).  For domain-context methods (HMM-DL, MC-DD, dPUC2, 

DAMA), hmmscan was first used to obtain the candidate domain set with the following 

options: --F1 0.1, --F2 0.1, --F3 0.0001, --domZ 1, -Z 1, and -E 0.000001 (the permissive 

E-value threshold was ranged up to 0.005). For each E-value threshold, FPR and FDR 

were estimated using the shuffled sequences as described above and used to plot FPR and 

FDR curves. For the same set of candidate domain sets (including all proteins, without 

excluding those that have no or only a single domain predicted), each method was 

applied to search domains that were above the threshold and the number of domains per 
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protein was calculated. The dPUC2 program (version 1.03) and dpucNet.pfam27 (dPUC 

context scores from Pfam v27) were downloaded from http://viiia.org/dpuc2/index-

2.03.yml?l=en-us. In order to avoid domain overlaps, we set the following options: --fCut 

0 and --lCut 0. When a domain predicted by dPUC2 was entirely embedded within 

another predicted domain, the domain with a higher E-value was removed.  

 

When running a query sequence against profile HMM (HMMER), some overlapping 

matches can be generated due to imprecise domain-boundary assignments. Therefore, 

allowing appropriate overlapping in domain detection should help increasing the 

performance for determining multi-domain architectures (Yeats, Redfern, and Orengo, 

2010a; Bernardes et al., 2016). When allowing domain overlaps, for dPUC2, the 

options were set to: --fCut 0.50 and --lCut 40 (the default parameters). With DAMA, 

while options –overlappingAA 0 and –overlappingMaxDomain 0 to avoid overlaps, the 

default options –overlappingAA 30 and –overlappingMaxDomain 50 were used to allow 

overlaps. Based on above selection of options for dPUC2 and DAMA, overlaps are 

allowed if the length of overlap is less than 40 amino acids and the overlap comprises at 

most 50% of the shortest match. In this process, !
ai∩aj =φ in Eq. 2.17 was changed to 

allow overlaps for MC-DD and HMM-DL as done in dPUC2 and DAMA. If the end 

position of 𝑎;  minus the start position of 𝑎e  is less than 40 and the overlap comprises 

<50% of the shortest of 𝑎;  and 𝑎e , the overlap was allowed in final prediction. The 

embedded domain predictions from dPUC2 were removed based on E-value. 
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2.2.5 Analysis of computational time 

All runtime experiments were performed on a single-user Linux machine (Kernel Linux 

3.5.0-34-generic Ubuntu 12.04 64 bit) with Intel(R) Core i5-3230M CPU 2.60GHz with 

8GB RAM. The Perl module Time::HiRes was used to measure the execution time. 

Because all domain-context based approaches start with the set of potential domains 

identified by hmmscan, the execution time for hmmscan was not included in calculating 

search time. 

 

2.2.6 Gene Ontology analysis 

MultiPfam2GO (Forslund and Sonnhammer, 2008) was used to obtain Gene Ontology 

(GO) annotations from domain information obtained by HMMER3, MC-DD, and HMM-

DLL. ReVigo (Supek et al., 2011) was used to obtain the most specific GO terms, which 

removes redundant GO terms by finding representative GO terms from sibling terms and 

those related by inheritance.   

 

2.3 Results 

2.3.1 Determination of the scaling factor s 

In Eq. 2.15, we used the scaling factor s to scale linker length scores. The selection of the 

scaling factor was done based on the observed FDR curves. 10,000 sequences were 

randomly selected from the UniRef50 dataset, and this random selection was repeated ten 

times to generate 10 groups of training datasets. Six values (2, 6, 8, 10, 16 and 22) were 
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tested to determine the scaling factor for calculating linker length scores. HMM-DL using 

each scaling factor was applied to the sequences of each group. The FDR curve was 

plotted using the average FDRs and the corresponding average number of domains per 

protein obtained from 10 datasets.  As shown in Figure A5, the scaling factor of 10 

produced the best performance based on the FDR curve. Therefore, we chose s=10 to 

calculate linker length scores for HMM-DL.   

 

2.3.2 Comparison of domain identification performance 

 
We compared the domain identification performance by HMM-DL against other methods 

including non-context method hmmscan with a range of E-values (0.00000001-

0.0000002), context methods: dPUC2, MC-DD, and DAMA. For context methods, a 

range of E-value thresholds (0.000001 – 0.005) was used to detect candidate Pfam 

domains by using hmmscan from six sets of proteomes. Proteins that had two or more 

domains were used for the shuffling method (Fig. 2.3) to compute FPR and FDR for each 

domain detection method. As shown in Eq. 2.17, HMM-DL as well as MC-DD methods 

do not allow overlapped domains in selecting the maximum-scoring domain architecture. 

Therefore, the same condition was used with dPUC2 and DAMA in this comparison. For 

non-overlapping prediction, the similar results were obtained when using FDR (Fig. 2.4) 

and FPR (Fig. A6) to compare the performance of the prediction methods. As shown in 

Fig. 2.4 and Fig.A6, HMM-DL performed consistently better than hmmscan, dPUC2, 

MC-DD, and DAMA for E. coli and H. sapiens over the most range of FDRs and FPRs. 

HMM-DL outperforms DAMA in all tested organisms. In S. cerevisiase, HMM-DL 
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performs much better than the other prediction tools at the most of FPRs and FDRs. In C. 

elegans, HMM-DL predicts more domains than other prediction tools when FDRs and 

PFRs are larger, otherwise dPUC2 achieves a better performance. dPUC2 usually 

performed better than MC-DD except for P. falciparum, where the performance by 

HMM-DL, dPUC2, and MC-DD was similar, better than the performance of DAMA. 

Many domain types seem to be missing and domain coverage is lower from P. 

falciparum compared with the other organisms (Table A1). All domain-context 

approaches outperformed non-context method hmmscan, which suggests the introduction 

of domain context effectively control the False Positive rates (FPRs) and False Discovery 

Rates (FDRs).  

	 	

Figure 2.4: Performance of HMMSCAN, dPUC2, DAMA, MC-DD and HMM-DL on 
domain identifications of P. falciparum, E. coli, S. cerevisiae, D. melanogaster, C. 
elegans and H. sapiens proteins. The x-axis is the FDR and the y-axis is the number of 
predicted domains per protein. The better methods have higher curves. 
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Recent versions of dPUC2 as well as DAMA have options to allow overlapping domain 

matches. Therefore, we also used these options with dPUC2 and DAMA. The same 

conditions were used for HMM-DL and MC-DD to allow overlapping domains when 

searching domain architectures. The results are given in Fig. 2.5 (FDR) and in 

supplementary: Fig. A7 (FPR). Allowing overlaps in dPUC2 achieves a better 

performance than the other prediction methods in C. elegans, D. melanogaster and H. 

sapiens.  In E. coli, DAMA with overlaps predicts more domain at the same FDRs and 

FPRs than HMM-DL with overlaps, but the performance of HMM-DL is better than that 

of dPUC2 when overlaps are allowed. In S. cerevisiae, HMM-DL with overlaps predicts 

more domains than the other prediction methods at given FDRs or FPRs.  
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Figure 2.5: Performance of HMMSCAN, dPUC2, MC-DD and HMM-DL with 
allowed overlaps on domain identifications of P. falciparum, E. coli, S. cerevisiae, D. 
melanogaster, C. elegans and H. sapiens proteins. The x-axis is the FDR and the y-axis 
is the number of predicted domains per protein. The better methods have higher curves. 
	

	

2.3.3 Domain identification from six proteomes 

We identified domains from the six proteome sets using HMM-DL, MC-DD, dPUC2, DAMA, as 

well as the regular HMMER3. The default E-value threshold for dPUC2 is 0.0001. To compare 

the results by different methods obtained at the similar FDR and FPR levels using dPUC2 

as the benchmark, based on our FDR and FPR analysis described above, we obtained the 

potential domains used as the input for each method using the following E-value 

thresholds with hmmscan: 0.001 for HMM-DL, 0.005 for MC-DD, 0.00003 for DAMA, 

and 0.0001 for dPUC2. To obtain the prediction by the regular HMMER3, hmmscan was 

used with the default parameters (the option –cut_ga) and possible domain overlaps were 
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resolved by taking the domain with the lowest E-value among those found in overlapping 

regions. Table 2.1 summarizes the domain identification results by different methods 

without allowing overlaps. Compared to the standard Pfam, HMM-DLL identified from 

333 (for E. coli) to 6,256 (for human) more domains. The number of domain predictions 

increased by 5.6% (for E. coli) to 16.5% (for P. falciparum) compared to those obtained 

by the standard Pfam. Moreover, from 45 (for E. coli) to 118 (for D. melanogaster) 

domain types (Pfam families) were new to the organisms and had never been detected 

previously by using the standard Pfam analysis. While the increase in domain 

identification was the lowest for the E. coli proteome, whose genome is one of the best 

annotated, the highest increase was found in the P. falciparum with low protein coverage 

(Table A1). In E. coli, HMM-DL predicted more domains than DAMA at the lower FDR 

and FPR. Given the similar FDR and FPR, more domains were predicted by HMM-DL 

compared with dPUC2 in D. melanogaster and H. sapiens (Table 2.1).  

 

For all organisms, HMM-DL had the similar computational time with MC-DD and both 

ran much faster than dPUC2 (Fig. 2.6 and Table A2) and slower than DAMA.  
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Figure 2.6: dPUC2, MC-DD and HMM-DL time performance on the number of 
potential domains in P. falciparum(A) and on the number of potential domains in P. 
falciparum, E. coli, S. cerevisiae, D. melanogaster, C. elegans and H. sapiens proteins 
(B). 
 

 

 

2.3.4 Functional annotation of P. falciparum enhanced by newly identified 

domains by HMM-DL  

P. falciparum is a protozoan parasite, the main causal agent of human malaria (White, 

2004). Compared to the other organisms included in this study, the domain coverage (the 

proportion of the protein sequences where Pfam domains are assigned) is low and many 

domain types seem to be missed as indicated in Table A1. Using HMM-DL with E-value 

£0.001, 277, 403, 343 and 1,015 new domains were found compared with MC-DD (E-

value £0.005), DAMA (E-value £0.00003), dPUC2 (E-value £0.0001) and standard Pfam 

(the option: --cut_ga), respectively. To show examples how domains newly detected by 

HMM-DL can contribute to protein functional annotation, we performed refinement of 
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GO annotations for those 226 proteins where new domains were found. Not all novel 

domains contribute to refining the functional annotations of protein. Table 2.2 

summarizes the results of refined GO annotations based on domains identified by HMM-

DL compared with the currently available annotations in PlasomDB (release 26). For 

example, the protein PF3D7_1304600 is annotated as "unknown function" in PlasmoDB 

and no Pfam domain is assigned for this protein by the standard Pfam, MC-DD, dPUC2 

or DAMA. Using HMM-DL, two new repeating domains, SET (PF00856), were found 

and the protein's function can be now annotated as ‘lysine N-methyltransferase activity’. 

For the PF3D7_1014800 protein, which is currently annotated as “conserved Plasmodium 

protein, unknown function”, AKAP28 domain (PF14469) and two EF-hand_8 domains 

(PF13833) were detected by HMM-DL. The function of PF3D7_1014800 was annotated 

as “calcium ion binding” by new predicted domains.  With these new domains, the 

function of PF3D7_1014800 was annotated as “calcium ion binding”. This result was 

consistent with those from CD search where the aforementioned Pfam domain are in fact 

detected although with a weak E-value support (4.78x10-3) (Fig. A11). As another 

example, for the PF3D7_0415700 annotated as “conserved, Plasmodium protein, 

unknown function”, two Trigger_C domains (PF05698), which is associated with 

peptidyl-prolyl cis-trans isomerase activity, were found by only HMM-DL. These results 

show that Pfam domain search enhanced by HMM-DL can expand the protein annotation 

without using many other domain search methods. From the P. falciparum proteome, we 

could re-annotate 12 proteins, in total, that had been simply reported to have "unknown" 

or "conserved" functions previously. 
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2.4 Discussion 

Enhancing domain identification is important for understanding protein functions (Yeats, 

Redfern, and Orengo, 2010b). The regular Pfam domain search using HMMER3 is highly 

conservative, and although its FPRs and FDRs are smaller, it has a difficulty in 

identifying divergent domains. In this study, we have shown that by combining domain 

co-occurrence and linker length information between domains we can improve the 

sensitivity of domain identification. HMM-DL has following appealing features leading 

to performance enhancement compared with other methods. First, HMM-DL, like MC-

DD, is based on a Markov model, which takes the adjacency of domains into account, 

while CODD, dPUC2, and DAMA use only domain co-occurrence information. Second, 

HMM-DL, unlike MC-DD, takes into account the association of linker lengths with 

surrounding domain pairs. The introduction of additional information in the form of 

linker lengths lead to a reduction in false positive predictions. Finally, HMM-DL and 

MC-DD are fast owing to the use of a dynamic programming algorithm. dPUC2 is slower 

than HMM-DLL and MC-DD owing to its use of integer linear programming, which 

needs to search all possible combinations. DAMA is faster than HMM-DL and MC-DD. 

Two factors of DAMA that explain runtime enhancement: (1) DAMA is implemented in 

C++, while our method and dPUC2 are implemented in Perl; (2) DAMA enumerates all 

possible architectures based on domain co-occurrence constraints before applying the 

objective functions to select final predictions, which filters out some domain architectures 

to reduce runtime.  This study also included the development of a shuffling method since 

our method is sensitive to the adjacency of domains. With this method, we could measure 

FPR as well as FDR from both HMM-DL and MC-DD. 
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Domains newly detected by HMM-DL are useful for expanding protein function 

annotations. As we showed, many proteins in P. falciparum that were previously 

annotated as unknown functions can be re-annotated. These new domains leading to the 

re-annotation of proteins had never been identified before in P. falciparum. For example, 

our study predicted two Tic22 (PF04278) domains on PF3D7_0415700, where Tic22 

protein of P. falciparum (pfTic22) is critical for parasite survival(Glaser et al., 2012). 

This protein is an attractive drug target since P. falciparum is a protozoan parasite.  

 

Domain overlaps are allowed in the newer version of dPUC2 (version=1.03) as well as 

recently released DAMA. We note that the performance of HMM-DL with overlaps is 

not as good as that of HMM-DL for non-overlapping domain prediction when compared 

with the other context prediction methods. This may be because the training dataset used 

for computation of domain dependency scores and linker length scores does not include 

overlapping domain predictions. Using training dataset containing observed domain 

overlap is expected to improve the performance of MC-DD and HMM-DL for allowed 

overlapping predictions. Further comparison and analysis between predictions by dPUC2 

with and without overlaps in E. coli showed that most of newly identified domains by 

allowing overlaps (87 of 89) were those from the same clan. The remaining two 

overlapping domains were from WD40 domain. It implies that predictions with allowing 

overlaps do not contribute significantly to enhancing the annotation of protein function.  
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Table 2.2: Refined functional annotation by newly predicted domains 

Protein ID Standard 
Pfam dPUC2 DAMA MC-DD HMM-DL 

Current 
annotation 

(PlasmoDB 26) 
Reannotation 

PF3D7_0930400.2 zf-CHY zf-CHY zf-CHY zf-CHY 
Myb_DNA-

binding 
zf-CHY 

conserved 
Plasmodium 

protein, unknown 
function 

chromatin 
binding 

PF3D7_1014800     

AKAP28 
EF-hand_8 
EF-hand_8 

conserved 
Plasmodium 

protein, unknown 
function 

calcium ion 
binding 

PF3D7_1304600     
SET 
SET 

conserved 
Plasmodium 

protein, unknown 
function 

lysine N-
methyltransfer
ease activity 

PF3D7_0823400     
AXE1 
AXE1 

alpha/beta 
hydrolase, 
putative 

cephalosporin
-C deacetylase 

activity 

PF3D7_0301800     

ABC2_membr
ane_5 

ABC2_membr
ane_5 

Plasmodium 
exported protein, 

unknown 
function 

ABC-type 
transport 

PF3D7_1014800     

AKAP28 
EF-hand_8 
EF-hand_8 

conserved 
Plasmodium 

protein, unknown 
function 

calcium ion 
binding 

PF3D7_1035900   
DUF2336 
DUF2336 

DUF2336 
DUF2336 

Trigger_C 
Trigger_C 

probable protein, 
unknown 

function (M566) 

peptidyl-
prolyl cis-

trans 
isomerase 

activity 

PF3D7_0415700     
Tic22 
Tic22 

conserved 
Plasmodium 

protein, unknown 
function 

chaperone 
required for 

protein import 
into the 

apicoplast 

PF3D7_1328500 Abhydrolase
_5 

Abhydrolase
_5 

Abhydrolas
e_5 Abhydrolase_5 

Hydrolase_4 
Hydrolase_4 
Peptidase_S9 

alpha/beta-
hydrolase, 
putative 

peptidase 
activity acting 

on L-amino 
acid peptides 

PF3D7_0823400     
AXE1 
AXE1 

alpha/beta 
hydrolase, 
putative 

carboxylic 
ester 

hydrolase 
activity 

PF3D7_1401500 Abhydrolase
_6 

Abhydrolase
_6 

Abhydrolas
e_6 Abhydrolase_6 Hydrolase_4 

LCAT 
lysophospholipas

e, putative 

transferase 
activity, 

transferring 
acyl groups 
other than 
amino-acyl 

groups 

PF3D7_1001600 Abhydrolase
_5 

Abhydrolase
_5 

Abhydrolas
e_5 Abhydrolase_5 Hydrolase_4 

PGAP1 

alpha/beta 
hydrolase, 
putative 

hydrolase 
activity, 

acting on ester 
bonds 

PF3D7_0528200 PCI PCI PCI PCI eIF3_N 
PCI 

eukaryotic 
translation 

initiation factor 3 
subunit E, 

putative (EIF3E) 

translation 
initiation 

factor activity 

 



	 64	

Chapter 3  

Using Inter-domain Linker Dependency to Identify Protein Domains 

3.1 Introduction 

We introduced a novel method (HMM-DL) in Chapter 2 for using inter-domain linkers to 

improve the identification of protein domain. In HMM-DL, we assume that the observed 

domain sequence is the result of an underlying unobserved (hidden) state (domain) 

sequence and inter-domain linker lengths are the emitted observations. The HMM-DL 

approach described in Chapter 2 is based on HMM. The limitation of HMM lies in the 

assumption of independence among the linker lengths. Therefore, by utilizing linker 

length dependency information, we expect to see increased domain identification 

sensitivity.  

 

Double Chain Markov model (DCMM) proposed by Berchtold (Berchtold, 2009; 2007) 

allows more general dependency structure than HMM. As illustrated in Fig. 1.6, DCMM 

allows first-order dependency between successive observations given the hidden states. 

While DCMM has been used successfully in e.g., behavioral analysis (Berchtold and 

Sackett, 2002; Chariatte et al., 2008) and social network analysis (Malmgren et al., 

2009), it has not been applied yet in bioinformatics. For multi-domain protein families, 

we can also incorporate linker length dependency information with DCMM (see Fig. 

3.1C). Our second approach (DCMM-DLL) is to use the DCMM to model the domain 

dependency, the distribution of linker length, and the dependency between the linker 

lengths in domain detection (Fig. 3.1C).  
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Figure 3.1: Multi-domain protein representations for the three methods. MC-DD (A) 
is a sequential domain dependency method based on the first-order Markov chain 
developed by Coin et al. (2003). HMM-DL (B) and DCMM-DLL (C) are our newly 
proposed methods that incorporate linker dependency information. Di is a domain in a 
protein sequence. Ii is a linker length distribution between two domains Di and Di+1, 
which is emitted from the domain pair. Linker length dependency, indicated by dashed 
arrows, exists only in DCMM-DLL (C). 
 
 

 

3.2 Materials and Methods 

3.2.1 Datasets 

Training dataset. We used the same dataset (UniRef50) used in Chapter 2 as training 

dataset. Using hmmscan from the HMMER3 software package (hmmer 3.1b2) and the 

Pfam v27, we identified 10,501,358 domains belonging to 14,828 Pfam domain families. 
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It included 3,644,227 domain pairs (and linkers) in 11,411 types of domain family pairs. 

Linkers were grouped into four categories based on their lengths: short, medium, long, 

and extra-long, in approximately equal numbers (~910,000 linkers in each category). 

1,763,060 domain triplets were identified, which belonged to 10,4671 types of domain 

triplets. The linker-pairs were determined by the domain triplets and the types of linker-

pairs were defined by the types of domain triplets as shown in Fig. 3.2.   

 

Proteomes. The proteomes of six tested organisms (E. coli, S. cerevisiae, P. falciparum, 

C. elegans, D. melanogaster, and H. sapiens) used in Chapter 2 were used here to assess 

the performance of DCMM-DLL.  

 

In order to examine whether linker length dependency is conserved for the specific 

domain triplets, we gathered the specific domain triplets that were observed 100 or more 

times in training dataset. For each type of domain triplet, the fraction of the total number 

of this triplet for each type of linker length category combination was calculated. If linker 

length dependencies are not conserved for the specific domain triplets, the most of values 

should tend to around the background probability. Fig. A8 shows that it was not the case, 

suggesting that linker-length dependencies are conserved for the specific domain triplets.  
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Figure 3.2: Multidomain protein architecture. Domains 1, 2, and 3 are all co-occurring 
domains in this protein. In this proposal, "domain pair", "linker pair", and "domain 
triplet" indicate pairs and triplets of domains and linkers directly adjacent to each other 
on a protein sequence. 
 

3.2.2 Approach 

Similar to Chapter 2, let	𝐝 = {d+, d@ …	dA} be the set of all the candidate domains with 

corresponding amino acid sequences a+, a@ … aA, where domains are ordered based on 

their ending amino acid positions in the protein sequence. Here, a candidate domain, dD, 

is defined by the Pfam domain family (given as a profile HMM) and the position on the 

protein. Let H(dD) be the HMMER domain score of domain dD, and T(dD) be the score 

threshold (see Supplementary file for the score threshold specific to each domain family 

used in Pfam). Let D = D+ …D:  be a domain sequence without overlap, where 

{D+, D@ …D:} is the subset of the candidate domain set 𝐝 keeping the same numbering 

order as in d. Let K = 𝐾+ …𝐾:H+  be a linker-length sequence between domains in a 

domain sequence (D) and !!Q =Q1...Qn−2  be linker-length dependency among domain 

triplets (see Fig. 3.2). Our goal is to find the most likely sequence of domains D* with 
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appropriate linkers among them given protein sequence (A) and first-order DCMM 

model (DCM): 

 
!!
D* = argmax

D
P(D,K ,Q|A,DCM)   (3.1) 

 

!!

P(D,K ,Q|A,DCM)= P(D,K ,Q,A,DCM)
P(A,DCM) = P(A|D,K ,Q,DCM)

P(A,DCM) P(D,K ,Q,DCM)

= P(A|D,K ,Q,DCM)
P(A|DCM)P(DCM)P(D,K ,Q|DCM)P(DCM)

= P(A|D,K ,Q,DCM)
P(A|DCM) P(D,K ,Q|DCM)

 (3.2) 

 

Since domain sequence D contains information of domain families and their positions, Ks 

and Qs are known given D. Assuming that A is independent of the DCM model given D. 

So, !!P(A|D,K ,Q,DCM)= P(A|D)  𝑃 𝐴 𝐷,𝐾, 𝑄, 𝐷𝐶𝑀 = 𝑃(𝐴|𝐷)  and Eq. (3.2) can be 

written as  

 
!!
P(D,K ,Q|A,DCM)= P(A|D)

P(A|DCM)P(D,K ,Q|DCM)   (3.3) 

!!P(A|DCM)  is a constant, and replacing it with another constant, , which is the 

probability of the protein sequence A given a random model (R), does not affect 

searching D with the highest probability. (Eq. 3.3) can be expressed as: 

 

!!

P(D,K ,Q|A,DCM)

∝ P(A|D)
P(A|R)P(D,K ,Q|DCM)= (

P(Ai |Di
P(Ai |R)i∏ )×P(D,K ,Q|DCM)   (3.4) 

Then,  

 !!P(D,K ,Q|DCM)= P(Di |Di−1)⋅P(Ki |Ki−1 ,Di−1 ,Di ,Di+1)i∏   (3.5) 

 

!!P(A|R)
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We denote !!D0 as the begin state and !!Dn+1  as end state. Set !!P(D1 |D0)=1 ,

!!P(Kn |Dn ,Dn+1)=1 , !!P(K1 |K0 ,D0 ,D1 ,D2)=1  and !!P(Kn |Kn−1 ,Dn−1 ,Dn ,Dn+1)=1 . Then (3.5) 

can be rewritten as     

 

!!

P(D,K ,Q|A,DCM)

∝( P(Ai |Di )
P(Ai |R)

)× (P(Di |Di−1)⋅P(Ki |Ki−1 ,Di−1 ,Di ,Di+1))i∏i∏

= ( P(Ai |Di )
P(Ai |R)

⋅P(Di )⋅P(Ki )i∏ )

×( P(Di |Di−1)
P(Di )

⋅
P(Ki |Di ,Di+1)

P(Ki )
⋅
P(Ki |Ki−1 ,Di−1 ,Di ,Di+1)

P(Ki |Di ,Di+1)i∏ )

  (3.6) 

This is equivalent to: 

 

!!

log2P(D,K ,Q|A,DCM)

= (log2
P(Ai |Di )
P(Ai |R)

− log2
1

P(Di )P(Ki )
)

i∑ + log2
P(Di |Di−1)
P(Di )i∑

+ log2
P(Ki |Di ,Di+1)

P(Ki )i∑ + log2
P(Ki |Ki−1 ,Di−2 ,Di−1 ,Di )

P(Ki |Di ,Di+1)i∑

  (3.7) 

 

Since !!P(Di )P(Ki ) is constant, we use
!!
T(Di )= log2

1
P(Di )P(Ki )

, Eq (3.7) can be changed to  

 

!!

log2P(D,K ,Q|A,DCM)

∝ (log2
P(Ai |Di )
P(Ai |R)

−T(Di ))i∑ + log2
P(Di |Di−1)
P(Di )i∑

+ log2
P(Ki |Di ,Di+1)

P(Ki )i∑ + log2
P(Ki |Ki−1 ,Di−2 ,Di−1 ,Di )

P(Ki |Di ,Di+1)i∑

  (3.8) 

 

Here 
!!
H(Di )= log2

P(Ai |Di )
P(Ai |R)

 is the bit score for the domain D' from HMMER and !!T(Di )  

is the score threshold.  
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For this method, we incorporate the information on the linker length dependency in the 

previously defined domain sequence score (Eq. 2.13). To do so, we define the linker 

length dependency score as 

 
!!
Q(Di−1 ,Di ,Di+1)= log2

P(Ki |Ki−1 ,Di−1 ,Di ,Di+1)
P(Ki |Di ,Di+1)

  (3.9) 

where !!Ki−1   and !Ki   are the observed linker length categories between!!Di−1 , !Di   and!Di , 

!!Di+1 , respectively,  

 

!!

P(Ki |Ki−1 ,Di−1 ,Di ,Di+1)

=
N(Ki |Ki−1 ,Di−1 ,Di ,Di+1)+ ′′α N(Di ,Di+1)P(Ki |Di ,Di+1)

N(Ki−1 ,Di−1 ,Di ,Di+1)+ ′′α N(Di ,Di+1)
  (3.10) 

 
!!
P(Ki |Di ,Di+1)=

N(Ki |Di ,Di+1)+ ′α N(Di ,Di+1)P(Ki )
(1+ ′α )N(Di ,Di+1)

  (3.11) 

 

here, !!N(Ki |Ki−1 ,Di−1 ,Di ,Di+1)  and !!N(Ki−1 ,Di−1 ,Di ,Di+1) are the count of the linker length 

pair !!(Ki−1 ,Ki )  and the count of !!Ki−1  from the domain triplet !!(Di−1 ,Di ,Di+1)  in the training 

dataset, respectively. !!N(Ki |Di ,Di+1)  is the number of linker length category !Ki  between the 

domains!Di  and !!Di+1  counted in the training dataset, !!N(Di ,Di+1)  is the number of domain!!Di+1

	 following domain !Di  counted in the training dataset, and ! ′′α =0.00001  to make the 

pseudocount small enough.   

 

Similar to calculation of linker length scores, we did not penalized unobserved domain 

triplets and negative linker length dependency scores when calculating the domain 



	 71	

sequence score S D .  The linker length dependency score is thus re-defined as: 

 
!!
Q(Di−1 ,Di ,Di+1)=max(s ⋅log2

P(Ki |Ki−1 ,Di−1 ,Di ,Di+1)
P(Ki |Di ,Di+1)

,0)   (3.12) 

  

where !s  is the scaling factor. We used the same value we used in Chapter 2.  

 

With the linker length dependency score (3.12), we define the domain sequence score of 

D as follows 

 
!!

S(D)=H(D1)−T(D1)
+ (H(Di )−T(Di )+C(Di |Di−1)+L(Di−1 ,Di )+Q(Di−1 ,Di ,Di+1)i=2

n∑
  (3.13) 

 

Our goal is to find the domain sequence !! D= D1…Dn  that maximizes sequence score 

!!S(D) . If !!Q(Di−1 ,Di ,Di+1)>0 , it enhances S D  which helps weak domains to be identified.  

1) Initialization 1: 

 
!!

S(D1)=H(d1)−T(d1)
D1 = {d1}

  (3.14) 

2) Initialization 2: 

 

!!

S(D2)=H(d2)−T(d2)+ maxa1∩a2=φ
(S(D1)+C(d2 |d1)+L(d1 ,d2),0)

If S(D1)+C(d2 |d1)+L(d1 ,d2)>0,D2 = {D1 ,d2}

otherwise D2 = {d2}

  (3.15) 

3) Recursion: 
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!!

S(Dk )
=H(dk )−T(dk )
+ max
1≤i< j<k ,(ai∩aj )∪(aj∩ak )=φ

(S(Di )+C(dj |di )+L(di ,dj )+C(dk |dj )+L(dj ,dk )

+Q(di ,dj ,dk ),S(Di )+C(dk |di )+L(di ,dk ),0)
where 3≤ k ≤m

  (3.16)  

 

!!

If
S(Di )+C(dj |di )+L(di ,dj )+C(dk |dj )+L(dj ,dk )+Q(di ,dj ,dk )
> S(Di )+C(dk |di )+L(di ,dk )
and
S(Di )+C(dj |di )+L(di ,dj )+C(dk |dj )+L(dj ,dk )+Q(di ,dj ,dk )>0,
Dk = {Di ,dj ,dk };
Elseif
S(Di )+C(dk |di )+L(di ,dk )
> S(Di )+C(dj |di )+L(di ,dj )+C(dk |dj )+L(dj ,dk )+Q(di ,dj ,dk )
and
S(Di )+C(dk |di )+L(di ,dk )>0,
Dk = {Di ,dk };
otherwise
Dk = {dk }

  (3.17) 

4) Termination: 

 
!!
D* = argmax

1≤k≤m
(S(Dk ))   (3.18) 

!!(ai∩aj )∪(aj ∩ak )=φ  
in (Eq. 3.16) ensures that no domain overlaps occur in the 

resulted domain sequence.  

As described in Chapters 1 and 2, Pfam, MC-DD and HMM-DL use domain-specific 

gathering thresholds (GAs) at the domain level (domain GA) as well as at the sequence 

level (sequence GA). In a similar way, we equally distributed domain dependency score 
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(!!C(dj |di ) , !!C(dk |dj ) ) and linker length score (!!L(di ,dj ) , !!L(dj ,dk )  ) to the bit score of 

each domain from corresponding pair; and linker length dependency score (!!Q(di ,dj ,dk ) ) 

of each domain triplet on D from DCMM-DLL and add this score to the bit score of each 

domain from corresponding triplet. Finally, we sum the new scores of domains in the 

same family and compare this sum with sequence GA of this family. The domains will be 

eliminated from D if the sum is smaller than the sequence GA. 

 

3.2.3 Estimation of the false positive rates (FPRs) and the false discovery rates 

(FDRs) 

A shuffling method has been developed in Chapter 2 to assess the performance of 

different domain prediction methods (HMM-DL, MC-DD, dPUC2 and DAMA). Since 

DCMM-DLL boosts domain prediction by not only domain dependency and inter-domain 

linker length but also linker-pairs among domain triplets, shuffling procedure was done 

for each organism tested using the protein sequences with three or more domains by 

hmmscan (HMMER3, the option: cut_ga). To obtain enough simulated sequences for 

estimation of FPRs and FDRs in each organism, each domain region was shuffled 40 

times for each sequence in tested organisms.  

 

In Chapter 2, we constructed FDR and FPR curves to compare the performances of 

different prediction methods. Similarly, FDR and FPR curves were used to compare 

DCMM-DLL with the other methods. In order to allow appropriate overlapping domain 

identification, !!(ai∩aj )∪(aj ∩ak )=φ  in Eq. 3.16 was changed to allow overlaps in 
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DCMM-DLL. If both the end position of 𝑎; minus the start position of 𝑎e and the end 

position of 𝑎e minus the start position of 𝑎k are less than 40, respectively and the overlap 

comprises <50% of the shortest match of each overlapped pair, the overlaps were allowed 

in final prediction. 

 

3.2.4 Analysis of computational time 

All runtime experiments were performed on a single-user Linux machine (Kernel Linux 

3.5.0-34-generic Ubuntu 12.04 64 bit) with Intel(R) Core i5-3230M CPU 2.60GHz with 

8GB RAM. The Perl module Time::HiRes was used to measure the execution time. 

Because all domain-context based approaches start with the set of potential domains 

identified by hmmscan, the execution time for hmmscan was not included in calculating 

search time. 

 

3.3 Results 

3.3.1 Comparison of domain identification performance 

We compared the domain identification performance of DCMM-DLL with the other 

approaches, including non-context method hmmscan with a range of E-values 

(0.00000001-0.0000002) for non-overlapping domain prediction, context methods: 

HMM-DL, MC-DD, dPUC2 and DAMA for both non-overlapping and overlapping 

domain prediction. For context methods, the range of E-values (0.000001 – 0.005) was 

used to detect candidate Pfam domains by using hmmscan from six sets of proteomes. 

Proteins that had three or more domains were used for the shuffling method (Fig. 2.3) to 
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compute FPR and FDR for each domain detection method. For non-overlapping 

prediction, the similar results were obtained when using FDR (Fig. 3.3) and FPR (Fig. A9) 

to compare the performance of the prediction methods. As shown in Fig. 3.3 and Fig. A9, 

the performance by HMM-DL and DCMM-DLL was similar and better than the 

performance of the other methods (HMMSCAN, MC-DD, dPUC2 and DAMA).  

 

In Chapter 2, we note that dPUC2 with allowed overlaps achieves a better performance 

than the other prediction methods including HMM-DL in D. melanogaster and H. sapiens. 

Allowing overlaps in DCMM-DLL achieves a better performance than dPUC2 with 

allowed overlaps in D. melanogaster and H. sapiens (Fig. 3.4 and Fig. A10). In E. coli, 

DAMA with overlaps predicts more domain at the same FDRs and FPRs than HMM-DL 

with overlaps and DCMM-DLL with overlaps, but the performance of HMM-DL and 

DCMM-DLL are better than that of dPUC 2 when overlaps are allowed. 
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Figure 3.3: Performance of HMMSCAN, dPUC2, MC-DD, HMM-DL and DCMM-
DLL on domain identifications of P. falciparum, E. coli, S. cerevisiae, D. 
melanogaster, C. elegans and H. sapiens proteins. The x-axis is the FDR and the y-axis 
is the number of predicted domains per protein. The better methods have higher curves. 
 
 
3.4 Discussion 

In this study, we have shown that the similar performance was achieved by DCMM-DLL 

and HMM-DL. Both of them were better than the other context methods for non-

overlapping domain prediction. This may be because no much more information was 

obtained from domain triplets including linker dependency compared with the 

information from domain pairs. Interestingly, allowing overlaps in DCMM-DLL 

improved the identification of domains in D. melanogaster and H. sapiens compared with 

the other context methods with overlaps. The possible reason for this improvement is that 

the relatively higher percentage of proteins from D. melanogaster and H. sapiens 

contains three or more domains (Fig. A4) compared with the other organisms, and 

incorporating information of domain triplets provided more power for resolving the 
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incorrect boundary positions of domains.  

 

DCMM-DLL is faster than dPUC2, but slower than MC-DD and HMM-DL. This is 

because DCMM-DLL used more complicated recursion steps including not only domain 

pairs in MC-DD and HMM-DL but also domain triplets.  

 
 

 
Figure 3.4: Performance of HMMSCAN, dPUC2, MC-DD, HMM-DL and DCMM-
DLL with allowed overlaps on domain identifications of P. falciparum, E. coli, S. 
cerevisiae, D. melanogaster, C. elegans and H. sapiens proteins. The x-axis is the FDR 
and the y-axis is the number of predicted domains per protein. The better methods have 
higher curves. 
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Chapter 4  

Conclusion and Future Research 

4.1 Summary 

In this dissertation, two statistical methodologies to improve the sensitivity of protein 

domain prediction have been introduced. A new simulation method has also been 

developed to assess the domain prediction approaches. The first domain prediction 

method, HMM-DL (hidden Markov model using domain dependency and linker length) 

captured the information from both domain dependency and inter-domain linker length in 

proteins to identify domains without markedly increasing the false discovery rates 

(Chapter 2). The main feature of HMM-DL is that it takes inter-domain linkers and 

adjacency of domains into consideration so that more information is used to control the 

false positives.  Our benchmarks showed that HMM-DL improved non-overlapping 

domain predictions for the known model organisms compared with the current context-

based approaches (MC-DD, dPUC2, DAMA)., HMM-DL was also faster than dPUC2, 

while it was a little slower than DAMA. As an example, newly predicted domains were 

used to refine the functional annotation of proteins, especially for proteins which are left 

“unanotated” (no function is assigned). The imprecise predicted domain boundaries can 

lead to conflict overlapping domains on proteins (Yeats et al., 2010; Bernardes et al., 

2016). Thus, domain overlaps were allowed in HMM-DL to increase the number of 

correct domain predictions.  

 

The second domain prediction method we developed, DCMM-DLL, was based on the 
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idea of dependency between successive inter-domain linkers, which is carried by the 

Double Chain Markov Model (DCMM). DCMM is a generalization of HMM with 

dependency between observations. Application of DCMM-DLL (DCMM using Domain 

dependency, Linker length and Linker length dependency, Chapter 3) on protein sets 

from the model organisms showed that DCMM-DLL for non-overlapping domain 

prediction performed similarly to HMM-DL, both better than the other methods. 

Moreover, DCMM-DLL showed improved domain predictions when domain-overlaps 

were allowed in C. elegans, D. melanogaster and H. sapien datasets. DCMM-DLL 

compensated the weakness of HMM-DL in prediction of overlapping domains.  

 

4.2 Future Research 

Extension of the HMM-DL and DCMM-DLL to include higher, variable-order 

dependency.  Many multi-domain proteins contain more than three domains. Therefore, 

using only the first-order in Markov models restricts the power of domain indentification 

(Coin et al., 2003). HMM and DCMM can be generalized to have higher, multi-order 

dependencies among the domains and the linker lengths. Fang et al. (2009) solved this 

problem and showed that multi-order DCMM can improve modeling performance over 

the first-order DCMM. Removing the restriction of usig fixed-order HMM and DCMM 

can also improve the ability of domain prediction for proteins. Therefore, we will develop 

variable-order HMM and DCMM with flexible dependency structures that can model 

domain sequences with complex structures.  
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Using various training sets. Domain architecture and linker information can be gathered 

from a wide range of protein family/domain databases. Different organism groups are 

likely to have different domain structures and different linker length distributions. 

Therefore, taxonomy-specific training may improve prediction performance (Terrapon et 

al., 2012). We will generate most inclusive as well as taxonomy-specifc traning datasets 

and evaluate the performance. Since the boundaries of predicted domains are imprecise, 

allowing appropriate overlapping in domain detection should help increasing the 

performance for determining multi-domain architectures (Yeats et al., 2010; Bernardes et 

al., 2016). In our current implementation, non-overlapping domain predictions by 

hmmscan (the option: cut_ga) were used to calcualte domain dependency scores, linker 

length scores and linker length dependency scores for MC-DD, HMM-DL and DCMM-

DLL. The improvement in domain identificaiton by our methods is expected if the 

training dataset contains proteins with overlapped domains.  

 

Linker sequence properties. Secondary structures, disorderness, and other properties in 

linker regions can be associated with neighboring domains (Dong et al., 2006; Ekman et 

al., 2005) (Shatnawi and Zaki, 2015). Therfore, in addition to their lengths, we will 

incorporate amino acid profiles of linkers in our models as the covariates and examine 

how it affects the domain identificiation performance.  

 

Inclusion of N/C-terminals. In our preliminary study, we used only inter-domain 

linkers. In reality, N- and C-terminal regions are important parts of proteins. 
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Incorporating properties from these regions could further enhance the performance of 

domain discovery. Since DCMM-DLL requires two linker regions, inclusion of N/C-

terminals also extends applicability of DCMM-DLL to single domain proteins. 

 

Evaluation of domain discovery performance using simulated data. Our preliminary 

analysis was based on simple simulation data. More realistic and extensive benchmark 

datasets will be generated using sequence simulators with varying evolutionary 

parameters. For example, Indel-Seq-Gen (iSG) (Strope et al., 2009; 2007) and REvolver 

(Koestler et al., 2012) can simulate protein evolution with multi-domain architectures. 

Using simulated multi-domain protein sequences with various divergence levels, we will 

evaluate performance of each domain discovery method using FPR, FDR, F-meausre (a 

weighted harmonic mean of Precision and Recall), as well as AUC (the area under the 

receiver operating characteristic, or ROC, curve).  

 

Acceleration heuristic for HMM-DL and DCMM-DLL. Our results showed that 

HMM-DL and DCMM-DLL made contributions to the domain prediciton and sequence 

similarity search. However, they were slower than DAMA. The increase in the sequence 

databases may hinder efficient utility of our methods. Using some filters, for example, we 

can remove highly divergent protein sequences from the set of potential domains and the 

rest of the domains can be used as input for HMM-DL and DCMM-DLL to reduce 

runtime.    
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Application of HMM-DL and DCMM-DLL. We will apply our domain discovery 

approaches against various genomes across kingdoms. Comparative analysis of domain 

architectures among organisms and kingdoms will be carried out as part of evaluation of 

newly identified domains. For example, domains that are identified as part of conserved 

domain architectures can be considered more reliable. 
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Appendix 
	

A.1 Tables 

Table A1: Number of distinct Pfam domains and protein coverage in test organisms 

Organisms	 Proteome	
size	

Avg.	
protein	
length	

Pfam	
domains	

Domain	
types	

aa	
coverage	

E	.	coli	 4305	 315	 5936	 2607	 70%	
S.	cerevisiae	 6720	 450	 7660	 2937	 41%	
P.	falciparum	 5542	 756	 6138	 1833	 21%	
C.	elegans	 20274	 412	 22187	 3622	 40%	

D.	melanogaster	 13674	 539	 19661	 3987	 36%	
H.	sapiens	 20882	 547	 44784	 5470	 43%	
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Table A2: Runtime performance comparison for the context methods 

Methods	 P.	falciparum	 E.	coli	 S.	cerevisiae	 C.	elegans	 D.	melanogaster	 H.	sapiens	

dPUC2	 26.08±0.12		
(25.01,	26.18)	

6.85 ±
0.1		
(5.87,	
6.91)	

14.21±0.08	
(13.88,	
14.83)	

82.97±0.33	
(82.67,	86.17)	

139.3±3.12	
(138.56,	170.12)	

854.31±6.0
4	
(852.26,	
912.18)	

MC-DD	 14.48±0.12	
(14.38,	14.89)	

2.42 ±
0.03	
(2.38,	
2.60)	

2.73±0.03	
(2.68,	2.86)	

10.36±0.11	
(10.15,	10.98)	

9.45±0.07	
(9.31,	9.61)	

63.48±0.5	
(62.89,	
65.95)	

HMM-DL	 15.01±0.14	
(14.89,	15.68)	

3.02 ±
0.02	
(2.98,	
3.11)	

3.32±0.03	
(3.27,	3.42)	

12.49±0.09	
(12.28,	12.75)	

11.64±0.09	
(11.47,	11.94)	

63.59±0.64	
(62.91,	
66.17)	

DCMM-
DLL	

92.11±0.78	
(91.19,	93.69)	

8.59 ±
0.17	
(8.4,	
8.94)	

8.04±0.12	
(7.89,	8.22)	

65.71±1.02	
(64.09,	67.89)	

65.06±1.1	
(63.82,	67.36)	

662.19±4.7
9	
(657.57,	
673.03)	

DAMA	 1.85±0.02	
(1.81,1.90)	

1.67 ±
0.02	
(1.63,	
1.77)	

1.91±0.02	
(1.88,	2.09)	

5.90±0.2	
(5.78,	7.69)	

4.67±0.05	
(4.59,	4.86)	

10.04±0.2	
(9.73,	
10.52)	

No.	
proteins	 5542	 4305	 6720	 20274	 13674	 20882	

No.	
potential	
domains	

31243	 28688	 32967	 101074	 80838	 171382	
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A.2 Figures 
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Figure A1: Histogram of Linker lengths from UniRef50 (top) and from different 
model organisms. 
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Figure A2: Histogram of log Linker lengths from UniRef50 (Top) and from different 
model organism. 
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Figure A3: Testing the conservation of linker lengths for the specific domain pairs. 
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Figure A4: Distribution of the number of domains present in tested organisms 
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Figure A5: Test of selecting scale factor for linker length scores. FDRs in x-axis are 
the averaged values and the number of proteins per protein in y-axis is averaged values 
from ten groups. The error bars are standard deviations of the number of proteins per 
protein. 
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Figure A6: Performance of HMMSCAN, dPUC2, DAMA, MC-DD and HMM-DL on 
domain identifications of P. falciparum, E. coli, S. cerevisiae, D. melanogaster, C. 
elegans and H. sapiens proteins. The x-axis is the FPR and the y-axis is the number of 
predicted domains per protein. The better methods have higher curves. 
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Figure A7: Performance of HMMSCAN, dPUC2, MC-DD and HMM-DL with 
allowing overlaps on domain identifications of P. falciparum, E. coli, S. cerevisiae, D. 
melanogaster, C. elegans and H. sapiens proteins. The x-axis is the FPR and the y-axis 
is the number of predicted domains per protein. The better methods have higher curves. 
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Figure A8: Testing the conservation of linker-length dependencies for the specific 
domain triplets. 
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Figure A9: Performance of HMMSCAN, dPUC2, MC-DD, HMM-DL and DCMM-
DLL on domain identifications of P. falciparum, E. coli, S. cerevisiae, D. 
melanogaster, C. elegans and H. sapiens proteins. The x-axis is the FPR and the y-axis 
is the number of predicted domains per protein. The better methods have higher curves. 
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Figure A10: Performance of HMMSCAN, dPUC2, MC-DD, HMM-DL and DCMM-
DLL with allowed overlaps on domain identifications of P. falciparum, E. coli, S. 
cerevisiae, D. melanogaster, C. elegans and H. sapiens proteins. The x-axis is the FPR 
and the y-axis is the number of predicted domains per protein. The better methods have 
higher curves. 
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Figure A11: Comparison of new functional annotation of PF3D7_1014800 from P. 
falciparum with annotation from pBlast. 
 
	
	
	


