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The exact evolutionary history of any set of biological sequences is unknown, and all

phylogenetic reconstructions are approximations. The problem becomes harder when

one must consider a mix of vertical and lateral phylogenetic signals. In this disser-

tation we propose a game-theoretic approach to clustering biological sequences and

analyzing their evolutionary histories. In this context we use the term evolution as a

broad descriptor for the entire set of mechanisms driving the inherited characteristics

of a population. The key assumption in our development is that evolution tries to

accommodate the competing forces of selection, of which the conservation force seeks

to pass on successful structures and functions from one generation to the next, while

the diversity force seeks to maintain variations that provide sources of novel struc-

tures and functions. One branch of the mathematical theory of games is brought to

bear. It translates this evolutionary game hypothesis into a mathematical model in

two-player zero-sum games, with the zero-sum assumption conforming to one of the

fundamental constraints in nature in mass and energy conservation. We demonstrate

why and how a mechanistic and localized adaptation to seek out greater informa-

tion for conservation and diversity may always lead to a global Nash equilibrium in

phylogenetic similarity.
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Chapter 1

Introduction

In the last decade, research in biology has been revolutionized by the onset of next-

generation sequencing technologies, such as whole-genome DNA sequencing. The

number of completely sequenced genomes is increasing exponentially. Sequencing the

genome, however, is only the beginning of many more steps required to decipher the

complete information contained in the genome. The two main steps in this process

are: locating gene candidates on the genome and identifying the functions of their

products (i.e. proteins). With the large amount of data being generated by sequenc-

ing technologies, it is necessary to examine the relationships and behavior of many

functioning biological molecules simultaneously, rather than individually.

Phylogenetic methods are used to reconstruct the evolutionary history of amino

acid and nucleotide sequences. Functionality of biological sequences in the context of

phylogenetic trees is investigated by positioning the sequences among others whose

functions may be known. The number and diversity of tools for phylogenetic analysis

are continually increasing. Classic phylogenetic methods assume that evolution is a

tree-like (bifurcating) branching process, where genetic information arises through

the divergence and vertical transmission of existing genes, from parent to offspring
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[39]. However, when there are reticulate evolutionary events, such as lateral gene

transfer (LGT), domain shuffling, or hybridization of species, the evolutionary process

is no longer tree-like. Therefore evolutionary histories are often more accurately

represented by networks [30, 48, 56, 114].

1.1 Phylogenetic Networks

The development of analytical tools to generate network topologies that accurately

describe evolutionary history is an open field of research. Early network construction

methods often employed some appropriate notion of distance between taxa. Posada

and Crandall [100] explain why networks are appropriate representations for several

different types of reticulate evolution and describe and compare available methods

and software for network estimation. One of the earliest methods for phylogenetic

network construction was the statistical geometry method [34]. The authors in [79]

use a least-squares fitting technique to infer a reticulated network. Other network

construction methods can be found in [17, 48, 62, 73], each of which is useful for

modeling a particular kind of data.

Differentiating between vertical and lateral phylogenetic signals is a challenging

task in developing accurate models for reticulate evolution. In order to establish

a definition for vertical versus lateral transfer it must be that some component of

evolutionary signal recovered from a set of genes be awarded privileged status [56].

In the genomic context, vertical signals are assumed to reside within a core set of

genes, shared between genomes. The best examples of such sets are the 16S and 18S

ribosomal DNA sequences, often used to infer species phylogeny [10].

When conflicting phylogenetic signals are combined, relationships amongst taxa

that appear to be vertical may in fact be lateral and vice versa, resulting in a set of
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invalid evolutionary connections [56]. This phenomena is observed, for example, in

the thermophilic bacterium Aquifex aeolicus, which has been described as an early

branching bacterium with similarities to thermophiles [14] or a Proteobacterium with

strong LGT connections to thermophiles [19].

A comprehensive map of genetic similarities which encapsulates the results of

all phylogenetic signals is a desirable goal. Lima-Mendez et al. [76] developed a

methodological framework for representing the relationships across a bacteriophage

population as a weighted edge network graph, where the edges represent the phage-

phage similarities in terms of their gene content. The genes within the phage were

assigned to modules, groups of proteins that share a common function. The authors

used graph theory techniques to cluster the phage in the network, and then analyzed

the ‘module profile’ for each of the clusters in order to identify modules that were

common to phage within the clusters.

Holloway and Beiko [56] introduced the framework for an evolutionary network

known as an intergenomic affinity graph (IAG). An IAG is a directed, weighted edge

graph, where each node represents an individual genome, and an edge between two

nodes denotes the relative affinity of the genetic material in the source genome to the

target genome. The assignment of edge weights in the IAG is based on the solutions

to a set of linear programming (LP) problems. A noteworthy feature of the IAG is

that the LP derivation of the edge weights does not force the relationship between

two genomes to be symmetric.

Phylogenetic networks play an important role in describing and understanding

the evolutionary history of biological sequences. They are beginning to replace trees

as the basic paradigm for data interpretation in phylogenetics, as they are increas-

ingly being recognized as providing a more complete picture of evolutionary events.

There are many research efforts being dedicated to the development of computational
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approaches for constructing these networks, and the techniques mentioned above de-

scribe only a subset of those currently available.

1.2 Proteins and Their Domains

Proteins are polymers of amino acids that perform a wide variety of functions in

living organisms. A protein domain is a highly conserved part of a protein sequence,

a structural unit, that can function and evolve almost independently of the rest of

the protein. Proteins often include multiple domains. In fact in eukaryotes, 70%

or more of proteins are multi-domain proteins [4]. Domain shuffling [45] or domain

accretion [69] is an important mechanism in protein evolution underlying the evolution

of complex functions and life forms. Multiple evolutionary events including domain

duplication, domain loss, recombination, and sequence divergence generate complex

proteins [43, 126]. Figure 1.1 is a simple example of evolution illustrating how several

different multi-domain proteins can be evolved from one single-domain protein.

1.3 Clustering Protein Sequences

As the size of protein databases continues to grow, large scale sequence comparison

is becoming an increasingly more common method for extracting biological informa-

tion from the sequence data. Protein clustering algorithms are designed to take sets

of proteins and assign them to protein families, based on some measure of similar-

ity (or distance). One of the simplest and most common ways to identify sequence

similarity for the purpose of clustering is to perform a pairwise-alignment-based se-

quence similarity search, such as BLAST [3] or FASTA [94]. More sensitive similarity

searches can be done using profile hidden Markov models (pHMMs) [40, 61]. Results
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Gene duplication

Divergence

Domain
duplication

Domain
accretion

Domain
loss

Duplication Accretion Accretion

Figure 1.1: Evolution of Multi-domain Proteins. Several different multi-domain
proteins can be evolved from one single-domain protein. Here the amino acid sequence
of a protein is represented by a linear string of domains. Each colored shape (dark
blue rectangle, light blue rectangle, orange circle, etc.) represents a distinct domain.
Figure adapted from [28].

from these sequence comparison programs can be used to obtain a list of significantly

similar sequence pairs, along with their associated similarity scores.

Clustering algorithms can then use this information to generate clusters for the

data. For proteins that share a domain, phylogenetic analysis can be performed.

In phylogenetic analysis a multiple alignment is generated using the domain shared

across the sequences, and then the phylogeny is reconstructed. Pairwise-alignment

based methods, including TRIBE-MCL, are used to cluster proteins on a larger scale,

where more variation in domain composition exists in the proteins and there is no

commonly shared domain across all of the proteins.

There are two fundamental issues that arise when trying to classify groups of

divergent proteins, proteins with heterogeneous domain compositions, into protein

families. The first is how to construct clusters given that the entirety of the sequence

similarity information is not given in the search results. Clustering of sequences in
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the context of phylogenetic trees gives an understanding of protein functions by po-

sitioning them among other proteins whose functions may be known. However, these

methods require sequences to be aligned, limiting their application to proteins that

share at least one alignable (shared) domain. If common domains are not found

throughout the proteins, each subgroup of proteins needs to be independently ana-

lyzed based on different sets of domains. As mentioned before, another drawback to

phylogenetic clustering is that these methods assume that evolution is a bifurcating

process, where genetic information arises through the divergence and vertical trans-

mission of existing genetic information, from parent to offspring. However, as seen in

Fig. 1.1 reticulate evolutionary events, such as domain shuffling, lead to evolutionary

histories that are more accurately represented by networks.

In order to get a more complete picture of the evolutionary process of multi-

domain proteins the “domain architectures” of the proteins, i.e. the domain content,

locations, order, etc., must be considered. Phylogenetic profile methods [12, 21, 57, 68]

have tried to address this issue by constructing a phylogenetic tree that takes into

consideration the entire domain content by viewing each protein sequence as a vector

of domain scores and building the tree with the Euclidean distance for the vectors

serving as the pairwise distance between the proteins. Just as in the case of classic

phylogenetic methods, network relationships among the proteins cannot be detected

using this approach.

Protein similarity networks have been introduced to address the multi-domain

protein clustering problem [6, 98]. Many protein similarity networks are constructed

using local sequence similarities such as BLAST E-values [3]. The Markov clustering

(TRIBE-MCL) algorithm, a graph clustering algorithm that simulates random walks

within a graph [124], has been used to cluster proteins in a similarity network into

families [22, 35, 128]. Sequence similarity networks based only on local similarities,



7

such as TRIBE-MCL, in some sense incorporate domain conservation information.

However, these methods use information from only one region of similarity between

two proteins. More detailed domain architecture information (such as the entire

domain content and domain order) needs to be utilized in order to get a clearer

picture of the evolutionary histories.

Domain co-occurrence networks [127, 129] and related graph-theoretic approaches

[71, 91, 102, 130, 132] incorporate domain composition (and sometimes order) in-

formation. However, these methods are employed to depict relationships among the

domains, and the relationships between the proteins are usually not considered.

A handful of studies have investigated the application of bi-dimensional clustering

(biclustering) for protein classification. Cohen-Gihon et al. [24] used a bipartite

graph representation of proteins and domains to identify co-occurring domain sets.

Later bipartite graphs were also applied to investigate the distribution of proteins

and domains and various other network properties [86]. More recently, Shah et al.

[111, 112] have developed a protein clustering method that uses biclustering to cluster

protein sequences in terms of their domain composition information.

1.4 Objectives

The key objective of this dissertation is to develop a game-theoretic approach to

cluster biological sequences and analyze their evolutionary history. In this context we

use the term evolution as a broad descriptor for the entire set of mechanisms driving

the inherited characteristics of a population. The key assumption in our development

is that evolution (or some subset of the mechanisms therein) tries to accommodate

the competing forces of selection, of which the conservation force (e.g. functional

constraints) seeks to pass on successful structures and functions from one generation
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to the next, while the diversity force seeks to maintain variations that provide sources

of novel structures and functions. This hypothesis is naturally modeled through the

use of game theory, a framework used to optimize competing goals in various applied

fields.

The organization of the remainder of the dissertation is as follows: Chapter 2

describes the relevant background information in the theory of two-player, zero-sum

games, and various methods and tools from the field of bioinformatics. Chapter

3 gives an overview of related work in clustering multi-domain proteins, including

phylogenetic profile methods, Markov clustering, and protein-domain biclustering.

Chapter 4 contains a discussion of definitions and notation for a game-theoretic simi-

larity network, as well as the development of our game theory model and a description

of how to use the results to construct the similarity network graph and component

profiles. In Chapter 5 we describe an algorithm for simulating multi-domain proteins.

This simulator is used to obtain benchmark multi-domain protein sets, whose true

evolutionary history is known, in order to test the performance of our game-theoretic

protein clusters against clusters obtained from various other methods. Chapter 6 ex-

plains the methodologies in each of the steps involved in developing a game-theoretic

similarity network for a given set of proteins, the data sets used in this study, and

the approach used to compare clusters generated by two different clustering methods.

Results are presented in Chapter 7, and the dissertation concludes with an overall

discussion of these results and future work in Chapter 8.
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Chapter 2

Preliminaries

2.1 Theory of Two-Player, Zero-Sum Games

In this section we review and compile all pertinent results and proofs about two-

player, zero-sum games. In particular, we establish definitions and notation that will

be present throughout the remainder of this work. Although most of the proofs for

the results seen here are readily available in the literature [70, 77, 87, 88, 89, 90], they

are provided for completeness.

2.1.1 Existence of Nash Equilibrium for Non-Cooperative

n-Player Games

Here we consider a non-cooperative game of n-players, where the term non-cooperative

signifies the absence of coalitions amongst players. More specifically, we require that

each participant acts independently, without collaboration or communication with

the rest [88].

An n-player game consists of a set of n players, each with a finite set of pure
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strategies. Let Si = {s1i, s2i, . . . , snii} denote the set of pure strategies for player i,

and S =
∏n

i=1 Si be the product set of all pure strategies. For a particular play, player

i uses one of his strategies sjii ∈ Si, and we denote by s = {sj11, sj22, . . . , sjnn} ∈ S

the n-tuple consisting of one such play by each player.

A mixed strategy for player i is a vector xi = [x1i, x2i, . . . , xnii]
T whose entries

represent the relative frequency with which player i will play his pure strategies.

That is, letting xji be the frequency that player i plays the strategy sji, we have that

xji ≥ 0 for all 1 ≤ j ≤ ni and
∑ni

j=1 xji = 1.

Let Xi = {xi ∈ Rni
+ :

∑
j xji = 1} be the probability simplex for player i and

X =
∏n

i=1 Xi the product simplex space for all players, where x ∈ X means x =

{x1, x2, . . . , xn} with each xi ∈ Xi. Each Xi and their product X are convex, compact,

and finite dimensional.

Let ai(s) denote the payoff to player i for the pure strategy play s = {sj11, sj22, . . . ,

sjnn} ∈ S. In addition for x ∈ X let x(s) = [xj11, xj22, . . . , xjnn]T ∈ [0, 1]n and∏
x(s) =

∏n
k=1 xjkk. We will use the dynamic notation x = {xi, x−i} to sepa-

rate player i’s play frequency xi ∈ Xi from its opponents play frequencies x−i =

{xk : k 6= i} ∈ X−i =
∏

k 6=iXk. Similarly, we will use s = {sjii, s−i} to de-

note any strategy play s where player i uses strategy sjii and his opponents use

strategy s−i = {sj11, . . . , sji−1(i−1), sji+1(i+1), . . . , sjnn} ∈ S−i =
∏

k 6=i Sk. Thus x =

{x1, x−1} = {x2, x−2} = · · · = {xn, x−n} all denote the same play frequencies, and

x(s) = {xi(sjii), x−i(s−i)}. With this notation in place, the mixed strategy’s expected

payoff for player i is given by

pi(x) = pi(xi, x−i) =
∑
s∈S

ai(s)
∏

x(s) =

ni∑
ji=1

∑
s−i∈S−i

ai(sjii, s−i)
[
xi(sjii)

∏
x−i(s−i)

]

Let eji ∈ Xi be player i’s jth pure strategy play, i.e. eji has all zero frequencies
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except for the jth strategy sji = 1. Then substituting eji for xi in the formula above

we have the expected payoff for player i when he switches to his jth pure strategy

while the strategies of his opponents are held fixed:

pi(eji, x−i)
xi=eji

=
∑

s−i∈S−i

ai(sji, s−i)
∏

x−i(s−i)

because xi(sjii) = eji(sjii) = 1 if ji = j and 0 if ji 6= j.

Definition 1. A play frequency x̄ ∈ X is a Nash equilibrium point if

pi(eji, x̄−i) ≤ pi(x̄i, x̄−i) for all 1 ≤ j ≤ ni and all 1 ≤ i ≤ n.

Thus a Nash equilibrium point is an n-tuple such that each player will not improve

his payoff by switching to any pure strategy from his mixed play frequency when the

strategies of the other players are held fixed.

Theorem 1. Every n-player game has a Nash equilibrium point (NE).

Proof. Nash’s proof from [88] is based on a map T : X → X with the property that

T has a fixed point by Brouwer’s Fixed Point Theorem [108] and the property that a

point is a fixed point of T if and only if it is a Nash equilibrium point.

The definition of the map T follows. The excess payoff for player i changing to

his jth pure strategy from a mixed strategy x is given by

ϕji(x) = [pi(eji, x−i)− pi(xi, x−i)]+

where [t]+ = max{0, t}, and the total excess payoff (from the mixed strategy x) for
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player i is

φi(x) =

ni∑
j=1

ϕji(x).

Notice that x is a NE if and only if ϕji(x) = 0 for all 1 ≤ j ≤ ni and all 1 ≤ i ≤ n

which occurs if and only if φi(x) = 0 for all 1 ≤ i ≤ n. The Nash map T : X → X is

defined component-wise for each player:

[T (x)]i =
xi + ϕi(x)

1 + φi(x)
,

where ϕi = [ϕ1i, ϕ2i, . . . , ϕnii]
T . Clearly T is a continuous map which maps into X

since
∑ni

j=1[T (x)]ji = (
∑ni

j=1 xji +
∑ni

j=1 ϕji(x))/(1 + φi(x)) = 1.

Let x be any fixed point of T which is guaranteed to exist by Brouwer’s Fixed

Point Theorem. Note that player i’s payoff pi(xi, x−i) is linear in all xji and is a

weighted probability average in x1i, x2i, . . . , xnii. In fact, we have explicitly

pi(xi, x−i) =

ni∑
j=1

∑
s−i∈S−i

ai(sji, s−i)
[
xi(sji)

∏
x−i(s−i)

]
=

ni∑
j=1

xjipi(eji, x−i).

Thus, among all non-zero probability weights xji > 0 there must exist j ∈ 1, 2, ..., ni

such that the pure sji-strategy payoff pi(eji, x−i) is no greater than the mixed strat-

egy payoff pi(xi, x−i), that is pi(eji, x−i) ≤ pi(xi, x−i). Otherwise we will have that

pi(xi, x−i) > pi(xi, x−i) because xji > 0 and
∑

j xji = 1, a clear contradiction. As a

result, the corresponding excess payoff for this j is zero, that is ϕji(x) = 0.

Now since x is fixed by T , we have xji =
xji+ϕji(x)

1+φi(x)
=

xji
1+φi(x)

, which implies

φi(x) = 0 since xji > 0. This holds for all i, demonstrating that x is a NE. The

converse is straightforward since the excess payoff from every Nash equilibrium x is

zero, φi(x) = 0, which leads to T (x) = x.
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2.1.2 Linear Programming Method for Nash Equilibria of

Two-Player, Zero-Sum Games

The theory of two-player, zero-sum games was first developed by von Neumann in

1928 [89, 90]. All results surveyed below are known [70, 77, 89, 90] but this exposition

is meant to be more concise and succinct than the others. As a starting point, it is

assumed that the reader has knowledge of the simplex method for linear programming,

(see [8, 46]).

For the remainder of the section, c ∈ Rn and b ∈ Rm are column vectors and

A = Am×n is a matrix. For two vectors, a and b, a ≤ b means the inequality holds

component-wise. In addition, 1 = [1, . . . , 1]T denotes the vector whose entries all

equal 1, for an appropriate dimension. The linear programming (LP) aspect of two-

player, zero-sum game theory is based on the following theorem which encapsulates

the simplex method and can be found in most linear optimization textbooks, (see

[8, 46]).

Theorem 2. The primal LP problem

max z = cTy

subject to Ay ≤ b

y ≥ 0

has a solution y ∈ Rn
+ if and only if the dual LP problem

min z = bTx

subject to ATx ≥ c

x ≥ 0
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has a solution x ∈ Rm
+ . Moreover, if the primal and dual LPs do have solutions, y∗

and x∗ respectively, the solutions must satisfy cTy∗ = bTx∗, i.e. the optimal objective

values for both LP problems must be the same.

We note that the optimal solution x∗ for the dual LP problem is referred to as the

shadow price or the Lagrange multipliers of the primal LP problem and vice versa.

Also, the simplex algorithm for the primal problem will simultaneously produce both

the optimal solution y∗ and its shadow price x∗. The same holds for the dual problem.

For convenience, we also need the following result.

Lemma 1. Let S be the simplex defined by wi ≥ 0 for all 1 ≤ i ≤ k and
∑k

i=1wi = 1,

then maxw∈S c
Tw = max1≤i≤k{ci}. Similarly, minw∈S c

Tw = min1≤i≤k{ci}.

Proof. Here we consider the maximization case. Let ci0 = max1≤i≤k{ci}. Then ci ≤

ci0 for all i and since wi ≥ 0 we have that cTw = c1w1+· · ·+cnwn ≤ ci0(w1+· · ·+wn) =

ci0 . Hence maxw∈S c
Tw ≤ ci0 . Note that equality must hold since the value ci0 is

obtained from the function z = cTw with wi0 = 1, wi = 0 for i 6= i0. A similar

argument is used to show the minimization case.

In the previous section existence of Nash equilibria was demonstrated for a general

n-player game. We will now restrict our attention to the special case of a two-player

game, i.e. a matrix game. For i ∈ {1, 2} let Si = {s1i, s2i, . . . , snii} denote the set of

pure strategies for player i, x = [x1, x2, . . . , xm]T a mixed strategy vector for player

1 (player x), and y = [y1, y2, . . . , yn]T a mixed strategy vector for player 2 (player

y). Then for each player, i, there exists a matrix Ai ∈ Rm×n such that the entry

Ai(q, r) = ai(sq1, sr2), which denotes the payoff to player i when player x plays pure

strategy q and player y plays pure strategy r.

A zero-sum game is a game in which a player’s gain or loss is exactly balanced

by the losses and gains of the other player(s). That is, in the case of a two-player,
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Player 2
y1 y2 · · · yn

Player 1

Strategy s12 s22 · · · sn2

x1 s11 a2(s11, s12) a2(s11, s22) · · · a2(s11, sn2)
x2 s21 a2(s21, s12) a2(s21, s22) · · · a2(s21, sn2)
...

...
...

...
. . .

...
xm sm1 a2(sm1, s12) a2(sm1, s22) ... a2(sm1, sn2)

Table 2.1: Two-Player, Zero-Sum Game in Matrix Form. This figure shows
the matrix form of a two-player, zero-sum game, where the matrix is assumed to be
the payoff table for player y against player x, i.e. A = A2.

zero-sum game we have that A1 = −A2. Since A2 is easily deduced from A1, we may

focus our attention on only one of the matrices, denoted A. However, we must specify

ahead of time to which player the matrix corresponds.

The matrix form of a two-player, zero-sum game is exhibited in Table 2.1. This

matrix is assumed to be the payoff table for player y against player x, i.e. A = A2.

The pure strategies as well as the mixed strategy frequencies are listed along the

rows and columns for easy reference. Since A is the payoff matrix for player y, the

expected payoff for player y is p2(x, y) = xTAy, and the expected payoff to player

x is p1(y, x) = −xTAy = −p2(x, y). The remainder of this section shows the Nash

equilibria can be found by means of linear optimization, i.e. by the simplex method

from linear programming.

Again for a two-player, zero-sum game, x = [x1, . . . , xm]T and y = [y1, . . . , yn]T

are the mixed strategy probability vectors, and A = Am×n = [aij] is the payoff ma-

trix for player y against player x. Let Aj be the column vectors of the matrix A

and Ãi be the row vectors of A, i.e. A = [A1, A2, . . . , An] and AT = [ÃT1 , . . . , Ã
T
m].

Then, the expected payoff per play for player y is p2(x, y) =
∑

i

∑
j aijxiyj. For

ease of notation we let E(x, y) = p2(x, y) =
∑

i

∑
j aijxiyj. Note that the bi-linear

payoff function E(x, y) = xTAy can be summed in two different ways, each as a
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probabilistically weighted linear form: E(x, y) =
∑

i xi(
∑

j aijyj) = xT (Ay) and

E(x, y) =
∑

j(
∑

i aijxi)yj = (xTA)y.

Proposition 1. (x̄, ȳ) is a NE if and only if

max
y
E(x̄, y) = E(x̄, ȳ) = min

x
E(x, ȳ)

or equivalently

E(x̄, y) ≤ E(x̄, ȳ) ≤ E(x, ȳ)

for all (x, y) ∈ S =
∏2

i=1 Si.

Proof. By definition, (x̄, ȳ) is a NE if and only if E(x̄, ej) ≤ E(x̄, ȳ) for all pure

strategy vectors ej of player y and −E(ei, ȳ) ≤ −E(x̄, ȳ) for all pure strategy vectors

ei of player x since −E(x, y) is the expected payoff for player x. That is, E(x̄, ej) ≤

E(x̄, ȳ) ≤ E(ei, ȳ) for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. Because E is a probabilistically

weighted linear form in both x and y, we have by Lemma 1 that maxy E(x̄, y) =

maxj{E(x̄, ej)} ≤ E(x̄, ȳ) ≤ mini{E(ei, ȳ)} = minxE(x, ȳ). Since both extreme

values are reached by a NE point, (x̄, ȳ), the equalities hold. The second equivalence

is obvious from the first.

A NE as a solution (x̄, ȳ) to the optimization problem described in the previous

proposition is known as an optimal game solution or simply a game solution, and

E(x̄, ȳ) is referred to as the game value for player y.

Proposition 2. The game value for a two-player, zero-sum game is unique.

Proof. Let (x̄, ȳ), (x′, y′) be two optimal solutions with game values u = E(x̄, ȳ) and

v = E(x′, y′), respectively. Then by the result above, u = E(x̄, ȳ) ≤ E(x′, ȳ) ≤

E(x′, y′) = v, where the first inequality holds since (x̄, ȳ) is a NE, and the second
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inequality holds since (x′, y′) is a NE. Since u and v are two arbitrary Nash equilibria,

we have by the same argument v ≤ u, which gives u = v.

Proposition 3. For the primal LP problem

max z = u

subject to Ay ≥ u1

y ≥ 0,
∑
j

yj = 1

the dual LP problem is given by

minw = v

subject to xTA ≤ v1T

x ≥ 0,
∑
i

xi = 1

Therefore, the optimal objective value is the same, and the solution of one problem is

exactly the shadow price of the other.

Proof. By introducing u1 ≥ 0, u2 ≥ 0 for u = u1−u2 and
∑

j yj ≤ 1 and−
∑

j yj ≤ −1

for
∑

j yj = 1, we can recast the LP problem

max z = u

subject to Ay ≥ u1

y ≥ 0,
∑
j

yj = 1
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as follows:

max z = CTY

subject to AY ≤ B

Y ≥ 0,

where Y = [y1, . . . , yn, u1, u2]T , C = [0, . . . , 0, 1,−1]T , B = [0, . . . , 0, 1,−1]T , and

A =


−A 1 −1

1T 0 0

−1T 0 0

. By Theorem 2, the dual LP problem is given by

min z = BTX

subject to ATX ≥ C

X ≥ 0,

where X = [x1, . . . , xm, v1, v2]T . Writing the latter in A’s block component form, we

obtain

min z = v1 − v2

subject to − ATx ≥ −(v1 − v2)1

1Tx ≥ 1

− 1Tx ≥ −1.

Letting v = v1 − v2 we have the equivalent form of the dual LP problem

min z = v

subject to xTA ≤ v1T

x ≥ 0,
∑
i

xi = 1Tx = 1.
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The following two theorems complete this compilation of the basic theory for two-

player, zero-sum games. The first is the LP algorithm for finding Nash equilibria,

and the second is the minimax theorem.

Theorem 3. (x̄, ȳ) is an optimal game solution with game value v̄ = E(x̄, ȳ) if and

only if (x̄, v̄) is a solution to the LP problem

min z = u

subject to xTA ≤ u1T

x ≥ 0,
∑

xi = 1,

(2.1)

and (ȳ, v̄) is a solution to the dual LP problem

max z = u

subject to Ay ≥ u1

y ≥ 0,
∑

yj = 1.

(2.2)

Proof. For necessity: As an optimal game solution

v̄ = E(x̄, ȳ) = max
y
E(x̄, y) = max

y
(x̄TA)y = max

j
{x̄TAj}

by Lemma 1, which implies x̄TAj ≤ v̄ for all j and equivalently x̄TA ≤ v̄1T . That is,

(x̄, v̄) is a basic feasible point for the LP problem (2.1).

We claim (x̄, v̄) must be an optimal solution to the LP problem. For if not, there

exists (x′, u) such that (x′)TA ≤ u1T with u < v̄ = E(x̄, ȳ). That is, maxj{(x′)TAj} ≤

u < v̄ componentwise. By Lemma 1, we have

max
y
E(x′, y) = max

y
((x′)TA)y = max

j
{(x′)TAj} ≤ u < v̄ = E(x̄, ȳ).
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So E(x′, ȳ) ≤ maxy E(x′, y) ≤ u < v̄ = E(x̄, ȳ), which contradicts the property that

(x̄, ȳ) is a NE. Similar arguments apply to the primal LP problem, completing the

proof of the necesary condition.

Conversely, because x̄, ȳ are the optimal solutions for the dual pair with the opti-

mal value v̄, from x̄TA ≤ v̄1T we have E(x̄, ȳ) = (x̄TA)ȳ ≤ (v̄1T )ȳ = v̄(1T ȳ) = v̄ and

from Aȳ ≥ v̄1 we have E(x̄, ȳ) = x̄T (Aȳ) ≥ xT (v̄1) = v̄ and hence E(x̄, ȳ) = v̄. Also,

for any x, E(x, ȳ) = xT (Aȳ) ≥ v̄ = E(x̄, ȳ) and for any y, E(x̄, y) = (x̄TA)y ≤ v̄ =

E(x̄, ȳ), showing (x̄, ȳ) is an optimal game solution with game value v̄.

Theorem 4. Let (x̄, ȳ) be a NE, then E(x̄, ȳ) = minx[maxy E(x, y)] over the mixed

strategy probability vectors and symmetrically E(x̄, ȳ) = maxy[minxE(x, y)].

Proof. Note that the primal LP problem (2.1) can be equivalently written as

xTA ≤ u1T ⇔ max
j
xTAj ≤ u⇔ max

y
(xTA)y ≤ u⇔ max

y
E(x, y) ≤ u

with the smallest such u. This implies minx(maxy E(x, y)) ≤ minx u = v̄ = E(x̄, ȳ).

We claim the equality minx(maxy E(x, y)) = minx u must hold. If not, let w(x) =

maxy E(x, y) and x′ have the property that u′ = w(x′) = minxw(x) with u′ <

minx u = v̄. Then xTA ≤ w(x)1T for all x. In particular, (x′)TA ≤ w(x′)1T = u′1T ,

showing that (x′, u′) is a basic feasible point to the LP problem. Since v̄ is the optimal

value of the LP solution, it must be that u′ ≥ v̄, contradicting the assumption u′ < v̄.

The same argument applies to the dual LP problem.
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2.2 Basic Methods and Tools in Bioinformatics

2.2.1 Sequence Similarity and Function

Given that a only a small portion of known proteins have been experimentally charac-

terized, protein annotation relies heavily upon the accurate exploitation of evolution-

ary relationships, as functional information is extrapolated following the identification

of a sequence relative, on the basis that family members commonly exhibit some sim-

ilarity in function [122]. Hence sequence similarity detection plays a key role in the

functional annotation of proteins.

2.2.1.1 BLAST

The most well-known similarity detection tool is the Basic Local Alignment Search

Tool (BLAST) [1]. In short, BLAST is an algorithm that finds short matches between

two sequences of interest and builds local alignments based on these “hot spots” [84].

BLAST searches a protein or nucleotide database, specified by the user, and reports

both the significant sequence hits and their local alignment to the query sequence

(Fig. 2.1).

BLAST is a heuristic search algorithm that seeks to approximate the results of

. . . 

Database  

(protein or nucleotide) 

Query Sequence  

(protein or nucleotide) 

Search Result 
(high similarity to low) 

. . . 

Figure 2.1: Searching in BLAST.
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the Smith-Waterman algorithm [113]. The BLAST algorithm begins by dividing the

query sequence into words of a specified length and scanning the database for words

that the query sequence and sequences in the database have in common. A word of

length k is simply defined to be a k-tuple in the query sequence. For example, if the

query sequence is ABCDE and the prescribed word length is k = 3 the algorithm

scans the database for the words ABC, BCD, and CDE. For each word in the query

sequence, BLAST determines all possible words that could be aligned to it with a

score greater than a threshold T, called the neighborhood threshold score. BLAST

builds these words into a table and scans a database sequence for exact matches, each

of which constitutes a hit.

For each hit, the alignment is then extended in both directions (gap-free) until

the score falls below the best score seen so far. The alignment scores are based on

empirically derived nucleotide or amino acid substitution matrices, such as BLO-

SUM and PAM [27, 50, 51, 63, 67]. These high-scoring, un-gapped alignments are

called maximal segment pairs (MSPs) [1]. Once the un-gapped MSPs are identified,

these alignments are extended to gapped alignments using a dynamic programming

algorithm [31].

BLAST reports the list of sequences in the database that contained significant

local alignments, as well as the actual alignments that were significant. Figure 2.2

exhibits the contents of a typical BLAST report.

2.2.1.2 BLAST E-value

The BLAST program employs a variety of refinements to adjust the raw similarity

score of a pairwise alignment (i.e. the score based only on the substitution matrix and

gap penalties). These refinements fine-tune the score to more accurately predict the

evolutionary significance of the similarity between aligned sequences. In this work,
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Length=743 

                                                                      Score     E 

Sequences producing significant alignments:                          (Bits)  Value 

 

  gi|19862963|sp|Q10451|YDEI_SCHPO                                    70.3    2e-14 

  gi|1730078|sp|P42704|LPRC_HUMAN                                     56.3    5e-10 

  gi|1351822|sp|P48237|YG3M_YEAST                                     41.1    3e-05 

  gi|2833599|sp|Q58208|Y798_METJA                                     32.8    0.005 

  gi|266632|sp|Q00852|NIVO_CLOPA                                      25.8    1.1   

  gi|2500616|sp|P77917|RPOC_PEDAC DNA-directed RNA polymerase bet...  23.8    7.0   

(a)

> gi|1351822|sp|P48237|YG3M_YEAST 

Length=864 

 

 Score = 41.1 bits (138),  Expect = 3e-05, Method: Compositional matrix adjust. 

 Identities = 26/109 (24%), Positives = 53/109 (49%), Gaps = 5/109 (5%) 

 

Query  244  NTILKAMSKKGRLSDLKELLLDMKKN-GLVPNRVTYNNLVYGYCKLGSLKEAFQIVELMK  302 

            N  LK  +K   + D+  ++   + + G+ PN+     ++  Y +    K+A+   + MK 

Sbjct  288  NNCLKYSTKCSSFHDMDYFITKFRDDYGITPNKQNLTTVIQFYSRKEMTKQAWNTFDTMK  347 

 

Query  303  --QTNVLPDLCTYNILINGLC-NAGSMREGLELMDAMKSLKLQPDVVTY  348 

               T  +PD+CTYN ++  +C    +  + L+L   ++   ++P   TY 

Sbjct  348  FLSTKHFPDICTYNTMLR-ICEKERNFPKALDLFQEIQDHNIKPTTNTY  395  

(b)

Figure 2.2: Components of A Typical BLAST Report. (a) A sample listing
of the database sequences with significant local alignments. (b) A sample significant
local alignment to a database sequence.

we use the expectation value (E-value) to assess the statistical significance of a single

pairwise alignment within a database search.

In general, the E-value is given by the equation

E = D ∗ P (S ≥ x),

where D denotes the number of sequences in the database and P (S ≥ x) denotes

the probability of obtaining an alignment score, S, greater than some observed score

x [1]. Thus the E-value ranges from 0 to D, and it gives the number of database

sequences not related to the query that are expected to have alignment scores higher
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than the observed score. Thus small E-values (i.e. values close to 0) indicate more

significant alignments.

The BLAST E-value is calculated based on the stochastic model of Karlin and

Altschul [2, 64]. In this model, the probability of getting an alignment score x or

higher is given by

P (S ≥ x) = 1− exp(−Kmne−λx), (2.3)

where K and λ are constants calculated from scoring matrix and amino acid com-

position (empirically calculated), m is the length of the query sequence, and n the

length of the database.

2.2.2 Protein Domain Identification

The BLAST algorithm is very effective in identifying sequences with high pairwise

similarity. In order to identify more distantly related similar sequences, it is necessary

to employ more sensitive search methods (sequence profile methods), such as PSI-

BLAST (Position-Specific Iterative BLAST) [3] or profile hidden Markov models [33].

In this work, we use HMMER [33], a profile hidden Markov model (pHMM) search

algorithm, for protein domain detection, which is described in the remainder of this

section.

2.2.2.1 Profile Hidden Markov Models

A hidden Markov model (HMM) is a very general, widely used, probabilistic model for

sequences of symbols. In an HMM, as suggested by the name, one of the important

underlying features is the assumption that the system being modeled is a Markov

process, a set of states and transition probabilities between those states, where the

probability of a given state depends only on the previous state. Mathematically, a
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Figure 2.3: The Occasionally Dishonest Casino Hidden Markov Model. Each
node represents a state in the model with the emission probabilities for each state
given inside the node. The directed edges represent the transitions and their weights
the transition probabilities. Figure taken from [31].

Markov process is one in which the following condition, known as the Markov property,

holds:

P (Xk|Xk−1, Xk−2, ..., X1) = P (Xk|Xk−1). (2.4)

In a standard Markov process we are given a set of states and a set of transi-

tion probabilities between those states. There is a clear one-to-one correspondence

between the states and the emitted characters in the sequence. However, in many

situations there are likely unobserved (hidden) states that affect the output of the

model. A classic textbook example of such a scenario is the “Occasionally Dishonest

Casino” problem, where the casino uses a fair die most of the time but occasion-

ally switches to a loaded die [31]. Here when we examine a sequence of rolls, say

X =< 1, 2, 4, 3, 1, 6, 5 >, we observe only the outcome and cannot identify whether

the fair or loaded die was used. In this case the hidden state is the type of die being

used.
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A hidden Markov model (HMM) incorporates a Markov process, but decouples

the state sequence from the symbol sequence, as they are no longer in one-to-one

correspondence. A single symbol could be emitted by many different states in a given

HMM. For instance in the casino model described above, the symbol 4 could have

been emitted in the fair die state or in the loaded die state. Thus in the case of

an HMM we must differentiate between the state and emission probabilities. HMMs

are often illustrated graphically, with the states representing nodes and the directed

edges transitions. Figure 2.3 shows a graphical representation of the Occasionally

Dishonest Casino problem.

A profile HMM (pHMM) is a particular type of hidden Markov model well-suited

to model the contents of a multiple sequence alignment [31]. As mentioned above,

in order to identify distantly related similar biological sequences one must employ

sensitive search methods that incorporate information from multiple sequences rather

than a single sequence. A “profile” is a representation of the composite information

within a set of sequences. Profiles are constructed by creating a multiple sequence

alignment (MSA) for the set of sequences. In an MSA, homologous residues within

the set of sequences are aligned together in columns [31]. Figure 2.4 shows an example

of an MSA for seven protein sequences.

VGA--HAGEY 

V----NVDEV 

VEA--DVAGH 

VKG------D 

VYS--TYETS 

FNA--NIPKH 

IAGADNGAGV 

 

 Figure 2.4: Multiple Sequence Alignment. A multiple sequence alignment for
seven protein sequences. The letters each represent an amino acid, while “-” repre-
sents a gap in the alignment. Example taken from [31].

Profile HMMs consist of three states for each alignment position (i.e. each column
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in the MSA) that model the three possible outcomes that can occur when aligning a

residue of the query sequence with the MSA. The query residue may align (match)

with the next residue of the MSA, it may correspond to an insertion relative to the

MSA, or it may correspond to a deletion (a gap) relative to MSA.

The first step in building a pHMM, is to determine its length. The length of

the pHMM is determined by the number of columns in the MSA that are assigned

to match states. There are many heuristic rules for assigning the MSA columns as

match states, one of which considers a column to be an match column if less than half

of the characters are gap characters. Using this heuristic for the MSA shown in Fig.

2.4, columns 1-3 and 6-10 are match columns. Hence the length of the corresponding

pHMM is 8.

The most basic state is the match state, which matches (i.e. aligns) residues at a

specific position (column) in the MSA. Each match state in the pHMM has its own

corresponding set of emission probabilities, generated from counting the frequencies

of each amino acid in the corresponding column.

For insertions, i.e. portions of the query sequence that do not match anything

in the multiple alignment, an insert state is added into the model. Just as in the

case of the match states, each insert state has its own set of emission probabilities.

The insert state emission probabilities are typically generated using the background

amino acid distribution, that is the distribution of amino acids over the entire MSA.

Lastly, in the case of a deletion, the insertion of a gap in the alignment, the query

sequence residue aligns to a residue later in the MSA. This could be viewed as a

set of jump transitions between match states, but this would require a large number

of transitions for long gaps [31]. Thus a delete state is introduced for each of the

positions in the MSA. The delete state is an example of a silent state in the model,

as it does not emit any residues.
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Figure 2.5: Profile HMM Structure. Each node represents a state in the model.
The square nodes indicate the match states, the diamonds the insert states, and the
circles the delete states. The directed edges represent the transitions.

In the general profile HMM structure, only a few transitions are acceptable at each

state for the jth alignment position. From the match state, Mj there is a transition

to the next match state Mj+1, a transition to the insert state Ij, and a transition to

the delete state Dj. From the insert state Ij there is a transition to the next match

state Mj+1 and the next delete state Dj+1. In addition for the insert state there is

a self-loop, to handle the case when multiple residues are inserted. Lastly, from the

delete state Dj there is a transition to the insert state Ij, a transition to the next

delete state Dj+1, and a transition to the next match state Mj+1. All transitions have

an associated probability, such that at each state the outgoing transition probabilities

sum to 1. Adding in the silent begin and end states gives the general profile HMM

structure shown in Fig. 2.5.

Once the general structure of the profile HMM has been established, the emission

and transition probabilities must be determined. Having both the multiple sequence

alignment and the HMM structure, the state sequence is known, and therefore the

parameters can be found by simply counting the frequencies. That is, the transition
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probability from state k to state l is given by

akl =
Akl∑
l′ Akl′

,

where Akl denotes the frequency of transitioning from state k to state l, and the

emission probability of symbol a at state k is

ek(a) =
Ek(a)∑
a′ Ek(a

′)
,

where Ek(a) is the frequency that symbol a was emitted in state k.

One issue that can arise is the event in which some transition or emission does not

occur in the MSA. If this is the case, the probability of that event will be assigned a

zero value, which means that it is not allowed to occur in the future. As a minimal

approach to ensure non-zero prior probabilities, pseudocounts should be added to the

initial frequencies. The most basic pseudocount is to simply add one to each of the

base frequencies. Another commonly used pseudocount is the Dirichlet mixture prior,

which is based on counting the observations of each amino acid at each column in the

MSA (for details see [16]). In fact, Dirichlet priors are the default pseudocounts in

the HMMER [33] pHMM software, which is used in this work.

Once the profile HMM has been generated, it is then most frequently used to

determine significant matches in a query sequence to the profile and to use these

matches to detect the potential membership of the query sequence to the pHMM.

This is done by computing the log-odds ratio between the probability that the query

sequence s came from the model M , P (s|M), and the probability that the query was
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generated at random via the model R, P (s|R):

L = log
P (s|M)

P (s|R)
.

A high log-odds score indicates that the query sequence is likely related to the se-

quences in the pHMM, while a low score (a score near 0) indicates an insignificant

match.

2.2.2.2 Pfam and HMMER

In this work, we use profile hidden Markov models to detect protein domains along a

given query protein. Pfam [103] is a large database of protein families, which includes

both their annotations as well as their multiple sequence alignments. In our work,

the profile HMMs from Pfam-A (a manually curated, high quality sector of Pfam) are

used as the domain profiles for our pHMM domain searches. Domain sequences along

a query protein were identified using HMMER [33], a set of pHMM search algorithms.

2.2.3 Phylogeny

Phylogenetic analysis seeks to understand the evolutionary history of organisms (or

groups of organisms) by establishing a relationship based on shared characteristics.

The framework for such analysis is fundamentally driven by the assumption that

genetic information arises through the divergence and vertical transmission of existing

genes, from parent to offspring. In other words, the assumption is that evolution is

a tree-like, branching process. With this assumption in place, the reconstruction of

the evolutionary history of a given set of taxa can be represented graphically by a

stucture known as a phylogenetic tree.
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Figure 2.6: Phylogenetic Tree Structure.

A phylogenetic tree is a graphical representation of a set of inferred evolutionary

relationships between a set of taxa. The basic features of such a graph are shown in

Fig. 2.6. The taxa are connected by edges (branches) which indicate the presence of

an evolutionary relationship. The leaves (external nodes) of the tree are the currently

existing taxa that have yet to evolve or taxa whose lineage died without producing

any descendants. The edges in the tree do not directly connect the leaves, but do so

through internal nodes. These internal nodes represent hypothesized ancestral states

that occurred throughout the evolutionary process.

Phylogenetic trees can be rooted or unrooted (Fig. 2.6). Rooted trees are used

when the direction of evolution, i.e. the common ancestor, is known. Thus, rooted

trees exhibit the divergence of a group of taxa from the last common ancestor. In

contrast, unrooted trees demonstrate the evolutionary relationships between taxa

without identifying their last common ancestor. Hence, in an unrooted tree the order

of ancestral descendence is unclear once one gets to the internal nodes.

There are two other key components of phylogenetic tree - the tree topology

and the length of the branches. The topology of a tree refers to the way that it

branches. Even for a small number of taxa there are many possible tree topologies.

For example, in [93] it is shown that the number of possible binary rooted trees
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Figure 2.7: Types of Phylogenetic Trees.

that can be produced with N leaf nodes is
(2N − 4)!

2N−2(N − 2)!
. Each distinct topology

represents a possible evolutionary history, where the differences occur in event order

and ancestry. The most important task in phylogenetic tree construction is to recover

the tree that best describes the evolution given the data.

The branch lengths of a phylogenetic tree provide additional information about

the evolution of the taxa. Branch lengths can be incorporated into both rooted and

unrooted tree topologies. In a cladogram (Fig. 2.7 (a)) the branch lengths do not

have a meaning, i.e. the genealogy of the taxa is exhibited but nothing is claimed

about the timing or extent of their divergence. Additive trees (Fig. 2.7 (b)) use the

branch lengths as a quantitative measure of evolution. Typically the branch lengths

are proportional to the number of mutations that occurred through the evolutionary

process. Moreover, as the name suggests, in such a tree the branch lengths are

additive, i.e. the distance between any pair of nodes is the sum of the branch lengths

connecting them [31]. Lastly, an ultrametric tree (Fig. 2.7 (c)) has, in addition to

the properties of an additive tree, the same constant rate of evolution along each of

its branches [31].

There are several different techniques used for constructing a phylogenetic tree.

We can classify them as clustering approaches or search approaches, where the search
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is for a tree that satisfies some optimality criterion. We can also classify them as

distance-based approaches, where the sequence relationships are abstracted in terms

of distances between them, or character-based approaches in which we deal with the

actual sequences themselves.

There are several well-established methods for inferring the phylogeny of a given

set of taxa. Distance-based methods, such as UPGMA [115] and neighbor-joining

[109], build the phylogentic tree based on the pairwise distance between sequences.

Maximum parsimony [41] is a tree-building algorithm used to find the tree which

explains the relationships amongst the sequences with a minimal number of substi-

tutions. There are many other more complex approaches to phylogeny construction,

including maximum likelihood methods [37] and methods that employ Bayesian in-

ference [60, 106].

One commonly used search algorithm for reconstructing a phylogeny, the one used

in this work, is the maximum likelihood method [37]. The maximum likelihood (ML)

method chooses the tree that makes the observed data the most probable evolutionary

outcome. The likelihood is given by

L(τ, θ) = P (Data|τ, θ),

where τ denotes a tree topology and θ denotes a set of parameters in a model of

evolution. That is, the likelihood is the conditional probability of obtaining the

observed sequences given a tree topology and an evolutionary model.

We demonstrate the maximum likelihood algorithm through the following exam-

ple. We begin with a multiple alignment of four observed sequences (Fig. 2.8(a)).

In Fig. 2.8(b), each of the tree’s four leaves (nodes labeled 1 to 4) represents an ob-

served sequence. The internal nodes, labeled X and Y, represent unknown ancestral
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Figure 2.8: Beginning a Maximum Likelihood Phylogeny.

sequences. Each branch in the tree topology will be considered separately, and the

probability of base i mutating to base j in time t is denoted P (i|j, t). The calculation

of these probabilities is determined by the evolutionary model that is used.

In the ML method we are considering each base in the sequence, which means

that we should calculate the likelihood at each individual position in the alignment

ignoring sites with gaps. For a given sequence position (i.e. column in the MSA), the

likelihood of bases zX and zY occurring at internal nodes X and Y with tree topology

T and branch lengths ti is given by:

L = P (z1, z2, z3, z4, zX , zY |T, t1, t2, t3, t4, t5) (2.5)

= P (z1|zX , t1)P (z2|zX , t2)P (zY |zX , t5)P (z3|zY , t3)P (z4|zY , t4). (2.6)

Each branch is considered to evolve independently of the others, so the probabilities

are multiplied.

For example, consider the first column in the MSA from Fig. 2.8(a) and suppose

we want to calculate the likelihood of seeing these sequences assuming zX = A and
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Figure 2.9: Calculating the Likelihood of a Tree Topology.

zY = A as shown in Fig. 2.9. Then we have that the likelihood of this scenario is

given by:

L = P (A|A, t1)P (A|A, t2)P (A|A, t5)P (G|A, t3)P (G|A, t4).

Internal nodes X and Y could take on any possible base in the ith position, and

this must be taken into account. Therefore the likelihood of observing column i is:

Li =
∑
zX

P (z1|zX , t1)P (z2|zX , t2)(
∑
zY

P (zY |zX , t5)P (z3|zY , t3)P (z4|zY , t4)).

Since we are assuming independence between columns in the MSA, the total likeli-

hood, L , is found by multiplying these probabilities together, L =
∏
i

Li, or alterna-

tively by taking logarithms ln L =
∑
i

lnLi.

Now, for a given tree topology our goal is to find the maximum likelihood. This

is done by optimizing the available parameters, including the branch lengths and

possibly the parameters in the evolutionary model being used. The partial derivatives

with respect to each of the parameters are derived and used in standard optimization

routines to determine the parameter values that yield the maximum likelihood.

For all phylogenetic reconstructions, an estimate of the uncertainty of the result

is often desirable. Bootstrap analysis is a simple and effective method that uses

the original data set to generate estimates for the variability of the results. If we
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knew the true distribution from which the data came, then we could calculate any

relevant statistics. The key idea to bootstrap analysis is to assume that the data was

sampled without bias from a real but unknown distribution. A new data set can be

produced by sampling the original data set. If sampled correctly, this should also

be an unbiased sample of the true distribution and can therefore be used to measure

property variances. In bootstrap analysis, hundreds of new data sets, called bootstrap

replicates, are generated in this fashion and their properties are analyzed to obtain

estimates on the uncertainty of the results.

Bootstrapping phylogenetic trees was first introduced by Felsenstein [36]. Phylo-

genetic bootstrapping proceeds as follows. A bootstrap replicate is formed by ran-

domly selecting columns from the original multiple sequence alignment (MSA), with

replacement. For example, the first column of the bootstrap replicate might be the

17th column of the MSA, the second might be the 209th column, the third the 17th

column, etc. Then the original tree-building algorithm is applied to the bootstrap

data, giving a bootstrap tree. This whole process is independently repeated for each

bootstrap replicate. Then, the consensus tree is constructed. That is, for each node,

the proportion of bootstrap trees where this branch point occurred is calculated and

indicated in the tree. “Agreeing” here refers to the topology of the tree and not to the

length of its branches. Figure 2.10 shows a sample phylogenetic bootstrap calculation.

2.2.4 Gene Ontology (GO) Terms

As mentioned earlier, the key objective of this dissertation is to develop a game-

theoretic approach to cluster multi-domain protein sequences. The aim of our method

is to generate a network that groups proteins with similar or related functions. Ana-

lyzing the Gene Ontology (GO) annotation of proteins in the network is one way to
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Figure 2.10: Phylogenetic Bootstrap Analysis. The original data (columns of
the multiple sequence alignment) is sampled randomly, with replacement, to create
multiple bootstrap replicates that have the same length as the original alignment
(Step 1). The tree building algorithm is then used to construct a tree for each of the
replicates Step 2). For each node in the original tree, the proportion of bootstrap
trees whose clade at this node agree with the original tree are calculated (Step 3).
This proportion is called the bootstrap value. Figure adapted from [7].

validate the functional relationships of the proteins.

The Gene Ontology (www.geneontology.org) [121] initiative was established in

1998 as a means of summarizing information about gene and gene product attributes

consistently across different databases by using a common set of defined controlled

vocabulary terms that are designed to be species neutral. The GO provides gene

product properties, i.e. GO terms, in three different areas: cellular component (the

parts of the cell or extracellular environment), biological process (operations related

to the functioning of integrated living units), and molecular function (activities of the

gene product at the molecular level). The GO also gives relationships between GO
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Figure 2.11: Structure of the Gene Ontology. This directed acyclic graph shows
the relationships between a set of GO terms in the biological process component.
Each node represents a GO term, and each edge gives the relationship between GO
terms. The edge labels indicate the type of relationship represented by the edge, where
R denotes a regulation relationship, I denotes an is a relationship, and P denotes a
part of relationship. The GO terms become more specialized moving down the graph.
Figure taken from www.geneontology.org.

terms.

The structure of the GO can be described as a directed acyclic graph, where the

nodes represent individual GO terms, and the edges indicate relationships between

the GO terms. The relationships between GO terms are loosely hierarchical, where

a child term is more specialized than its parent term. For example, the GO term

‘mitotic cell cycle’ is a more specific type of cell cycle, and hence it is child of the GO

term ‘cell cycle.’ However, the GO is not strictly hierarchical, as a child node may

have more than one parent node.

Figure 2.11 shows the relationships between a set of GO terms in the biological
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process component. Each node represents a GO term, and each edge gives the re-

lationship between GO terms. Each edge in the graph represents a specific type of

relationship. One type of relationship is the regulates relationship (denoted by R in

Fig. 2.11), where one GO term is responsible for regulating another. As an example,

in Fig. 2.11 we see an edge with a regulation relationship between the terms ‘negative

regulation of pigmentation during development’ and ‘pigmentation during develop-

ment,’ and it is quite clear from the names of the GO terms that one regulates the

other. Other edge types include the is a relationship (denoted I in Fig. 2.11), which

means that one term is a subclass of the other, and part of (denoted P in Fig. 2.11),

which means that one term is necessarily part of the other, i.e. the presence of one

term implies the presence of the other.

GO annotation is useful for both small-scale and large-scale analyses. It can

help provide a first indication of the nature of a gene product. Many model organism

databases and genome annotation groups use the GO and contribute their annotation

sets to the GO resource. The GO database is continually evolving and being updated

as new data becomes available.
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Chapter 3

Related Work

This chapter describes a few currently used approaches to clustering multi-domain

protein sequences: (a) phylogenetic profile methods (Section 3.1), (b) Markov clus-

tering (Section 3.2), and (c) protein-domain biclustering methods (Section 3.3).

3.1 Phylogenetic Profile Methods

Originally, a phylogenetic profile was proposed as a vector whose entries quantify the

existence of a protein in a genome. Phylogenetic profile methods [66, 95, 105] use

these vectors to infer evolutionary relationships between genomes. These methods

are independent of multiple sequence alignments, which are essential for classic phy-

logenetic inference. Inference of phylogenetic relationships using pairwise alignment

is nearly impossible when the pairwise sequence identity falls below 25% identity,

that is when sequences fall into the sequence identity “twilight zone” [29, 99, 125].

Phylogenetic profile methods [12, 21, 57, 58] have also been used to infer evolutionary

relationships between highly divergent and/or rapidly evolving proteins.

The Gestalt Domain Detection Algorithm-Basic Local Alignment Tool (GDDA-
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Figure 3.1: Gestalt Domain Detection Algorithm-Basic Local Alignment
Tool (GDDA-BLAST) Workflow. Figure taken from [57].

BLAST) [21] uses a variation of a phylogenetic profile, where a protein is a vector

whose entries quantify the existence of an alignment to a domain profile. Figure 3.1

shows the workflow for GDDA-BLAST. The first step is to compile the set of domain

sequence profiles, i.e. position-specific scoring matrices (PSSMs) [3], to which the

query sequence will be compared. PSSMs for domains can be obtained from any do-

main database, such as Pfam [103], SMART [74], and National Center for Biotechnol-

ogy Information Conserved Domain Database (CDD) [80], or even generated locally

using PSI-BLAST [3].

The GDDA-BLAST algorithm begins by modifying the query sequence to produce

a set of seeded query sequences. Since BLAST algorithms are based on determining

a hit and then extending the hit (see Section 2.3.1), a portion of the N-terminus

(the start of the peptide sequence) or C-terminus (the end of the peptide sequence)

region of each of the PSSM consensus sequences, called a “seed” region, is inserted
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into the query sequence in order to establish a consistent initiation site. This step

is necessary to allow the BLAST algorithm to extend alignments between highly

divergent sequences. The seed sequence is inserted at each amino acid position in

the query sequence to produce one seeded query. Thus for a data set consisting of m

PSSMs, a query sequence composed of n amino acids will have n ×m seeded query

sequences.

Once the query sequence has been seeded, reverse specific position BLAST (rps-

BLAST) [3] is used to align the each of the query sequences to the parent PSSM.

Each optimal pairwise alignment is evaluated and recorded as a hit if it satisfied the

given domain coverage and sequence identity thresholds.

Next, for a pair of the query and a profile a composite score is calculated by taking

the product of the normalized hit number, mean percent identity, and mean percent

coverage from the rps-BLAST results. A composite score of 0 indicates no significant

hit, while a positive score measures the degree of successful matching between the

query and the profile. The vectors of composite scores are used to generate an N×M

data matrix, where N denotes the total number of queries (proteins) and M the total

number of profiles. The data in this matrix is then used to compute the Euclidean

distance between the vector representations of the proteins, and these distances are

used to construct the phylogeny.

Although GDDA-BLAST has shown potential to reconstruct phylogenetic rela-

tionships for highly diverse proteins, its application is limited due to its high com-

putational cost. To address this issue, the authors of GDDA-BLAST introduced

Adaptive GDDA-BLAST (Ada-BLAST) [58], a sequence alignment algorithm similar

to and as sensitive as GDDA-BLAST but much faster in computation. In fact, Ada-

BLAST was shown to be 19 times faster than the original GDDA-BLAST. The key

difference in these methods is that instead of inserting a seed sequence at each amino
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acid position, as was done in GDDA-BLAST, Ada-BLAST inserts a seed sequence

into the query sequence only in positions where the seed is likely to be extended to

an alignment [58]. Although Ada-BLAST is much faster than its predecessor GDDA-

BLAST, its scalability is still questionable, as it has only been tested on sequence

sets of < 1000 proteins.

3.2 Markov Clustering

The Markov clustering (MCL) algorithm is an unsupervised graph clustering tech-

nique that is based on simulating stochastic flow in a graph [124]. TRIBE-MCL [35]

is a direct application of the MCL algorithm used to cluster protein sequences into

families. The TRIBE-MCL algorithm begins with an all-against-all BLASTp protein

similarity search. The pairwise BLAST E-values are stored in a square matrix, which

serves as an adjacency matrix for a weighted protein similarity network. An example

of such a network is shown in Fig. 3.2(A).

A symmetric, weighted transition matrix is then generated using negative log-

transforms of the BLAST E-values (− log(E)), and the entries in the matrix are

rescaled to produce a column stochastic transition matrix (Fig. 3.2(B)). A column

stochastic matrix is a matrix whose entries are non-negative and whose columns sum

to 1. The columns in the Markov matrix give the probabilities of transitioning from

one protein to another within the network graph. This Markov matrix serves as the

input for the MCL algorithm.

The MCL algorithm finds the cluster structure in a network using a bootstrapping

process. Random walks within the graph are simulated using two operations, expan-

sion and inflation. The expansion operator simply squares the Markov matrix using

normal matrix multiplication. Inflation corresponds to taking the Hadamard power
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C

Figure 3.2: TRIBE-MCL Data Processing. This figure illustrates the initial
processing of the data in the TRIBE-MCL algorithm. (A) An example of a protein-
protein similarity network for seven proteins. Each node represents a protein, and
a weighted edge between two nodes gives the BLAST E-value. (B) The weighted
transition matrix and associated column stochastic matrix for the seven proteins in
the network. The Markov matrix serves as the input for the MCL algorithm. Figure
taken from [35].

of a matrix (i.e. taking powers entrywise) and then rescaling to ensure the resulting

matrix is column stochastic.

The expansion operator coincides with computing “higher length” walks between

node pairs in the graph. Intuitively, higher length walks between node pairs in the

graph will be more likely to occur within dense clusters than across clusters, since

there will be a larger number of ways of moving from one node to another within

a cluster. Thus, using the language of stochastic flow, expansion scatters the flow

within clusters, dissipating the flow between clusters. The inflation operator, on the

other hand, changes the probabilities of single-step random walks departing from a
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Figure 3.3: Successive Stages of Flow Simulation by MCL. Figure taken from
[124].

particular node by favoring more probable walks over less probable walks. That is,

inflation will boost the probability of intra-cluster walks. Successive stages of the

MCL algorithm are exhibited in Fig. 3.3.

Iterating the expansion and inflation operators will eventually result in separating

the graph into clusters. An equilibrium is reached when no change is observed in

the matrix after applying inflation and expansion. With respect to convergence, it

can be proven that the process simulated by the algorithm converges quadratically

around its equilibrium states [35]. Global convergence has not been proven, but it is

conjectured that the algorithm will always converge if the input matrix is symmetric

[124].

TRIBE-MCL has been shown to detect protein families accurately for large-scale

datasets [35]. However, as is the case in phylogenetic tree clustering, TRIBE-MCL

does not incorporate information from all domains in a multi-domain protein. Phy-

logenetic clustering relies on aligning a region that is shared across all proteins in the

data set. As explained above, the TRIBE-MCL method uses only the most significant
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local region between two proteins to define the pairwise similarity. Therefore in these

two approaches important information in the domain architecture is being excluded

during the clustering process.

3.3 Protein-Domain Biclustering

Biclustering, also known as co-clustering, bidimensional clustering, and subspace clus-

tering, refers to a distinct class of clustering algorithms that simultaneously clusters

row and column data in a matrix [78]. One of the earliest applications of bicluster-

ing to biological data was the method of Cheng and Church [23], developed for gene

expression analysis. As is the case with many other early biclustering algorithms,

including Samba [120], the Order Preserving Submatrix Algorithm [11], and xMotif

[85], the method of Cheng and Church is based on a greedy search algorithm. The

shared feature of these approaches is that the data is clustered according to some

real-valued attribute type that relates the two types of data in a bicluster. Binary

Inclusion-Maximal Biclustering (Bimax) [101] is a simple divide-and-conquer based

approach to biclustering that clusters a binary matrix into submatrices where the

members of both the rows and columns are connected to each other. Speaking in

terms of graph theory, the Bimax algorithm seeks to identify maximal bicliques in a

bipartite graph.

Recently, the Bimax algorithm has been applied to cluster proteins in terms of

their domain content and to construct a protein-domain bicluster network [111, 112].

The complete workflow for this method is shown in Fig. 3.4. First, the domain

architecture for each protein is determined using HMMER profile hidden Markov

model search. The results of the HMMER search are then filtered according to a

specified E-value threshold. Then a binarized protein-domain matrix is constructed.
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Figure 3.4: Protein-Domain Biclustering Workflow. Figure taken from [111].

In this matrix, an entry of 1 indicates the presence of the domain on the protein,

and an entry of 0 indicates the domain’s absence on the protein. This binary matrix

then serves as the input to the Bimax algorithm (for details of the algorithm see

[101, 111]).

Once the protein-domain inclusion maximal bicliques have been determined, these

biclusters are converted to a network (Steps D and E in Fig. 3.4). First the biclusters

generated from Bimax are connected based on their shared domains (Fig. 3.4(D)).

These biclusters contain redundant proteins, i.e. proteins may be present in more

than one bicluster. The biclusters are then refined with respect to their unique

domain compositions by removing overlapping proteins from the bicluster that has

the smallest domain set. This produces a set of biclusters, each containing a unique

set of proteins. Finally the set of biclusters is converted to a network, where a node

represents a bicluster and a weighted edge between two nodes indicates the number

of domains shared between the biclusters (Fig. 3.4(E)).
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The protein-domain biclustering approach can be easily applied to large-scale

protein-domain analyses [112]. Unlike other clustering techniques, such as TRIBE-

MCL, the biclustering method uses domain composition information from each pro-

tein. However, one drawback to this method is that the domain composition infor-

mation is binarized prior to clustering. Thus the method is unable to make use of

quantitative similarity information among domains on the proteins.
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Chapter 4

Bioinformatic Game Theory

In this chapter we propose a game-theoretic approach to constructing biological net-

works. The key hypothesis is that evolution is driven by distinct mechanisms that

seek to maximize two competing objectives, conservation to maintain diversity and

diversity for adaptation. One branch of the mathematical theory of games is brought

to bear. It translates this evolutionary game hypothesis into a mathematical model

in two-player, zero-sum games, with the zero-sum assumption conforming to one of

the fundamental constraints in nature in mass and energy conservation.

We begin by defining a game-theoretic similarity graph for a given set of entities.

Next, we establish the game-theoretic approach to evolution and demonstrate how

this can be used to formulate a linear programming problem for a given reference en-

tity in the set, whose solution yields the set of evolutionary neighbors for the reference

entity with respect to all other entities in the network. In addition we demonstrate

why and how a mechanistic and localized adaptation to seek out greater informa-

tion for conservation and diversity may always lead to a global Nash equilibrium in

phylogenetic similarity.
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4.1 Game-Theoretic Similarity Graphs

A entity space is defined by a set of biological entities, each of which is in turn defined

by a set of components. For example, if the entities in the space are defined to be

genomes the components will be genes (Fig. 4.1(a)) , while if proteins are the entities

the components will be functional or structural domains (Fig. 4.1(b)). Given the

entity space and the corresponding component space we will construct a similarity

network.

We use a network definition similar to that proposed by Holloway and Beiko [56].

A game-theoretic similarity graph, G = (V,E), for a given set of entities is a directed
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Figure 4.1: (a) Genome/Gene Space and Genome Networks. Each genome is
composed of a set of genes (shown in the gene space). For a given set of genomes
there exists a network graph. In this diagram the individual genomes are represented
by a linear string of genes and their network edges are exhibited with dashed lines.
(b) Protein/Domain Space and Protein Networks. Each protein is composed
of a set of domains (shown in the domain space), and groups of proteins from the
protein space form protein families (i.e. protein clusters). Within each protein family
there exists a network graph. In this diagram the individual proteins are represented
by a linear string of domains and their network edges are exhibited with dashed lines.
Figure from [28].
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Domain/Protein Protein 1 Protein 2 Protein 3 

Domain 1 (circle) - 100 95 

Domain 2 (rectangle) - 0 90 

Domain 3 (hexagon) - 76 0 

Domain 4 (triangle) n/a n/a n/a 

 Protein 1 Protein 2 Protein 3 

Protein 1 0 0.2095 0.7905 

Protein 2 1 0 0 

Protein 3 1 0 0 

Domain Architecture 

Similarity Matrices 
(one for each protein) 

 

Protein Network 

W12 

W21 

W13 

W31 

Graph Adjacency Matrix 

Figure 4.2: Method Overview. This diagram shows the game theory pipeline for
constructing a protein similarity network. We begin with a set of domain architectures
for the proteins in the protein space. Using these architectures, a similarity matrix
is constructed for each of the proteins. The similarity matrix shown is the similarity
matrix for Protein 1, which is indicated by the entries ’-’ for the domains that exist
in Protein 1. The entries ’n/a’ indicate that Domain 4 is not present in the reference
protein, Protein 1. The similarity matrices serve as the payoff tables in the game
theory optimization problems and lead to a graph adjacency matrix, which is used to
construct the protein network. Figure from [28].

graph such that each vertex in the set V = {P1, P2, ..., Pn} uniquely corresponds to

one entity, and all edges have nonzero weights with the incoming edges to any given

vertex summing to 1. (The distinction between whether the edges are incoming or

outgoing is determined by the construction of the similarity matrix, to be discussed

in more detail later.) An example of such a network can be seen in Fig. 4.2. An

edge from vertex Pj to Pi is present if and only if the edge weight wij is strictly

positive. The edge weight wij is a measure for the similarity of entity Pj to Pi relative

to all other entities in V . No edge is drawn from any node to itself (i.e., wii = 0) by

convention.
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The network graph is constructed in an entity-by-entity approach. For each mem-

ber of the entity space we construct a similarity matrix. In these matrices, we compare

the amino acid (or nucleotide) sequences of each component as a first order approx-

imation. Suppose there are a total of m components, d1, d2, ..., dm, found in the n

members of V . Then, as exhibited in Fig. 4.3, the similarity matrix, Ai = ai(s, j),

of a given reference member Pi is an m × n matrix, where ai(s, j) is the similarity

score of component s in member Pi to member Pj. This entry may be considered as

a proxy for the mutual information between Pi and Pj with respect to component

s in that the higher the value the more similar the pair are in component s. The

values in the reference column (the ith column) will not be used in calculation and

are therefore marked as ‘-’.

As mentioned above, the edge directionality in the network graph depends on the

construction of the similarity matrix. If the scores are established using the reference

entity, Pi, as the intended parent sequence, the edges with nonzero weights will be the

outgoing edges of the corresponding node, representing a likely ancestor-descendent

directionality. Similarly, if the scores are constructed to permit the inference that

the reference entity is a descendent sequence, the edges with nonzero weights will

be the incoming edges to the reference node. If there is no obvious parent-offspring

directionality, as is the case in the similarity matrix construction for our analysis,

either convention may be used but only to keep track of the model solutions.

Once the edge weights are found for all Pi, they in turn define the network matrix

W = [wij] as shown in Fig. 4.3. The directed network graph is then constructed

according to the weight matrix W. Furthermore if the matrix is block diagonalizable

as explained in Fig. 4.3, then each (irreducible) block defines a distinct subnetwork

graph, a cluster. Therefore, the construction of any directed similarity network graph

is reduced to finding the weight vector wi = (wi1, wi2, . . . , win) for node i in a node-
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wi1 wi2 ··· – ··· win
P1 P2 ··· Pi ··· Pn

x i1 d1 ai(1, 1) ai (1, 2) ··· – ··· ai(1, n )

x i2 d2 ai(2, 1) ai (2, 2) ··· – ··· ai(2, n )
...

...
...

... ···
...

...
...

x im dm ai (m, 1) ai(m, 2) ··· – ··· ai (m, n )

P1 P2 . . . Pi . . . Pn
P1 0 w12 . . . w1i . . . w1n

P2 w21 0 . . . w2i . . . w2n

...
...

...
. . .

...
. . .

...

Pi wi1 wi2 . . . 0 . . . win
...

...
...

. . .
...

. . .
...

Pn wn 1wn 2 . . . wni . . . 0

. . .

C1 0 . . . 0

0 C2 . . . 0
...

...
...

. . .
...

Conservation

Diversity

Domain/Protein

Cluster 1Cluster 1 Cluster k

Cluster 1

Cluster 2

Cluster k 0 0 . . . Ck

Figure 4.3: Similarity Matrix. The similarity matrix Ai = [ai(s, j)] (top) for
node Pi that generates Pi’s incoming edge weights wij which in turn generates the
n× n network matrix W = [wij] (lower left) in the original ordering of the nodes Pi.
(The weight row vector wi = (wi1, wi2, . . . , 0, . . . , win) is the y probability solution
vector from the game theory minimax problem (4.1) for the node i.) The matrix
on the right is the same network matrix W except for the procedure that reorders
the nodes P1, P2, . . . , Pn together with their rows and columns so that the resulting
network matrix is a block diagonal in C1,C2, . . . ,Ck, with the other blocks being
zero matrices 0. Figure from [28].

by-node basis for each i = 1, 2, ..., n.

4.2 Evolution As A Game

The construction of the edge weights wij is based on the assumption that during

evolution, sequence conservation and component architecture diversity are both max-

imized. We will view the interwoven relationships of entities as the result of evolu-

tionary processes such as mutations, insertions/deletions, and domain transfers, all

taking place amongst thousands of individual organisms contemporaneously in space

and repeated for thousands of generations, and all driven by some particular selective
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forces. We will also view the net effect of the processes as a two-player game in which

one player, or one force, is to maximize the genetic (sequence) conservation so that

deleterious changes are eliminated and successful (or non-deleterious) structures and

functions are passed on from one generation to the next; and the other player, or

the other force, is to maintain the genetic diversity and to maximize evolutionary re-

sources where novel structures (e.g., domain architectures) and functions can be tried

out. The outcome is a set of entity families that tends to increase organism-level

fitness.

We will assume, for the purpose of being a primary approximation, that the two

goals are polar opposites because conservation as characterized by structural and

functional similarity is negatively correlated with diversity which is characterized by

the reverse. This first order approximation can also be justified by the principle

of mass and energy conservation in nature. That is, genetic materials and natural

resources that are devoted for conservation will not be available for divergence (or

in population genetics, extinction vs. fixation). In short we will view each process

event as one game play with the aim to maximize both conservation and divergence

simultaneously. The net effect of this repeating game of evolution is the set of clusters

of entities with similar component architectures in the entity space, and this effect is

to be captured by the frequencies with which various strategies in the evolutionary

game are played.

The goal of our game-theoretic model for evolution is, for each entity in the entity

space, to find a Nash equilibrium [77, 87, 88] of the expected payoff for similarity,

Ei =
∑

s∈Si

∑
j ai(s, j)xsyj, by determining the similarity probability vector y =

(y1, y2, ..., yn) to maximize Ei while simultaneously minimizing it (i.e., maximizing

the diversity) by finding the novelty probability vector x = (x1, x2, ..., xm). Here Si

denotes the subset of the m components that are present in the reference entity Pi.
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The conservation-diversification dichotomy interpretation for the y and x proba-

bility vectors can be explained as follows. In the case of a pure ‘diversity’ or ‘com-

ponent’ strategy being played, say xs = 1, xt = 0 for s 6= t and s ∈ Si, that is,

when component s of the reference member Pi is used to measure divergence it is the

entity (or entities) Pj having the largest similarity score ai(s, j) that should be picked

as the countering ‘conservation’ or ‘entity’ strategy to maximize the similarity score

Ei. Namely, for a constituent component whichever entity is closest to the reference

entity is picked to conserve. Thus yj > 0 for these j, and the yj sum to 1. This gives

the conservation interpretation of the y solutions.

On the other hand, in the case of a pure ‘conservation’ or ‘entity’ strategy being

played, say yj = 1, yk = 0 for k 6= i, j and j 6= i, that is, when Pj is used to measure

similarity to the reference Pi it is the component(s) having the smallest similarity

score ai(s, j) that stands out and should be picked as the countering ‘diversification’,

or ‘component’ strategy to minimize the similarity score Ei. Namely, for a conserved

entity whichever component is the least similar to the reference entity is picked to

distinguish between the two entities. That is, these xs are positive and sum to 1, and

permit the interpretation for divergence.

As mentioned before, since all evolutionary processes – all kinds of genetic transfers

or otherwise – take place amongst all organisms all the time, the evolutionary state we

observe today would be the result of the frequencies with which all pure conservation

strategies and all pure diversity strategies are played one event a time, and by our

proposed game-theoretical model these frequencies are approximated by the solution

y and x to the following minimax problem:
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min
x

max
y

Ei =
∑
s∈Si

∑
j

ai(s, j)xsyj

subject to
∑
j

yj = 1, yj ≥ 0, j = 1, 2, ..., n, yi = 0

∑
s∈Si

xs = 1, xs ≥ 0, s ∈ Si.

(4.1)

The solution to this problem exists and is exactly a Nash equilibrium point (see

Section 2.1). The optimal expected similarity score, Ei, is the so-called game value.

There are two different ways to find a Nash equilibrium (NE) for a two-player, zero-

sum game. One is through a dynamical play of the game to find a NE asymptotically

which is modeled by the Brown-von-Neumann-Nash (BNN) system of differential

equations [15, 28, 54]. The other is by the simplex method in linear programming

(see Section 2.1).

Here we present a mechanistic derivation of Nash’s map. Nash used this map to

prove the existence of NE for all non-cooperative games (Section 2.1). This derivation

is extremely relevant to our game theory formulation for bioinformatics. It gives a

plausible answer to the question how a NE is realized by nature. It shows that

evolution or individual organisms need only be driven by their immediate, short term

gain in game play payoff to reach a globally attractive Nash equilibrium. Here is an

outline of the scenario, which works for any n-player game.

In the case that a game is played by large populations of all types of players

repeatedly for a long period of time, the time between consecutive plays can be

blurred to view the game as played continuously, and the play strategy frequency

for player type-i, xi(t), changes continuously, where xi = (x1i, x2i, . . . , xnii)
T is the

mixed strategy probability or frequency vector,
∑

j xji = 1, xji ≥ 0. Each 1 ≤ j ≤ ni

corresponds to the jth strategy of the type-i players, and xji can be interpreted to
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be the fraction of the type-i player population that uses its pure strategy j. Consider

it at time t and a ∆t time later, xi(t), xi(t + ∆t). We would like to understand how

xi(t+ ∆t) changes from xi(t). We will do so probabilistically.

Let αi be the scalar inertia probability by which an individual of the type-i pop-

ulation plays the same strategy with probability xi(t) at time t + ∆t as at time t.

Then, 1− αi is the non-inertia or kinetic probability with which an individual of the

type-i population chooses or adapts to a particular strategy, including the choice of

playing the same strategy at time t + ∆t as at time t because it is advantageous to

do so, or because the individual organism is driven to do so due to selection. Let

βi = (β1i, . . . , βnii)
T be the conditional play probability vector given that the play is

kinetic, βji ≥ 0,
∑

j βji = 1, then by elementary probability rules

xi(t+ ∆t) = αixi(t) + (1− αi)βi. (4.2)

The scalar marginal probability αi and the conditional probability vector βi are de-

rived as follows. First we assume the advantage for type-i player’s kinetic strategy

switch or adaptation depends on its total (scalar) excess payoff φi(x(t)) from the

current play frequency (Section 2.1, also [87, 88]), where x = {x1, . . . , xn} denotes

the current play frequency for all player types with probability vector xk for player

type-k. That is, if φi(x(t)) = 0, then all plays are of the inertia kind, αi = 1, and

xi(t + ∆t) = xi(t) without adaptation. Next, for the φi(x(t)) > 0 case, we assume

the jth kinetic frequency is βji = ϕji(x(t))/φi(x(t)) ≥ 0, where ϕji(x(t)) (Section

2.1) is the jth strategy’s excess payoff from the current play for the player type-i,

ϕi = (ϕ1i, . . . , ϕnii)
T . That is, the strategy switch to strategy j for the type-i players

is strictly proportional to its excess payoff against the total φi(x(t)) =
∑

j ϕji(x(t)).

As for the scalar marginal inertial probability αi, we assume it is a function of
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the total excess payoff as well as the time increment ∆t. Specifically, consider the

probability equivalently in its reciprocal form 1/αi, which represents all fractional

possible choices for each inertia choice. The fractional possible choices automatically

include the inertia choice itself so that 1/αi ≥ 1 always holds. Then at ∆t = 0, we

must have this trivial boundary condition 1/αi(x(t), 0) = 1, the default inertia choice

only for lack of time to adapt.

Assume the fractional possible choices increase linearly for a small time increment

∆t, we have 1/αi = 1+r∆t where 1 represents the inertia choice itself and r represents

the rate of increase in the kinetic choices, which may include the choice of maintaining

the same strategy play, because of its excess payoff is positive, and all other kinetic

strategy adaptations. We assume the rate of the kinetic choice change is proportional

to the total excess payoff, r = hφi(x(t)), i.e., the greater the excess payoff the more

play switches in the population for a greater payoff gain. As a result, 1/αi = 1 +

hφi(x(t))∆t and equivalently, αi = 1
1+hφi(x(t))∆t

.

With the functional forms for αi and βi = ϕi/φi above, we have

xi(t+ ∆t) = αixi(t) + (1− αi)βi

=
xi(t)

1 + hφi(x(t))∆t
+

(
1− 1

1 + hφi(x(t))∆t

)
βi

=
xi(t) + hϕi(x(t))∆t

1 + hφi(x(t))∆t

(4.3)

which is exactly the Nash map [88] if h = 1 and ∆t = 1. From (4.3) we also have

lim
∆t→0

xi(t+ ∆t)− xi(t)
∆t

= lim
∆t→0

h(ϕi(x(t))− φi(x(t))xi(t))

1 + hφi(x(t))∆t
= h(ϕi(x(t))−φi(x(t))xi(t))

and hence the following equivalent system of differential equations

ẋi(t) = ϕi(x(t))− φi(x(t))xi(t) for all 1 ≤ i ≤ n (4.4)
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Figure 4.4: Two-Player Zero-Sum Game Dynamics. An example of a prototyp-
ical two-player zero-sum game with the payoff matrix A = [aij], a11 = a22 = 2, a12 =
a21 = 1, for player y, for which (x1, 1 − x1) is the mixed strategy for player x and
(y1, 1− y1) is the mixed strategy for player y. The trajectory starting near the point
(x1, y1) = (0, 1) is for the Nash map and that starting near (1, 1) is for the BNN.
Both are plotted on the expected payoff function E for player y, (a), and on the total
excess payoff potential function V , (b). Both converge to a NE which is the saddle
point of the expected payoff function and the global minimum point of the excess
potential function, respectively. Figure from [28].

after a time scaling by h. This type of equation was first introduced in [15] by

Brown and von Neumann to compute a NE for symmetrical zero-sum games, and the

derivation of (4.4) from the Nash map xi(t+∆t) = xi(t)+ϕi(x(t))
1+φi(x(t))

was first noted in [54].

The derivation immediately suggests an evolutionary mechanism as to how a Nash

equilibrium point may be realized or reached because the process or the game play

is driven by the excess payoff at every step of the way, which can be interpreted as a

mechanism for adaptation and a force of selection.

In fact, let

V (x(t)) =
1

2

∑
i,j

[ϕji(x(t))]2

define the total excess payoff potential. Then for any two-player zero-sum game,
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it has been shown that V (x(t)) always decreases V̇ (x(t)) < 0 if V (x(t)) > 0, and

limt→∞ V (x(t)) ↘ 0 for every solution x(t) of the BNN equation (4.4) [28, 54]. A

NE is reached when there is no excess payoff left, i.e. V = 0. It shows that as

a global dissipative system, any mixed play frequency trajectory will always find a

Nash equilibrium by following the down gradient of the excess potential function V .

That is, in their search of greater excess payoffs, the total excess payoff for the players

can never increase along any time evolution of their game plays.

A computational implication of this theorem is that a Nash equilibrium of any

two-player, zero-sum game can always be found by iterating the Nash map or the

solution to the BNN equations for any initial strategy frequency. This result solves the

important problem as to how dynamical plays of a zero-sum game driven by individual

players seeking out only localized advantages can eventually and collectively find a

globally stable Nash equilibrium. Fig. 4.4 shows, for a prototypical two-player zero-

sum game, the trajectories of the Nash map for a small time increment ∆t and the

BNN equation converge to a NE which is a saddle point on the payoff surface of one

player and a global minimum on the excess potential surface, which can be viewed as

a energy function for the dynamics of the BNN equation.

With the existence problem and the search problem for a NE solved, we can

employ alternative and practical methods to find them. One standard procedure to

solve the minimax problem (4.1) is to solve the following linear programming problem

as reviewed in Section 2.1:

max
(y,v)

Ei = v

subject to
∑
j

ai(s, j)yj ≥ v, for s ∈ Si

∑
j

yj = 1, yj ≥ 0, j = 1, 2, ..., n, yi = 0.

(4.5)
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It is well-known that the y solution and the optimal value of the objective function

Ei = v for the LP problem (4.5) are exactly the y solution and the game value to

the minimax problem (4.1), respectively, and the shadow price or the set of Lagrange

multipliers for the LP problem is exactly the x solution to the minimax problem.

4.3 Similarity Network and Component Profile

Construction

In the final step of our method we use the solution of (4.1) for each of the entities

in the entity space to construct both the game-theoretic similarity network and the

component profile. We demonstrate these constructions with an example of a protein

space consisting of 11 proteins. Figure 4.5 shows the domain architecture for each of

the proteins, which was found using HMMER [33]. There were a total of 15 domains

identified on the proteins.

In the construction of the similarity network (Fig. 4.6(a)), the edge weight wij

from Pj to Pi is assigned to be yj from the Nash equilibrium of the minimax problem

for node Pi. That is, the y solution, which obviously depends on i but the dependence

is suppressed for simplicity, for each node Pi gives the ith row of the network matrix

W of Fig. 4.3. The x solution vector for each i, is used to define the domain profile

for the node Pi. Both the protein similarity network and the domain profile for the

example above are shown in Fig. 4.6.

Thus, by our game-theoretic approach the edge weights of the network and the

component profiles are the result of both conservation and diversity being maximized.

More specifically, a high edge weight in the network indicates a strong similarity

between entity pairs relative to the others, and a high row weight, xs of node i,
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P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

P1 0 0 0 1.0 0 0 0 0 0 0 0 

P2 0 0 0 0 0 0 0 0 0.7761 0 0 

P3 0 0.4224 0.2239 0 0 0.5776 0 0 0 0 0 

P4 0 0 0 0 0.4520 0.5480 0 0 0 0 0 

P5 0 0 0 0.5178 0 0.4822 0 0 0 0 0 

P6 0 0.8953 0 0 0 0 0 0 0 0 0.1047 

P7 0 0 0 0 0 1.0 0 0 0 0 0 

P8 0 0 0 0 0 0.7076 0.2924 0 0 0 0 

P9 0.2481 0 0 0.2481 0.2481 0 0 0.2558 0 0 0 

P10 0 0 0 0 0 0 0 0 0 0 1.0 

P11 0 0 0 0 0 0.8709 0 0 0 0.1291 0 

 

(a) (b)

Figure 4.5: (a) Domain Architectures. This diagram shows the domain archi-
tectures for 11 proteins, labeled P1 to P11. The architectures were identified using
HMMER profile hidden Markov search against the Pfam database. Each unique
color/shape combination corresponds to one of the 15 domains that were identified
in the search. (b) Graph Adjacency Matrix. The adjacency matrix for the game-
theoretic protein similarity network generated using the approach described above.
Each row gives the y probability solution vector from the game theory minimax
problem (4.1) for the protein listed in the row’s first entry.

indicates that the reference individual, Pi, is somewhat unique or dissimilar with

respect to the component s compared to the other members of the entity space.

The game values also yield important information about the similarity network.

For example, for two topologically identical clusters, it is their average game values

that set them apart, which in this sense the cluster with the higher average game

value is a ‘tighter’ or a more similar subnetwork than the latter.

The importance of a Nash equilibrium lies in the property that if we change the

similarity frequency vector y from its optimal, then we may find a different diversity
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Figure 4.6: (a) Protein Similarity Network. In this graph, the proteins (nodes)
are labeled from P1 to P11. The edges are directed so that the incoming edge weights
of each node sum to 1. These edge weights are taken from the adjacency matrix shown
in Fig. 4.5(b). The edge color indicates the edge weight, with darker edges indicating
high weights and lighter edges indicating low weights. (b) Domain Profile. In
this diagram, each row represents one of the proteins in the protein space, while each
column represent a domain. The color bar on the right shows the color scheme for the
diversity weights x. A black shaded entry denotes a weight of 1 (or nearly 1), while
a cyan shaded entry indicates that the domain was present in the protein but was
assigned a weight of 0 for the optimal solution. A blank entry indicates the absence
of a corresponding domain. The proteins are arranged according to their game value,
with the largest appearing as the lowest row.

frequency vector x such that the corresponding expected similarity score is lower

than the game value. Similarly, if we change the diversity frequency vector x from its

optimal, we may then find a different similarity vector y so that the corresponding

expected similarity score is larger. That is, deviating from the conservation optimal

distribution may give rise to a greater diversification, and deviating from the diversity

optimal distribution may give rise to a greater conservation. The dynamical state

of the evolution, according to our model, is literally sitting at a saddle point of

the expected similarity function; and the game value is a balanced tradeoff between

reproducibility and diversity, a minimally guaranteed similarity.
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Chapter 5

Protein Simulation

The true phylogenetic relationships between multi-domain proteins cannot be known

with certainty. Computational methods for reconstructing these complex evolutionary

histories use current data to infer past events. For this reason, testing and validation

of these computational techniques is notoriously difficult.

There are two main categories for biological sequence simulation techniques. The

first, which is used in population genetics, involves simulations that account for

changes within and across entire populations which arise from models of sex, gene

conversion, and recombination. Algorithms in this category have been developed to

perform both forward [20, 53, 55, 96, 97] and backward [59, 110, 116] in time.

In phylogenetics and evolutionary biology, simulation involves single represen-

tatives of a species being linked by a tree and evolved forward in time. Various

algorithms of this type exist, each differentiated by the model of evolution used to

generate the simulated sequences. Early sequence simulation methods dealt only with

substitution processes, supporting models of nucleotide and amino acid substitution

as well as site-specific hetereogeneity [44, 104, 123, 131]. These programs, however,

did not include indels, that is processes of insertion and deletion.
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ROSE [117] was one of the earliest simulation algorithms to introduce indel events

by extending the Gamma distribution model for site specific mutations to include indel

constraints. Recently other simulation techniques have begun to include indel events,

as well as other sequence simulation features such as sequence motifs and mutation

rates that vary over time: EvolveAGene3 [49], DAWG [18], indel-Seq-Gen [118, 119],

INDELible [42], MySSP [107], and SIMPROT [92].

Simulation programs with the goal of simulating complex genome evolution, such

as gene duplication and lateral gene transfer exist [9, 26], but these simulators work at

the genome level rather than at the protein level. The majority of simulation methods

require the user to specify a guide tree for sequence evolution. We have developed

a simulator that generates a protein family through probabilistic determination of

evolutionary events. Moreover, in this simulation technique the evolution of each

domain sequence is not constrained under a single guide tree, and insertion/deletion,

duplication of domains, and domain swapping events can be freely incorporated.

5.1 Overview of the Simulation Process

A protein family is generated from a single root sequence and a set of domains as

shown in Fig. 5.1. The ancestral sequence may be supplied by the user or generated

randomly according to user specifications. The simulation starts by reading (or gen-

erating) the root protein, the domain locations on the root protein, and the given set

of domain sequences. For the first generation, a randomly chosen number (a number

between from 0 to K, a user-specified parameter) of child sequences are generated.

Domain diversification, insertion, deletion, and duplication alter the content of each

protein. Each child protein sequence incorporates an evolutionary event governed

by a user-specified probability distribution, event location, and the sequence to be
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1. Domain diversification

2. Domain insertion

3. Domain deletion

4. Domain duplication

Figure 5.1: Multi-domain Protein Simulation Algorithm Workflow.

inserted (for a domain insertion event). After the chosen evolutionary event is incor-

porated, the domain linker regions (i.e. the regions between domains on the protein)

are mutated using the JTT amino acid substitution model [63] and a mutation rate

supplied by the user.

Once the first generation is completed, for subsequent generations the process

described above is repeated, using each child sequence from the previous generation

as a parent sequence (see Fig. 5.1). A generation is complete when this process has

been carried out for each of the child sequences in the previous generation.

5.2 Evolutionary Events

Domain Diversification

In a domain diversification event the domain remains at the same location on the
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sequence, and its amino acid sequence is mutated according to the JTT amino acid

substitution model [63]. Once a domain has been mutated the resulting domain is

then added to the existing domain bank, i.e. the set of domains available to be in-

corporated into insertion events.

Domain Insertion

For a domain insertion, the domain to be inserted is chosen uniformly at random

from the domain bank, which includes the domain sequences initially supplied by

the user as well as the mutated versions of these domains that were created during

previous diversification events. Once a domain is chosen, the location of the insertion

along the sequence is chosen uniformly at random. If a domain is to be inserted in

a position that will cause an overlap with existing domains on the protein sequence,

the overlapping domain(s) are removed before the new domain is inserted.

Domain Deletion

In the case of a domain deletion, the entire domain sequence, chosen uniformly at

random, is removed from the protein.

Domain Duplication

For a domain duplication, the domain sequence, chosen uniformly at random, is

duplicated and inserted along the sequence, resulting in two identical copies of the

domain on the protein. The location for the insertion is chosen uniformly at random.

If the duplicated domain is to be inserted in a position that will cause an overlap with

existing domains on the protein sequence, the overlapping domain(s) are removed

before the new domain is inserted.
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5.3 Defining Protein Families

As mentioned above, in order to test the accuracy of our protein clustering algorithm,

we need to have the exact evolutionary history of the proteins, and we need to define

each unique protein family existing in the protein space. We define a protein family

(or subfamily) to be a group of proteins that share unique functions. Since different

domain architectures are likely to be associated to different functions, when a protein

acquires sufficiently different domains compared to the ancestral form, it becomes a

member of a new family.

During the simulation process, the entire history, including both sequences and

evolutionary events, is saved. Therefore we can track the family-membership of each

protein using domain content. In this study we define the occurrence of a new protein

subfamily to be when the domain content of a protein differs by greater (strictly

greater) than 50% from the root of the protein family to which it currently belongs.

For example, in Fig. 5.2 proteins P4 and P9 define new subfamilies, as they each

share less than 50% of their domains with protein P1. Note that 50% difference in

domain content is an arbitrary choice for defining a new subfamily, and its validity

needs to be evaluated in the future.

In order to cluster proteins and identify family structures from the simulated pro-

teins, following the simulated phylogeny, starting from the root protein, we assign a

length for each branch based on domain events that happened in the child protein.

The three domain events, insertion, deletion, and duplication, alter the domain con-

tent of the protein and contribute more to the emergence of a new protein family. If

a new subfamily is to be defined, we set the branch length to be 1.0, and if not the

branch length is assigned to be 0.000001. Note that these numerical values are used

only to obtain the cluster structure in the phylogeny.
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In the case of a domain diversification event, the observed per-site mutation rate

for the domain is used as the branch length between the ancestor and child sequences

in the phylogenetic tree. The observed per-site mutation rate, µ, is calculated as

follows:

µ =
number of observed mutations

length of domain sequence
(5.1)

From our simulated proteins, families can be identified using an agglomerative

hierarchical method. We used the cluster function in MATLAB’s Bioinformatics

Toolbox [81] with the maximum within-cluster pairwise distance, Wmax, where the

cluster splitting stops when Wmax is drops below the given threshold. For example, if

we cluster the leaf proteins (P5,P7,P8,P10,P11,P12) using the threshold Wmax = 1 we

get the following four protein clusters: {P7,P8}, {P5}, {P11,P12}, {P10}. If instead

we choose Wmax = 2 we obtain two clusters: {P7,P8,P5}, {P11,P12,P10}.

5.4 Program Output

Due to the probabilistic nature of this simulation technique, simulations using the

same model parameters will yield different simulated sequence sets. Therefore it

is important to track all information during the simulation process. The program

outputs the entire simulation history, i.e. a complete tracking of the evolutionary

events that occurred in the simulation at each step as well as the sequences of all

proteins that arise. The program also produces a FASTA file containing the leaf

sequences in the tree and a phylogenetic tree for the sequences in Newick-format

(where the branch lengths are assigned by the process described above).
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Figure 5.2: Simulated Protein Families. A set of six proteins
(P5,P7,P8,P10,P11,P12) was generated using our simulation technique. This dia-
gram shows the entire evolutionary history. The branch lengths are assigned as fol-
lows: in the case of a domain diversification (indicated by changing the shade of the
domain’s color) the branch length is the observed per-site mutation rate (Eq. 5.1),
for domain insertion/deletion/duplication a branch length of 1.0 is assigned if a new
protein subfamily occurred and 0.000001 otherwise. We define the occurrence of a
new protein subfamily to be when the domain content of a protein differs by strictly
greater than 50% from the root of the protein family to which it currently belongs.
The circled nodes indicate the places where a new protein subfamily was defined
during the simulation.
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Chapter 6

Methods

In this chapter we describe the methodologies used in this dissertation for clustering

a given set of multi-domain proteins. It describes: (a) an overview of the game theory

method that produces the network clusters (Section 6.1), (b) domain identification

(Section 6.2), (c) the structure of the protein-domain similarity matrix (Section 6.3),

(d) the construction of the game-theoretic similarity network, (e) the data sets used

in this study (Section 6.5), and (f) the evaluation of protein clusters (Section 6.6).

6.1 Workflow for Game-Theoretic Protein

Clustering

A protein space is defined to be a set of proteins, each of which is in turn defined

by a set of domains. Given the protein space and the corresponding domain space

we can construct a similarity network that gives us a clustering of the proteins. As

mentioned before, a game-theoretic similarity graph, G = (V,E), for a given set of

proteins, is a directed graph such that each vertex in the set V = {P1, P2, ..., Pn}

uniquely corresponds to one protein and all edges have nonzero weights with the
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incoming edges to any given vertex summing to 1 (see Fig. 6.1).

The complete workflow for the game-theoretic clustering of proteins is shown in

Fig. 6.1. The first step is to identify the domain architecture for each of the proteins.

This can be done using any domain sequence search algorithm, for example profile

hidden Markov model search. Next, for each of the proteins we construct a similarity

matrix, which serves as the payoff table in a game theory minimax optimization

problem. We solve each of these optimization problems and use the solutions to

construct a graph adjacency matrix for the protein network. Each step in this process

is described in greater detail in the sections that follow.

6.2 Domain Architecture Identification

6.2.1 Domain Identification Using HMMER

As mentioned before, the network graph is constructed in a protein-by-protein ap-

proach. We begin by first determining the domain architecture for each protein. This

is done by using the hmmscan function of HMMER3 (version v3.1) [33] to search

against the Pfam protein families database (release 27.0) [103]. The HMMER search

was done using the following options:

hmmscan -o hmmer.out --acc --domtblout hmmer.tab Pfam-A.hmm RGS.fa

where “RGS.fa” is the file containing the proteins. The option “-o hmmer.out” speci-

fies the name of the standard HMMER output file, “–acc” specifies the use of domain

accessions rather than names in the output files, “–domtblout hmmer.out” specifies

the output of a tabular file where each line summarizes the output of one domain

hit on a query sequence, and “Pfam-A.hmm” is the Pfam database to be searched.

The HMMER E-value [32] is used to measure the statistical significance of the align-
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ments found in the pHMM search. The E-value is defined as the expected number of

sequences in the database to have a score at least as high as a particular alignment

score. In our analysis the results of the HMMER search are filtered to include only

those domains whose E-value lies below the threshold 1.0.

6.2.2 Overlapping and Non-Overlapping Domain

Predictions

It is possible to have domain regions identified by HMMER to be overlapped within a

protein sequence. To examine how allowing overlapping domains in a protein affects

the outcome of protein clustering, we examined three different overlap scenarios:

1. inclusion of all domains within the given E-value threshold, regardless of overlap;

2. inclusion of only those domains within the E-value threshold whose overlap is at

most 5% of the protein length (for example if the protein has length 100 amino

acids, then only those domains with overlap 5 amino acids or less are included.

Note: if the overlap of two domains is greater than 5%, the domain with the

lower E-value is kept); and

3. include only domains within the E-value threshold that are strictly non-overlapping

(if two domains are overlapped, the domain with the lower E-value is kept).

Figure 6.2 shows the construction of each of these predictions for a given protein

sequence.
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Figure 6.1: Workflow For Constructing A Protein Similarity Network From
A Set Of Protein Sequences. First the domain architecture of each protein in
the set is identified by a profile hidden Markov model search. Then for each of the
proteins a similarity matrix is constructed, using a log-transformed BLAST E-value
as the similarity score. This matrix serves as the payoff table in a game theory min-
imax optimization problem. Each of these optimization problems is solved, and the
solutions are used to construct a graph adjacency matrix for the protein network.
Block-diagonalizing the adjacency matrix gives the clusters in the network (each ir-
reducible block defines a cluster).
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Figure 6.2: Overlapping Domain Predictions. (A) For a protein (green bar)
several domains (red bars), with varying E-values (below some specified threshold)
were predicted by HMMER. Some regions on the protein are predicted to contain
more than one domain. The domains that share a region along the protein are called
overlapping domains. This figure shows the case when all domains regardless of
overlap are included in the prediction (included domains shown in red). (B) This
figure shows the prediction for the case when only those domains whose overlap is at
most 5% of the protein length are included (if two domains are overlapped by more
than 5% the domain with the lower E-value is included). We see that in this case one
of the domains (shown in gray) must be removed from the set of domains predicted
by HMMER. (C) This figure shows the prediction for the case when only completely
non-overlapping domains are to be included (if two domains overlapped the domain
with the lower E-value is included). We see that in this case two of the domains
(shown in gray) must be removed from the set of domains predicted by HMMER.

6.3 Similarity Matrix Construction

Once the domains have been identified, we begin the construction of the similarity

matrices. In these matrices, we compare the amino acid sequences of the domains to

the protein sequences using BLASTp. For a given reference protein, Pi, we extract

the exact amino acid sequence for the top hit of each domain on the protein (the same

domain could exist in multiple locations on the protein, but we use only the copy of

the domain with the smallest E-value, i.e. the top hit). Suppose there are a total

of m domains, d1, d2, ..., dm, found on the proteins in the protein space, V . Then, as
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exhibited in Fig. 4.3, the similarity matrix, Ai = ai(s, j), for Pi is an m× n matrix,

where ai(s, j) is the similarity score of domain s from protein Pi to protein Pj, and n

is the number of proteins in the protein space.

For each entry in the similarity matrix we used a log-transformed score of the

BLAST E-value [3], ai(s, j) = − log(αsj), where αsj is the E-value obtained for the

domain query ds against the subject protein Pj. The BLAST search was done using

the following options:

blastp -query domains.fa -db RGS.fa -outfmt 6 -searchsp 53000 -out

blastreport.tab

where “domains.fa” is the query file containing all of the domain sequences, “RGS.fa”

is the database file containing the protein sequences, and “blastreport.tab” is the

name of the output file. The option “-outfmt 6” specifies that the output file is in

tabular format and “-searchsp 53000” sets the size of the search space to be 53000

amino acids. Since the BLAST E-value is dependent on the size of the database

and query sequence, setting a constant search space allows the BLAST E-value to be

compared for data sets of different sizes.

The score used in our similarity matrix could be considered a proxy for the mutual

information between proteins Pi and Pj with respect to domain s in that the higher

the value the more similar the pair are in domain s. In fact, this log-transformed

score has the dimension of information. If the base 2 is used, the score’s dimension

is exactly bit. The choice of base is not important, and here we will use the bit unit

for the scores. The values in the reference column (the ith column) are not used in

calculation and are therefore marked as ‘-’ as shown in Fig. 4.3.
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6.4 Game-Theoretic Protein Similarity Network

Construction

We construct the protein similarity network and domain profiles for the proteins using

the game-theoretic algorithm described in Chapter 4. For each protein, Pi, in the

protein space, its similarity matrix serves as the input (payoff table), Ai = [ai(s, j)],

to the game theory optimization problem:

min
x

max
y

Ei =
∑
s∈Si

∑
j

ai(s, j)xsyj

subject to
∑
j

yj = 1, yj ≥ 0, j = 1, 2, ..., n, yi = 0

∑
s

xs = 1, xs ≥ 0, s ∈ Si.

(6.1)

Here Si denotes the set of domains present in the reference protein, Pi. As mentioned

earlier, the solution to this problem, the Nash equilibrium, always exists (see Section

2.1.1).

Once the game theory optimization problem (6.1) has been solved for each of the

proteins in the protein space, we use the solutions to construct the network graph.

The edge weight wij from node Pj to Pi is assigned to be yj from the solution to

minimax problem for node Pi. That is, the y solution, which obviously depends on i

but the dependence is suppressed for simplicity, for node Pi gives the ith row of the

network matrix W in Fig. 4.3. The x solution vector for each i is used to define

the domain profile for the protein Pi. These constructions are explained in detail in

Section 4.3.
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Distributions # Generations Domain M.R. (%) Linker M.R. (%)

Uniform 10 5,10,25,40 5,10,25,40

Uniform 15 5,10,25,40 5,10,25,40

Table 6.1: Simulation Parameters. Protein families were simulated using the vary-
ing combinations of model parameters, including the number of generations, domain
mutation rate (Domain M.R.), and linker mutation rate (Linker M.R.). For each pa-
rameter combination 25 data sets were generated. All distributions in the simulation
were taken to be uniform, and all simulations were generated from the same root
protein sequence and the same initial bank of thirty Pfam domain sequences.

6.5 Data Sets Used in the Study

Both simulated and real protein data sets were used in this study. Simulated pro-

tein families were generated using the simulation algorithm described in Chapter 5.

Simulations were performed using varying model parameters, and 25 simulated sets

of each type were generated. All of the simulated sets were generated from the same

root protein sequence and the same initial bank of thirty Pfam domain sequences

(Table A.1). The root sequence was produced as follows. First, a random amino acid

sequence of length 300 was generated and scanned using the sequence search tool on

the Pfam website (http://pfam.xfam.org/) to ensure that no Pfam domains can be

identified on the sequence. Next, three domain sequences from the domain bank, cho-

sen randomly, were inserted into the sequence at locations that were chosen randomly

such that the domains did not overlap. This resulted in the root protein sequence of

length 649 containing three domains. Table 6.1 shows the parameter combinations

used to generate the simulated data sets.

In addition to the simulated protein sets, two types of real protein data sets

were used in this study. The Regulator of G-Protein Signaling (RGS) data set was

comprised of 55 proteins from the mouse (Mus musculus) genome. RGS sequences

were found by performing a profile hidden Markov model search in HMMER [33] using

the Pfam [103] domains PF00615 (RGS) and PF09128 (RGS-like) as query sequences
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and with an E-value threshold of 1.0. This RGS family sequence set was subsequently

used to HMMER search against the Pfam database to find other domains present in

the sequences. This step identifies the other domains that coexist with the RGS and

RGS-like domains on the proteins.

Twenty six non-overlapping Pfam domains (including RGS and RGS-like) were

identified on the proteins. The non-overlapping domain architecture predictions for

each of the proteins is shown in Table A.10. Domain architecture predictions were

also generated allowing only 5% overlap (architecture predictions shown in Table

A.11) and unrestricted overlap (architecture prediction shown in Table A.12). When

restricting the allowed overlap to 5%, 29 Pfam domains were identified, while 41

domains were identified when no restriction was placed on the overlap percentage.

(See Section 6.2.2 for a description of the various overlap detection strategies).

The second real data set, a larger-scale set, consisted of 12,222 proteins from

the mouse (Mus musculus) genome downloaded from the Swiss-Prot section of the

UniProt Knowledgebase (UniProtKB) (www.uniprot.org). UniProtKB is a curated

database, a central access point for integrated protein information with cross-references

to multiple sources. The manually-curated Swiss-Prot sector of the database provides

records for non-redundant, manually annotated protein sequences. That is, it con-

tains only those sequences with information extracted from literature and curator-

evaluated computational analysis. The mouse proteome (proteome ID UP000000589)

was downloaded from the Swiss-Prot database (release 2014 08). This proteome con-

sisted of 16,677 proteins. Our mouse family data set consists of the 12,222 of these

proteins that had UniProt protein family annotation supplied. UniProt makes use of

Interpro [5] to assign protein family membership. Interpro uses predictive signatures

from various family and domain databases to assign proteins to families. For proteins

that do not have any of these predictive signatures, UniProt employs sequence sim-
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ilarity searches along with scientific literature to assign proteins to families. There

are 10,914 protein families represented in UniProtKB.

6.6 Evaluation of Protein Clustering

6.6.1 Phylogenetic Clustering

As mentioned earlier, the reconstruction of a phylogeny for multi-domain proteins

requires at least one domain sequence to be shared across all of the proteins. Therefore

phylogenetic clustering could only be applied to the RGS data set in this study. A

multiple alignment of the 55 RGS sequences was done using MAFFT (version v7.182

[65]). The MAFFT alignment was constructed using the L-INS-i algorithm with the

default parameters:

mafft -linsi rgs domains.fa > rgs msa

where “rgs domains.fa” is the FASTA file containing only the RGS domain for each

of the proteins and “rgs msa” is the output multiple sequence alignment.

The maximum likelihood phylogeny was reconstructed using PHYML (version

v3.1 [47]) using the following options:

phyml -i rgs msa -d aa -m LG -a e -b 1000

where “rgs msa” is the file containing the multiple sequence alignment of RGS pro-

teins. The option “-m LG” uses the LG amino acid substitution model [72], “-a

e” specifies the gamma distribution shape parameter with the maximum likelihood

estimate, and “-b 1000” specifies the bootstrap analysis with 1000 pseudoreplicates.

Bootstrap values of 70% were used to define the clusters of RGS sequences. That is,
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groups of sequences that have a bootstrap support of 70% or higher form a cluster,

while the rest form single protein clusters.

6.6.2 Markov Clustering

The Markov Clustering (MCL) algorithm was used to generate protein clusters to be

compared with the game-theoretic protein clusters. The MCL package (version v12-

068) was downloaded from www.micans.org/mcl. The details of the TRIBE-MCL

method were described in Section 3.2. The TRIBE-MCL process uses the following

steps: (a) for a given set of proteins, an all-vs.-all BLAST hit table is generated using

the blastp program, (b) the mcxdeblast application is used to parse the BLAST

table and generate an all-vs.-all similarity matrix using an E-value threshold of 1.0, (c)

the mcxassemble program creates a probability matrix from the similarity matrix, and

(d) the probability matrix is used as the input to the mcl program, which generates the

protein clusters. Clusters were obtained using varied values of the inflation parameter,

including the default I = 2.0 as well as I = 1.2, 3.0, 5.0).

6.6.3 Protein-Domain Biclustering

The protein-domain biclustering network approach was used to construct clusters of

proteins to be compared to the clusters arising from the application of our game

theory method. A detailed description of the biclustering method is provided in Sec-

tion 3.3. Using the principle of biclustering (co-clustering), proteins and domains

are simultaneously clustered, giving rise to biclusters which each contain a subset of

proteins and domains that form a complete bipartite graph. These protein-domain

biclusters (with redundant proteins removed) served as the clusters to which we com-

pared the results of our method. The biclustering pipeline from [111, 112] was used
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to generate the biclusters for each of the data sets.

6.7 Cluster Comparison Metric

The average maximum Jaccard index [101] was used to compare the sets of clusters

generated by two different methods. Given two sets of protein clusters, A and B,

the average maximum Jaccard index for A against the alternative set of clusters B is

given by:

J(A,B) =
1

|A|
∑
A1∈A

max
B1∈B

|A1

⋂
B1|

|A1

⋃
B1|
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Chapter 7

Results

This chapter describes: (a) the application of the game theory network approach

to simulated protein families and comparison of the resulting network clusters with

the clusters obtained by other methods including TRIBE-MCL and protein-domain

biclustering (Section 7.1), (b) the application of the game theory network approach

to RGS family proteins and comparison of the RGS network clusters with the clusters

obtained by other methods including TRIBE-MCL, protein-domain biclustering, and

phylogenetic clustering (Section 7.2), (c) application of the game theory network

approach to the Swiss-Prot mouse proteome and its evaluation (Section 7.3), and (d)

analysis of the effect of overlapping and non-overlapping domain predictions on the

game-theoretic clusters (Section 7.4).

7.1 Game-Theoretic Clustering of Simulated

Proteins

The game theory approach was used to cluster several different sets of simulated

proteins. As mentioned earlier, the simulated protein families were generated using
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Figure 7.1: Clustering Performance Among Game Theory, Biclustering, and
TRIBE-MCL methods (10 Generations of Simulated Proteins). For each
linker mutation rate (% shown in the title of the figure) and domain mutation rate
(% shown along the x-axis), 25 sets of proteins were simulated. Using these data sets,
clusters were obtained by game theory (GT), biclustering (BICL), and TRIBE-MCL
(MCL). Clustering accuracy was assessed using the average maximum Jaccard index.
Note that as described in Chapter 5, the domain mutation rate is the mutation rate
used in each individual domain mutation event. Tables A.2-A.9 show information on
the total domain sequence divergence for the simulated proteins.

the simulation algorithm described in Chapter 5. Simulations were performed using

varying model parameters, and 25 simulated sets of each type were generated. All of

the simulated sets were generated from the same root protein sequence and the same

initial bank of thirty domain sequences. The various parameter combinations used to

generate these data sets are shown in Table 6.1.

Using these data sets, clusters were obtained by the game theory (GT), biclus-
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Figure 7.2: Clustering Performance Among Game Theory, Biclustering, and
TRIBE-MCL methods (15 Generations of Simulated Proteins). For each
linker mutation rate (% shown in the title of the figure) and domain mutation rate
(% shown along the x-axis), 25 sets of proteins were simulated. Using these data sets,
clusters were obtained by game theory (GT), biclustering (BICL), and TRIBE-MCL
(MCL). Clustering accuracy was assessed using the average maximum Jaccard index.
Note that as described in Chapter 5, the domain mutation rate is the mutation rate
used in each individual domain mutation event. Tables A.2-A.9 show information on
the total domain sequence divergence for the simulated proteins.

tering (BICL), and TRIBE-MCL (MCL) methods (see Section 6.6) and compared

to the true clusters of protein families, obtained by the process described in Section

5.3. Figures A.1-A.4 show examples of the game theory and biclustering networks

for the simulated data sets. Clustering accuracy was assessed using the average max-

imum Jaccard index (see Section 6.7), a comparison metric whose values run from

0 to 1, with 0 indicating no proteins were clustered correctly and 1 indicating all
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proteins were clustered correctly. Figures 7.1 and 7.2 show boxplots of the clustering

accuracy results when 10 and 15 generations are simulated, respectively, using the

various combinations of linker and domain mutation rates, while Figures 7.3 and 7.4

summarize these results using cluster variance heat maps. These four plots show the

results when the default TRIBE-MCL inflation parameter, I = 2.0, is used. Figures

A.5-A.10 show the results for other values of the inflation parameter.

In all cases TRIBE-MCL is outperformed by both the game theory and protein-

domain biclustering methods. The TRIBE-MCL algorithm considers only the most

significant local region between two proteins when defining the pairwise similarity.

That is, the clustering of the proteins is based on only a limited amount of the

similarity information that is available. On the other hand, the game theory and

protein-domain biclustering approaches incorporate information from all domains on

all of the proteins in the data set and therefore tend to provide a clearer distinction

between protein families.

Figures 7.1-7.4 demonstrate that the results of the game theory method were

more favorable when simulations were done with a larger number of generations (10

generations vs. 15 generations). That is, when the data sets become more complex

(increased divergence in domain sequences, increased numbers of insertion/deletion

events, etc.) the game theory approach tends to outperform both TRIBE-MCL and

protein-domain biclustering with a lower variance. Figure 7.5 shows the complexity

of the data sets in terms of the average number of predicted non-overlapping domains

(predicted using HMMER). This supports the claim that the game theory clustering

algorithm is a useful tool for detecting protein families even when the sequences in

the data set contain a large number of domains and domain architectures.
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Figure 7.3: Cluster Variance Heat Maps (10 Generations of Simulated Pro-
teins). For each linker mutation rate (% shown along the y-axis) and domain mu-
tation rate (% shown along the x-axis), 25 sets of proteins were simulated. Using
these data sets, clusters were obtained by game theory (GT), biclustering (BICL),
and TRIBE-MCL (MCL). The default TRIBE-MCL inflation parameter, I = 2.0, was
used. Clustering accuracy was assessed using the average maximum Jaccard index.
The height of each bar gives the mean of the average maximum Jaccard indices for
the 25 simulations performed using the corresponding domain and linker mutation
rates. The face color of each bar shows the variance in average maximum Jaccard
index for the 25 data sets.
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Figure 7.4: Cluster Variance Heat Maps (15 Generations of Simulated Pro-
teins). For each linker mutation rate (% shown along the y-axis) and domain mu-
tation rate (% shown along the x-axis), 25 sets of proteins were simulated. Using
these data sets, clusters were obtained by game theory (GT), biclustering (BICL),
and TRIBE-MCL (MCL). The default TRIBE-MCL inflation parameter, I = 2.0, was
used. Clustering accuracy was assessed using the average maximum Jaccard index.
The height of each bar gives the mean of the average maximum Jaccard indices for
the 25 simulations performed using the corresponding domain and linker mutation
rates. The face color of each bar shows the variance in average maximum Jaccard
index for the 25 data sets.
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Figure 7.5: Average Total Number of Domains Predicted on Simulated Pro-
tein Sets Using HMMER. For each linker mutation rate (%, denoted LMR, shown
in legend), domain mutation rate (% shown along the x-axis), and number of gener-
ations (shown in legend), 25 sets of proteins were simulated. This figure shows the
average number of non-overlapping domains predicted by HMMER for the 25 data
sets with the given mutation parameter values.

7.2 Game-Theoretic Clustering of RGS Family

Proteins

The set of 55 Regulator of G-Protein Signaling (RGS) proteins from the mouse genome

was clustered using the game-theoretic method. Twenty six Pfam domains were iden-

tified by HMMER using the non-overlap domain detection strategy. These domain

composition predictions are shown in Table A.10. Nine clusters, shown in Fig. 7.6,

were found using the game theory method. The clusters are labeled according to their

average game values, in descending order. As mentioned before, the game values yield

important information about the inter-cluster similarities in network. For example,
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Cluster 2 and Cluster 5 each include three proteins (nodes) and are topologically

identical. However, their average game values are 146.7074 and 71.9517, respectively,

indicating that Cluster 2 is a tighter or more similar subnetwork than Cluster 5.

Even though all 55 proteins in this data set belong to the RGS family (they all

contain either the RGS or RGS-like domain), the proteins in each of the network clus-

ters differ from those in the other clusters with respect to their domain composition

and varying levels of similarity between their domain sequences. The domain profile

across the proteins in the RGS game-theoretic similarity network is exhibited in Fig.

7.7. The proteins are grouped according to the clusters in the network graph.

There are some clear profile pattern differences that exist between the clusters. For

many of the clusters, specifically Clusters 1, 2, 7, 8, and 9, the proteins all contain the

same domains, and the weights placed on these domains are the same. The profile also

highlights domains that are unique to specific clusters. For example, Pfam domain

PF00018.23 is hallmark to Cluster 8 because it is present in all members of Cluster 8

and not elsewhere.

As an initial validation of the network clusters, we provide the information for the

proteins within each cluster in Table A.13. Figure A.11 clearly shows that different

domain architectures are represented in different clusters. Sequence divergence within

the same domain type (e.g., RGS domain for RGS 17 vs. RGS 19/20 proteins) is

also recognized in separating Clusters 1 and 2. Furthermore we note that isoforms

(proteins coded in alternatively spliced transcripts derived from the same gene) of

the same gene fall into the same cluster even if some domains are missing in different

isoforms as shown in the beta-adrenergic receptor kinase 2 isoforms 1 and 2 in Cluster

4. Therefore, using our game-theoretic framework, we incorporated both sequence

diversity and domain information and produced a valid RGS protein network.
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Figure 7.6: RGS Family Game-Theoretic Protein Similarity Network (Non-
Overlapping Domains). From 55 mouse RGS family proteins, using the non-
overlapping domain detection strategy, 9 clusters were identified using the game the-
ory method. The nodes represent distinct proteins and the edges are directed so that
the incoming edge weights of each node sum to 1. The edge color (in varying shades of
blue) indicates the edge weight, with darker edges (black) indicating high weights and
lighter edges indicating low weights. The game value for each protein is represented
in the network by the length of its incoming edges, with longer edges corresponding
to small game values and longer edges indicating high game values. Clusters in the
network, represented by different node colors, are labeled in descending order accord-
ing to their average game value, i.e. Cluster 1 has the largest average game value.
See Fig. 7.7 for the domain profiles for the proteins.
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Figure 7.7: RGS Family Domain Profile (Non-Overlapping Domains). In
this diagram, each row represents one of the 55 RGS proteins, while each column
represents one of 26 Pfam domains (RGS and RGS-like domains are shown in red).
Each cell is color-coded based on the diversity weights x: black for xi = 1, cyan for
xi = 0 (but domain exists), and from dark to light orange for 1 > xi > 0. Blank cells
indicate domain absence. The clusters are separated by horizontal magenta lines.
Proteins in each cluster (identifers shown on the right) are arranged according to
their game value, with the largest appearing as the lowest row in the cluster. The
game values for each protein are shown on the left.
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7.2.1 Comparison of Game Theory Clustering To

TRIBE-MCL, Protein-Domain Biclustering, and

Phylogenetic Clustering

As mentioned before, for a regular phylogenetic analysis of multi-domain proteins,

usually only sequence information of domains shared across all member proteins can

be used. The maximum likelihood method (explained in Section 2.2.3) was used

to construct phylogenetic clusters for the RGS proteins. A multiple sequence align-

ment was constructed for the commonly shared domain across all proteins (i.e. RGS

or RGS-like domain). Bootstrap values of 70% were used to define the clusters of

RGS sequences (Fig. 7.8). As shown in Table 7.1, the game theory clusters were

largely consistent with the phylogenetic clusters, with J(GT, PHY ) = 0.7120. One

thing to note is that the average maximum Jaccard index of the game theory clus-

ters against the phylogenetic clusters is larger (J(GT, PHY ) = 0.7120) than that of

the phylogenetic clusters against the game theory clusters (J(PHY,GT ) = 0.4198).

We conjecture that the differences in the cluster sizes contribute to this difference

in average maximum Jaccard indices. Although the game theory clusters were quite

similar to the phylogenetic clusters, the phylogenetic analysis cannot represent infor-

mation from domains that are not shared across all proteins, and therefore misses

some relationships that our network approach reveals.

There are seven proteins in the protein space that contain the RGS-like domain

(PF09128.6). Proteins P2, P20, P35, P37, and P38 are grouped into the same cluster

by both the game theory and phylogenetic methods. For the other two proteins

containing the RGS-like domain, proteins P18 and P27, there is a discrepancy between

the two approaches. The phylogenetic method clusters P18 with the five proteins

containing RGS-like domain mentioned above (Cluster 22 in Fig. 7.8), while P27
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GT (9) BICL (17) MCL (10) PHY (24)

GT 1.0000 0.5245 0.4335 0.7120
BICL 0.3479 1.0000 0.3952 0.6133
MCL 0.4521 0.5662 1.0000 0.8342
PHY 0.4198 0.5346 0.5000 1.0000

Table 7.1: Comparison of RGS Game Theory (GT), Bicluster (BICL),
TRIBE-MCL (MCL) and Phylogeny (PHY) Clusters Based On The Av-
erage Maximum Jaccard Index. The average maximum Jaccard indices shown
in each column are computed using the method in the column header as the refer-
ence method. For example, the entries in the first column, from top to bottom, are
J(GT,GT ), J(BICL,GT ), J(MCL,GT ), and J(PHY,GT ). The number of clusters
produced by each method is shown in parenthesis.

exists as a single protein cluster (Cluster 15 in Fig. 7.8) located in a completely

different region of the tree than the other six proteins.

The game-theoretic approach places P18 and P27 in the same cluster (Cluster 6 in

Fig. 7.6). Moreover, the edge weights indicate that relative to the other proteins in the

RGS data set, P18 is P27’s closest neighbor and vice versa. This relationship, missed

by the phylogenetic method, is a direct result of the game theory method’s use of

information from all domains. P18 contains three domains, PF09128.6, PF00595.19,

and PF00621.15, which comprise three of P27’s four domains. In addition P27 has re-

lationships with both P50 and P12, as a result their sharing Pfam domain PF00595.19.

Moreover, Fig. 7.7 shows that PF00595.19 only exists in these four proteins (P12,

P18, P27, and P50). Thus, the game theory clusters for the RGS data set shed

light on evolutionary relationships that would otherwise be overlooked in a classic

phylogenetic analysis.

Clusters for the RGS sequences with non-overlapping domain predictions were also

constructed using TRIBE-MCL and protein-domain biclustering. The biclustering

approach identified 17 clusters (see Fig. 7.9 and Table A.14), while the TRIBE-MCL

method identified 10 clusters (see Table A.15). There are some noteworthy differences
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between the clusters that arise from protein-domain biclustering and TRIBE-MCL

when compared to the game theory clusters. TRIBE-MCL clusters all seven of the

proteins that contain the RGS-like domain (P2, P18, P20, P27, P35, P37, and P38)

into a single cluster (Cluster 3 in Table A.15). As mentioned before, the MCL method

clusters the sequences based on the single most significant region between them. The

proteins mentioned here were clustered together by MCL based on their RGS-like

domain, which is unique to these proteins relative to the others in the protein space.

Our game theory approach clusters these proteins into two clusters. The first,

Cluster 3 in Fig. 7.6, contains proteins P2, P20, P35, P37, and P38. As mentioned

before, the other proteins containing the RGS-like domain, P18 and P27, each contain

the Pfam domain PF00595.19, which leads to them belonging to Cluster 6. Hence by

incorporating information from all of the domain regions on the proteins, the game

theory method is able to cluster proteins on a finer scale, in terms of domain content,

than the TRIBE-MCL method.

There were also key differences between the game theory clusters and the protein-

domain biclusters. For example, in the bicluster network, all of the proteins that

contain only the RGS domain (PF00615.14) appear in a single cluster (B1 in Fig.

7.9). The protein-domain biclustering approach binarizes the domain composition

information prior to clustering, while the game theory method makes use of quantita-

tive similarity information among domains on the proteins. So in the game-theoretic

network we see that the proteins containing only the RGS domain are further sep-

arated due to the varying levels of similarities in their RGS domains. For instance,

Cluster 1 in Fig. 7.6 consists of P44 (RGS 17 isoform 1) and P53 (RGS 17 isoform

2). These two proteins are isoforms and have only the RGS domain. Since these two

sequences are almost identical, relative to the other proteins in the protein space,

that they appear in their own distinct cluster.
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Another interesting difference between the biclustering and game theory methods

is the placement of P47 in the network. During the HMMER domain search, only

the RGS domain is identified on this protein. So in the biclustering network, P47

is located in Bicluster 1, with the other proteins that have only the RGS domain.

However, in the game theory network P47 is located in Cluster 3 with proteins P3

and P40. Table A.14 shows that P3, P40, and P47 are all Beta-Adrenergic Receptor

Kinase proteins. In fact, in this data set these are the only Beta-Adrenergic Receptor

Kinase proteins. The game theory method was able to pick out the relationship

between these proteins because they were highly similar in their shared RGS domain

sequence, and their “version” of the RGS domain was unique, relative to the other

proteins. This example highlights that the game theory method’s use of quantitative

similarity information can lead to a better clustering of protein families.

7.2.2 GO Analysis of RGS Game Theory Clusters

As shown in Fig. 7.7, clusters in the RGS game-theoretic protein similarity network

share relatively large number of domains. We suspect that the proteins in these clus-

ters may also perform similar or related functions and hence belong to similar protein

subfamilies. Gene Ontology (GO) [121] is widely accepted as the standard vocabu-

lary for describing the biological process, molecular function, and cellular component

of genes (see Section 2.2.4). GO annotation of these proteins was generated using

BLAST2GO [25], and the molecular function annotations were analyzed to support

our hypothesis.

Table 7.2 shows the molecular function GO terms associated to proteins in each

of the game-theoretic clusters. Following each of the GO terms is a list of proteins in

the cluster that were annotated with the GO term. GO terms that were assigned to
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every protein in the cluster are shown in red. Figure 7.10 shows a subgraph of the

Gene Ontology containing the GO terms found in Table 7.2. This graph, generated

using QuickGO [13], shows the hierarchical relationships between the GO terms.

Most of the GO terms are shared between clusters due to the fact that all of

the proteins in the data set belong to the Regulator of G-Protein Signaling family,

i.e. these proteins should all have somewhat similar functions. With the exception of

Cluster 6 each cluster in the game theory network has a GO term shared by all proteins

in the cluster. The combination of the annotation information in Table A.13 and the

shared GO terms in each cluster suggests that in addition to generating clusters that

are consistent with other clustering algorithms, the game-theoretic approach is able

to assign proteins to functionally meaningful clusters and effectively identify multi-

domain protein families in a given data set.



99

Figure 7.9: RGS Family Bicluster Network. The protein-domain biclustering
method was used to generate a network of biclusters. The 55 RGS proteins (red
nodes) were biclustered with their respective domains (green nodes), resulting in
17 biclusters (labeled B1-B17). Either the RGS (PF00615) or RGS-like (PF09128)
domain exists in every protein, and the nodes corresponding to these domains are
shown in blue.
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Cluster GO Term (Protein)

1 GO:0030234 (P44, P53)
2 GO:0030234 (P33,P19,P6), GO:003674 (P33,P19,P6)
3 GO:0030234 (P2,P20,P35,P37,P38), GO:0003674 (P2,P20,P35,P37,P38),

GO:0003723 (P2,P20,P35,P37,P38)
4 GO:0043167 (P3,P40,P47), GO:003674 (P3,P40,P47),

GO:0016301 (P3,P40,P47)
5 GO:0030234 (P4,P26,P54), GO:0003674 (P4,P26,P54),

GO:0004871 (P4,P26,P54)
6 GO:0043167 (P10,P16,P17,P22,P24,P31,P42,P49,P52,P55),

GO:0016301 (P10,P17,P22,P24,P31,P52,P55), GO:0019899 (P1,P52),
GO:0003674 (P1,P7,P8,P12,P18,P21,P22,P27,P28,P29,P31,P39,P42,
P46, P55),
GO:0030234 (P1,P5,P7,P8,P9,P12,P14,P21,P18,P27,P28,P29,P32,P36,
P41,P46,P50,P51),
GO:0008289 (P16,P42,P49,P52), GO:0005198 (P1), GO:0008092 (P1,P46),
GO:0004871 (P1,P12,P29)

7 GO:0004871 (P15,P34,P48), GO:0003674 (P15,P34,P48),
GO:0030234 (P15,P34,P48)

8 GO:0043167 (P11,P25,P43), GO:0008289 (P11,P25,P43),
GO:0003674 (P11,P25,P43)

9 GO:0005198 (P23,P45),GO:0030234 (P13,P23,P45),
GO:0003674 (P13,P23,P45), GO:0004871 (P13,P23,P45),
GO:0019899 (P13,P23,P45)

Table 7.2: GO Terms for RGS Game-Theoretic Clusters. Gene Ontology
(GO) molecular function annotations for the 55 RGS proteins were generated using
BLAST2GO. GO terms associated to proteins in each of the game theory clusters are
shown, followed by the list of proteins in the cluster annotated by the particular GO
term. The GO terms shown in red were associated to every protein in the cluster.
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7.3 Game-Theoretic Clustering for Swiss-Prot

Mouse Proteome

For a large-scale real data, we used the set of all proteins in the Swiss-Prot mouse

genome that had UniProt protein family annotations, which included 12,222 proteins.

The game theory and biclustering methods are unable to be used for proteins that

do not contain a Pfam domain. Therefore 302 proteins had to be removed from the

analysis. For this data set, which consisted of 11,920 proteins, UniProt assigned 3,703

protein families. We used this UniProt family assignment as the reference clusters and

tested the performance of our game-theoretic method compared to protein-domain

biclustering and TRIBE-MCL. Note that phylogenetic clustering is not possible for

this data set since no domain is shared amongst all of the proteins.

7.3.1 Comparison of Game Theory Clusters To

TRIBE-MCL and Protein-Domain Biclustering

The HMMER search identified 5,381 non-overlapping Pfam domains from these pro-

teins. By applying the game theory clustering approach 1,207 clusters were identi-

fied as shown in Fig. 7.11. In comparison, biclustering and TRIBE-MCL identified

3,033 and 1,217 clusters, respectively. We compared the results of these clustering

techniques to the UniProt reference protein families. Table 7.3 shows the clustering

accuracy for each of the methods, which was assessed using the average maximum

Jaccard index.

In the case of the non-overlapping domain detection strategy (as well as the other

strategies), the number of clusters identified from biclustering was exceedingly higher

than that of game theory and TRIBE-MCL. This comes from the fact that the bi-
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Method Domain Type # Clusters Avg. Max. Jaccard Index

Game Theory Non-Overlap 1,207 0.5110
5% Overlap 1,201 0.5108
Unrestricted Overlap 909 0.5098

Biclustering Non-Overlap 3,033 0.5112
5% Overlap 3,596 0.4574
Unrestricted Overlap 5,692 0.3872

TRIBE-MCL NA 1,217 0.1975

Table 7.3: Comparison of Clusters For Swiss-Prot Mouse Proteome. The
results of the game theory, biclustering, and TRIBE-MCL clustering were compared
to the 3,703 UniProt reference protein families, i.e. the clusters of proteins that have
the same UniProt family annotation.

clustering approach is based on binarized inclusion of domains, which means that the

number of clusters is directly proportional to the number of distinct domain com-

positions present in the data [111]. So unlike biclustering, which cannot separate

proteins that share domains even if some domains are shared with very weak sim-

ilarity, game theory and TRIBE-MCL are able to cluster proteins based on highly

conserved domains since these methods use quantitative similarity information.

The TRIBE-MCL method had the lowest clustering performance of the three

methods. As mentioned before, this is because TRIBE-MCL uses information from

only one region of local similarity, i.e. it does not use information from all conserved

domains on the proteins. Both game theory and biclustering use information from all

domains, and their clusters are more consistent with the UniProt family assignments.

Interestingly, the performance of the game theory method, assessed by the average

maximum Jaccard index, was roughly the same as that of biclustering, even though

the biclustering method identified many more clusters.

Twenty one of the 66 proteins in the RGS data set, discussed in Section 7.2, were

present in our Swiss-Prot mouse data set (see Table A.16). The remainder of the

RGS family proteins were not part of the Swiss-Prot database, as they had either not
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Figure 7.11: Game-Theoretic Protein Similarity Network (Non-Overlapping
Domains) For the Swiss-Prot Mouse Proteome. A total of 1,207 clusters were
identified for the 11,920 proteins (orange nodes). The edge color (in varying shades of
blue) indicates the edge weight, with darker edges (black) indicating high weights and
lighter edges indicating low weights. The game value for each protein is represented
in the network by the length of its incoming edges, with longer edges corresponding
to small game values and longer edges indicating high game values.

been manually annotated and reviewed or were an isoform of another RGS protein

family (Swiss-Prot merges these isoforms into a single entry). Three of the 21 RGS

proteins, P8453, P8454, and P8456 (in the RGS network P4, P26, P48), were clustered

along with one other protein in a small cluster. This cluster is shown in Fig. A.16.

In the RGS network (Fig. 7.6) these proteins existed in Cluster 5 and Cluster 9.

The other protein that was clustered with these three RGS proteins in Fig. 7.11 is

P3752, Guanidinoacetate N-methyltransferase protein. This protein contained only

one domain, PF00278.17, and it showed highest similarity to P8454. However, the

similarity was quite weak, as the game value for P3752 was small, only 11.5.

The other RGS proteins in Table A.16 belonged to the largest network cluster,

which consisted of 8,290 proteins. Within the large cluster, 10 of the RGS proteins
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exist in one small neighborhood, while 3 others exist is another neighborhood. These

neighborhood (subgraphs of the large cluster) are shown in Fig. A.17 and A.18,

respectively.

7.4 Effect of Overlapping and Non-overlapping

Domain Identification

To analyze the impact of overlapping and non-overlapping domains on the network

clusters, clustering was done using the non-overlap, 5% overlap, and unrestricted

overlap domain identification strategies (described in Section 6.2.2). Figures 7.12(A)

and 7.12(B) show the number of proteins that have a given number of domains using

each of the domain identification strategies for the RGS and Swiss-Prot mouse data

sets, respectively. The number of proteins identified to contain a single domain is

much larger when using the non-overlap strategy. For example, as shown in Fig.

7.12(B) the number of single domain proteins in the Swiss-Prot mouse proteome is

6,484 when using the non-overlap strategy and 2,969 when using the unrestricted

overlap strategy. On the other hand, as the percentage of allowed overlap increases

there is an increase in the number of domains identified in a single protein.

7.4.1 Effect of Domain Identification Strategy For RGS

Family

As mentioned before, for the RGS family protein set there was a total of 26 non-

overlapping domains (see Table A.10), 29 domains when 5% overlap was allowed (see

Table A.11), and 41 domains when no restriction was placed on the overlap percentage

(see Table A.12). For the non-overlapping case (described in detail in Section 7.2)
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Figure 7.12: Domain Identification From the RGS Family (A) and Swiss-
Prot Mouse Proteome (B). The number of identified domains vs. the number of
proteins containing the given number of domains.

9 clusters were identified by the game theory method (Fig. 7.6). Figures A.12 and

A.13 show the game theoretic similarity networks for the 5% overlap and unrestricted

domain identification, respectively.

Although allowing a 5% overlap instead increases the total number of identified

domains from 26 to 29, the network structure is identical to that of the non-overlapped

domain case. The three additional domains, PF13180.1, PF14604.1, and PF13476.1,
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Non-Overlap 5% Overlap Unrestricted Overlap
Cluster

1 159.0567 (2) 159.0567 (2) 146.7074 (3)
2 146.7074 (3) 146.7074 (3) 134.7646 (5)
3 134.7646 (5) 134.7646 (5) 109.9268 (3)
4 119.9047 (3) 119.9047 (3) 106.6325 (2)
5 71.9517 (3) 71.9517 (3) 71.9517 (3)
6 71.1609 (30) 71.1609 (30) 68.8465 (3)
7 68.8465 (3) 68.8465 (3) 68.1064 (30)
8 55.5742 (3) 55.5742 (3) 55.5742 (3)
9 36.2278 (3) 36.2278 (3) 36.2278 (3)

Table 7.4: Average Game Values for Game Theory Clusters. The game theory
method was used to build networks for the 55 RGS proteins using the non-overlapping
(Fig. 7.6), 5% overlap (Fig. A.12), and unrestricted (Fig. A.13) domain detection
strategies. This figure shows the average game value and the number of proteins (the
number in parentheses) for each of the clusters in each of the three networks.

are each identified on only one of the 55 RGS proteins. Domain PF13180.1 is identified

on P27 in Cluster 6. However, the domain profile for this protein (Fig. A.13) shows

that even though PF13180.1 is hallmark to this protein, the domain receiving the

highest weight (in fact, a weight of 1) is PF03938.9, another domain which exists

only in P27. The same phenomena is seen for domains PF14604.1 and PF13476.1.

So since our game theory method consists of finding minimally shared regions of

maximal similarity, we can conclude that these domain sequences were not unique

enough (with respect to the other proteins in the data set) to change the network

edge structure.

Removing all restrictions on domain overlap gives rise to a different network struc-

ture (Fig. A.12). The proteins in each cluster remain the same, but there are differ-

ences in edge weights and game values. Table 7.4 shows the average game values and

number of proteins in each cluster for all three networks. The average game values

for many of the clusters decrease when the unrestricted domain detection strategy is

used, and the ordering of the clusters changes (e.g. Cluster 2 in Fig. 7.6 becomes
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Cluster 1 in Fig. A.12). Hence the domain identifications have a direct effect on the

‘tightness’ of the clusters.

In addition to the changes in the average game values for the clusters, there is a

difference in the edge structure in the network. In particular, the incoming edges for

proteins P1, P10, P11, P25, and P43 have different edge weights. This is because the

additional domains identified on the proteins affect the overall similarity of the protein

to each of its neighbors in the network. For example, in the non-overlap network P1

has incoming edges from P12 (edge weight 0.5027) and P29 (edge weight 0.4973). In

the unrestricted network, these edge weights change to 0.0493 and 0.9506, respectively.

Domain PF07631.6 is added to the domain content of P1 in the unrestricted network,

and hence it is the similarities of P12 and P29 to P1 with respect to this domain that

govern the change in edge weight.

7.4.2 Effect of Domain Identification Strategy For

Swiss-Prot Mouse Proteome

As described earlier, for the 11,920 proteins in the Swiss-Prot mouse data set clusters

were generated using the game theory, biclustering, and TRIBE-MCL methods and

compared to the UniProt reference protein families For this data set, Pfam domains

were identified using the non-overlap (5,381 Pfam domains identified), 5% overlap

(5,444 Pfam domains identified), and unrestricted overlap (7,512 Pfam domains iden-

tified) detection strategies. The results for the various domain detection strategies

are summarized in Table 7.3.

As mentioned earlier, increasing the allowed percentage of overlap in domain iden-

tification results in larger domain sets. In the Swiss-Prot mouse data set, the increase

in domain overlap percentage led to a decrease in the number of clusters in the game-
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theoretic network. In contrast, the number of biclusters increased as the allowed over-

lap increased. Although the number of biclusters was much larger than the number

of game theory clusters in all cases, the game theory method outperformed biclus-

tering in both the 5% and unrestricted overlap scenarios and was quite comparable

to biclustering in the non-overlap case. In addition, for the game theory method

the average maximum Jaccard index remained nearly constant as the domain overlap

percentage increased, while for biclustering a decrease in Jaccard index was observed

as the overlap percentage increased. This suggests that the game theory clustering is

more robust with respect to domain identification strategies.
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Chapter 8

Discussion

Using game theory to study biological problems was first introduced by John Maynard

Smith [82, 83]. The formulation of evolution as a game derived in this dissertation

is much different from Smith’s evolutionarily stable strategy (ESS) theory for animal

behavior and conflict. In ESS, there are literal players, i.e. individual animals, as well

as literal strategies that the players use in competition for reproduction and ecological

resources.

In contrast, in our formulation evolution as a process is modeled as a game in

which the players are the selective forces which operate everywhere, all of the time,

in every biological process. Whenever genetic variation exists, evolution operates, in

a simplistic model, in two modes: conservation and diversification. While conserva-

tion is to decrease the deleterious effect of mutational changes, diversification is to

increase functional innovation, e.g. by acquiring advantageous mutations, new genes,

or new domains. At the genome level, any enhancement of similarity between two

genomes is the play of conservation whereas any widening of difference in a gene or

gene composition between the genomes is the play of diversification. At the protein

level, the sequence similarity in domains between two proteins is a play of conserva-



111

tion, while any diverging difference in domains, sequence or composition, is a play of

diversity. In each level, the payoff of the game or process is not literal. It is their

evolutionary similarity or dissimilarity broadly construed, which can be measured in

terms of various informational distances.

Our bioinformatic game theory gives a plausible mechanistic explanation as to

why and how evolution should sit at an informational Nash equilibrium. In fact,

our derivation of the Nash map gives the same explanation to all games, including

the games of ESS theory. The evolutionary selection force is local in time, space,

and genetic sequences — meaning organisms or biological processes only need to seek

out excess similarity for conservation and excess dissimilarity for diversity one step

and one nucleotide at a time before eventually an informational Nash equilibrium

is reached for the competing objectives. This evolutionary scenario is based on the

dissipative dynamics of our localized Nash map or the Brown-von-Neumann-Nash

equations. In searching for greater information for both conservation and diversity,

the total excess information potential cannot increase but eventually converge to a

state from which any deviation will not enhance the information for one of the two

purposes. Since Nash equilibria are usually saddle points of the expected payoff

functions, in this sense we can say that evolution should sit at a saddle point forged

by the opposite pulls of the conservation and diversity strategies that evolution plays.

The problem of classifying biological sequences into similar families has been stud-

ied intensively in bioinformatics research. In this work we addressed the multi-domain

protein clustering problem. Identifying or clustering large scale protein sequences

into similar families based on their domain composition is a challenging problem. It

is known that proteins sharing a single domain do not always perform the same or

even related functions [52]. Traditional approaches to the protein clustering problem,

including TRIBE-MCL and phylogenetic clustering, use information from only one
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local region of similarity between proteins, i.e. information from only one shared

domain. To get an accurate classification of protein families one needs to incorporate

information from the entire domain composition. The protein-domain biclustering

method takes this information into account, but in a limited binarized form.

In this work, the protein classification problem was addressed using our game-

theoretic approach to building biological similarity networks. This method is able to

utilize quantitative sequence similarity information from all domains on the proteins,

to build a network which house clusters of similar protein sequences. The game

theory method is completely scalable to the size of the data set. It has been used to

classify proteins within a single protein family (the RGS protein data set), as well as

proteins at the complete proteome level (the Swiss-Prot mouse data set). Comparison

and evaluation of the game theory protein clusters with clusters from the TRIBE-

MCL and biclustering methods showed higher average maximum Jaccard index scores

both at a single protein family and a complete proteome level (using both real and

simulated protein data).

Our novel clustering method hinges on the well-known theory of two-player zero-

sum games. The algorithm allows efficient and rapid clustering of protein sequences,

given a set of similarity matrices built from the results of another method, such

as BLAST. The actual implementation of our method uses linear programming, a

widely available, computational tool. The game-theoretic similarity network is built

on a protein-by-protein basis, where each game theory minimax problem is solved

independently of the others. This allows us to further speed up the algorithm by

solving the game theory minimax problems in parallel.

One caveat of our game theory approach is that the network structures and the

domain profiles depend critically on the similarity matrices that serve as the input

to the game theory model. Therefore in future work we must examine different
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scoring schemes for their robustness and sensitivity. Some possible scoring schemes

include: the mutual information of pairwise sequences, the informational distance

between sequences [75], and E-values based on profile HMMs instead of BLASTP.

We could also look at composition-based similarity scores (e.g., frequencies of amino

acid, k-mers, or reduced alphabets based on amino acid properties). It would be most

interesting to introduce context to our similarity scores, including but not limited to

context in terms of the combination, the size, and the order of domains.

The game-theoretic approach gives rise to clustered networks on minimally shared

regions of maximal similarity. We can extend the method to obtain secondary clusters

from within a primary network cluster. This is done by removing the domain having

the largest domain weight for each reference protein and then finding the solution

to the new corresponding linear programming problem. This secondary clustering

structure will capture the next minimally shared region of maximal similarity for the

proteins inside the primary cluster. This zoom-in procedure can continue to reveal

the tertiary, the quaternary similarity relationship of the proteins, and so on, down

to the ‘root’ at which the similarity is the maximum (having the maximal network

game value). Unlike other methods, there are no arbitrary thresholds used to define

clustering structure in the initial game theory network. However, since the solution

vectors in the game theory minimax problem are real numbers rather than binary

integers, we could judiciously set thresholds to prune the networks for finer clustering

as an alternative to the zoom-in procedure described here.
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Supplementary Materials

A.1 Figures



115

P64

P38

P36

P65
P32

P40

P67

P63

P25

P26

P2

P35

P66

P52

P44

P27

P31

P39

P37

P33

P28

P43

P42

P47 P30

P34

P76 P22
P4 P90

P46 P83P23
P17

P16

P59

P92

P29
P89

P55

P45

P60

P20

P24

P91
P56

P51P19

P95

P14

P68

P21

P15

P50

P107
P57

P101
P49

P53P69

P1

P13

P93

P7

P5

P11

P6

P10

P104

P3

P62

P9

P78P72

P41

P71

P85 P18
P102

P106

P100

P98

P88

P79

P99

P87

P77

P70
P74

P73

P75

P48

P84

P12

P8

P97
P105

P96
P54

P58

P86

P108P103

P94

P61

P82P80

P81

P23

P34

P38

P37

P40
P52

P39 P14
P57

P50

P54
P17

P49

P60

P45 PF04324

P2

P108

PF00528

P93

PF00512
P101

P63
P64

P103

PF11744

P97

P18

P105

PF09769

P102

P98

P95

P107

P106

PF13465

P59

PF00439

P61

P16

P46

PF09806

P36

P33

P35

P96

PF00418 P90

P89

P58
P55

P94

PF00076

P66

PF01609

P69P47

PF00534

PF00072

P91

PF13193

P88

PF01827

P22

PF12701 PF00291

PF02880

P48

P44P86

P67

PF02770 P51
P28

P20

PF14259

P62

P56 P32

P87

P31

P24

P42

P4

P21

P43 P29
P25

P92 P30
P27

PF08872

P81
P82

PF01427

PF12728

P76
P79

P80

PF00023

P70

P26

P83

P8

P53

P1

P5 PF10633

P13

PF00516

P6

P11

P7

PF00113

P71

P77

P12

P99

P41

P85

P84

P72

P78

P10

PF12796 P74

P75

P73

P9

P15

P3

P68
PF00486

P100 P104

P65

P19

(A)

(B)

Figure A.1: Sample Simulation Game Theory and Biclustering Network.
(A) The game theory network for a 10 generation simulated protein set consisting of
108 proteins. The edge color (in varying shades of blue) indicates the edge weight,
with darker edges (black) indicating high weights and lighter edges indicating low
weights. (B) The biclustering network for the same simulated set. The red nodes are
proteins, while the green nodes are domains. In this simulation the linker mutation
rate was 5% while the domain mutation rate was 10%.
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Figure A.2: Sample Simulation Game Theory and Biclustering Network.
(A) The game theory network for a 15 generation simulated protein set consisting of
117 proteins. The edge color (in varying shades of blue) indicates the edge weight,
with darker edges (black) indicating high weights and lighter edges indicating low
weights. (B) The biclustering network for the same simulated set. The red nodes are
proteins, while the green nodes are domains. In this simulation the linker mutation
rate was 5% while the domain mutation rate was 10%.
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Figure A.3: Sample Simulation Game Theory and Biclustering Network.
(A) The game theory network for a 10 generation simulated protein set consisting
of 98 proteins. The edge color (in varying shades of blue) indicates the edge weight,
with darker edges (black) indicating high weights and lighter edges indicating low
weights. (B) The biclustering network for the same simulated set. The red nodes are
proteins, while the green nodes are domains. In this simulation the linker mutation
rate was 25% while the domain mutation rate was 5%.
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Figure A.4: Sample Simulation Game Theory and Biclustering Network.
(A) The game theory network for a 15 generation simulated protein set consisting of
210 proteins. The edge color (in varying shades of blue) indicates the edge weight,
with darker edges (black) indicating high weights and lighter edges indicating low
weights. (B) The biclustering network for the same simulated set. The red nodes are
proteins, while the green nodes are domains. In this simulation the linker mutation
rate was 25% while the domain mutation rate was 5%.
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Figure A.5: Cluster Variance Heat Maps (10 Generations of Simulated Pro-
teins). For each linker mutation rate (% shown along the y-axis) and domain mu-
tation rate (% shown along the x-axis), 25 sets of proteins were simulated. Using
these data sets, clusters were obtained by game theory (GT), biclustering (BICL),
and TRIBE-MCL (MCL). The inflation parameter used in TRIBE-MCL was I = 1.2.
Clustering accuracy was assessed using the average maximum Jaccard index. The
height of each bar gives the mean of the average maximum Jaccard indices for the
25 simulations performed using the corresponding domain and linker mutation rates.
The face color of each bar shows the variance in average maximum Jaccard index for
the 25 data sets.
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Figure A.6: Cluster Variance Heat Maps (15 Generations of Simulated Pro-
teins). For each linker mutation rate (% shown along the y-axis) and domain mu-
tation rate (% shown along the x-axis), 25 sets of proteins were simulated. Using
these data sets, clusters were obtained by game theory (GT), biclustering (BICL),
and TRIBE-MCL (MCL). The inflation parameter used in TRIBE-MCL was I = 1.2.
Clustering accuracy was assessed using the average maximum Jaccard index. The
height of each bar gives the mean of the average maximum Jaccard indices for the
25 simulations performed using the corresponding domain and linker mutation rates.
The face color of each bar shows the variance in average maximum Jaccard index for
the 25 data sets.



121

Figure A.7: Cluster Variance Heat Maps (10 Generations of Simulated Pro-
teins). For each linker mutation rate (% shown along the y-axis) and domain mu-
tation rate (% shown along the x-axis), 25 sets of proteins were simulated. Using
these data sets, clusters were obtained by game theory (GT), biclustering (BICL),
and TRIBE-MCL (MCL). The inflation parameter used in TRIBE-MCL was I = 3.0.
Clustering accuracy was assessed using the average maximum Jaccard index. The
height of each bar gives the mean of the average maximum Jaccard indices for the
25 simulations performed using the corresponding domain and linker mutation rates.
The face color of each bar shows the variance in average maximum Jaccard index for
the 25 data sets.
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Figure A.8: Cluster Variance Heat Maps (15 Generations of Simulated Pro-
teins). For each linker mutation rate (% shown along the y-axis) and domain mu-
tation rate (% shown along the x-axis), 25 sets of proteins were simulated. Using
these data sets, clusters were obtained by game theory (GT), biclustering (BICL),
and TRIBE-MCL (MCL). The inflation parameter used in TRIBE-MCL was I = 3.0.
Clustering accuracy was assessed using the average maximum Jaccard index. The
height of each bar gives the mean of the average maximum Jaccard indices for the
25 simulations performed using the corresponding domain and linker mutation rates.
The face color of each bar shows the variance in average maximum Jaccard index for
the 25 data sets.
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Figure A.9: Cluster Variance Heat Maps (10 Generations of Simulated Pro-
teins). For each linker mutation rate (% shown along the y-axis) and domain mu-
tation rate (% shown along the x-axis), 25 sets of proteins were simulated. Using
these data sets, clusters were obtained by game theory (GT), biclustering (BICL),
and TRIBE-MCL (MCL). The inflation parameter used in TRIBE-MCL was I = 5.0.
Clustering accuracy was assessed using the average maximum Jaccard index. The
height of each bar gives the mean of the average maximum Jaccard indices for the
25 simulations performed using the corresponding domain and linker mutation rates.
The face color of each bar shows the variance in average maximum Jaccard index for
the 25 data sets.
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Figure A.10: Cluster Variance Heat Maps (15 Generations of Simulated
Proteins). For each linker mutation rate (% shown along the y-axis) and domain
mutation rate (% shown along the x-axis), 25 sets of proteins were simulated. Using
these data sets, clusters were obtained by game theory (GT), biclustering (BICL),
and TRIBE-MCL (MCL). The inflation parameter used in TRIBE-MCL was I = 5.0.
Clustering accuracy was assessed using the average maximum Jaccard index. The
height of each bar gives the mean of the average maximum Jaccard indices for the
25 simulations performed using the corresponding domain and linker mutation rates.
The face color of each bar shows the variance in average maximum Jaccard index for
the 25 data sets.
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Figure A.11: RGS Family Domain Architectures (Non-Overlapping Do-
mains). The non-overlapping domain architectures for the RGS family proteins iden-
tified by HMMER. The image for each protein was generated using the domain graphic
generator on the Pfam website (http://pfam.xfam.org/generate graphic).
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Figure A.12: RGS Family Game-Theoretic Protein Similarity Network (5%
Overlap Domains). From 55 mouse RGS family proteins, using the 5% overlap
domain detection strategy, 9 clusters were identified using the game theory method.
The nodes represent distinct proteins and the edges are directed so that the incoming
edge weights of each node sum to 1. The edge color (in varying shades of blue)
indicates the edge weight, with darker edges (black) indicating high weights and
lighter edges indicating low weights. The game value for each protein is represented
in the network by the length of its incoming edges, with longer edges corresponding
to small game values and longer edges indicating high game values. Clusters in
the network, represented by different node colors, are labeled in descending order
according to their average game value, i.e. Cluster 1 has the largest average game
value. See Fig. A.14 for the domain profiles for the proteins.
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Figure A.13: RGS Family Game-Theoretic Protein Similarity Network (Un-
restricted Overlap Domains). From 55 mouse RGS family proteins, using the un-
restricted overlap domain detection strategy, 9 clusters were identified using the game
theory method. The nodes represent distinct proteins and the edges are directed so
that the incoming edge weights of each node sum to 1. The edge color (in varying
shades of blue) indicates the edge weight, with darker edges (black) indicating high
weights and lighter edges indicating low weights. The game value for each protein
is represented in the network by the length of its incoming edges, with longer edges
corresponding to small game values and longer edges indicating high game values.
Clusters in the network, represented by different node colors, are labeled in descend-
ing order according to their average game value, i.e. Cluster 1 has the largest average
game value. See Fig. A.15 for the domain profiles for the proteins.
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Figure A.14: RGS Family Domain Profile (5% Overlap Domains). In this
diagram, each row represents one of the 55 RGS proteins, while each column represents
one of 29 Pfam domains (RGS and RGS-like domains are shown in red). Each cell is
color-coded based on the diversity weights x: black for xi = 1, cyan for xi = 0 (but
domain exists), and from dark to light orange for 1 > xi > 0. Blank cells indicate
domain absence. The clusters are separated by horizontal magenta lines. Proteins
in each cluster (identifers shown on the right) are arranged according to their game
value, with the largest appearing as the lowest row in the cluster. The game values
for each protein are shown on the left.
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Figure A.15: RGS Family Domain Profile (Unrestricted Overlap Domains).
In this diagram, each row represents one of the 55 RGS proteins, while each column
represents one of 41 Pfam domains. Each cell is color-coded based on the diversity
weights x: black for xi = 1, cyan for xi = 0 (but domain exists), and from dark to
light orange for 1 > xi > 0. Blank cells indicate domain absence. The clusters are
separated by horizontal magenta lines. Proteins in each cluster (identifers shown on
the right) are arranged according to their game value, with the largest appearing as
the lowest row in the cluster. The game values for each protein are shown on the left.
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Figure A.16: RGS Proteins In Swiss-Prot Mouse Proteome. Twenty one of
the 66 RGS proteins discussed in Section 7.2 were also found in the Swiss-Prot mouse
data set (see Table A.16). This figure shows one cluster in the game theory similarity
network for the Swiss-Prot mouse proteome. Three of the four proteins (shown in
green) belong to the RGS data set.
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Figure A.17: RGS Proteins In Swiss-Prot Mouse Proteome. Twenty one of
the 66 RGS proteins discussed in Section 7.2 were also found in the Swiss-Prot mouse
data set (see Table A.16). This figure shows a small neighborhood in the largest
cluster from the game theory similarity network for the Swiss-Prot mouse proteome.
Eleven of the proteins (shown in green) belong to the RGS data set.
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Figure A.18: RGS Proteins In Swiss-Prot Mouse Proteome. Twenty one of
the 66 RGS proteins discussed in Section 7.2 were also found in the Swiss-Prot mouse
data set (see Table A.16). This figure shows a small neighborhood in the largest
cluster from the game theory similarity network for the Swiss-Prot mouse proteome.
Three of the proteins (shown in green) belong to the RGS data set.
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Figure A.19: Game-Theoretic Protein Similarity Network (5% Overlap Do-
mains) For the Swiss-Prot Mouse Proteome. A total of 1,201 clusters were
identified for the 11,920 proteins (orange nodes). The edge color (in varying shades of
blue) indicates the edge weight, with darker edges (black) indicating high weights and
lighter edges indicating low weights. The game value for each protein is represented
in the network by the length of its incoming edges, with longer edges corresponding
to small game values and longer edges indicating high game values.

Figure A.20: Game-Theoretic Protein Similarity Network (Unrestricted
Overlap Domains) For the Swiss-Prot Mouse Proteome. A total of 909 clus-
ters were identified for the 11,920 proteins (orange nodes). The edge color (in varying
shades of blue) indicates the edge weight, with darker edges (black) indicating high
weights and lighter edges indicating low weights. The game value for each protein
is represented in the network by the length of its incoming edges, with longer edges
corresponding to small game values and longer edges indicating high game values.
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A.2 Tables

Pfam Accession Domain Length Pfam Accession Domain Length

PF02770 59 PF00516 417

PF11744 457 PF00512 69

PF01979 323 PF12728 51

PF13193 76 PF12701 97

PF12796 71 PF10633 75

PF00528 190 PF00291 343

PF00439 80 PF01427 49

PF09806 119 PF02880 111

PF01609 185 PF01242 117

PF12166 305 PF00072 112

PF00113 290 PF14259 60

PF04324 56 PF13181 29

PF01827 149 PF00486 77

PF01571 206 PF00418 30

PF00534 171 PF13465 26

Table A.1: Pfam Domain Bank Used For Simulation Study.
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Pfam Accession # Observations Min. Distance Max. Distance Avg. Distance

PF02770 216 .00001 .1721 .0345

PF00113 68 .00001 .0948 .0237

PF00291 105 .00001 .3117 .0446

PF00418 359 .00001 .3521 .0597

PF00439 169 .00001 .2043 .0357

PF00486 139 .00001 .1828 .0348

PF00512 186 .00001 .1741 .0222

PF00516 89 .00001 .1492 .0161

PF00528 123 .00001 .2020 .0323

PF00534 929 .00001 .3547 .0770

PF01242 171 .00001 .1893 .0322

PF01427 131 .00001 .2437 .0267

PF01571 136 .00001 .2901 .0575

PF01609 223 .00001 .1832 .0405

PF01827 125 .00001 .1577 .0352

PF01979 114 .00001 .1421 .0308

PF02770 3198 .00001 .3846 .0718

PF02880 104 .00001 .1252 .0221

PF04324 178 .00001 .2440 .0343

PF09806 1099 .00001 .3598 .0750

PF10633 257 .00001 .2283 .0532

PF11744 80 .00001 .2228 .0442

PF12166 91 .00001 .1576 .0317

PF12701 109 .00001 .2256 .0555

PF12728 184 .00001 .2394 .0318

PF12796 125 .00001 .1637 .0177

PF13181 247 .00001 .3222 .0436

PF13193 159 .00001 .1770 .0342

PF13465 183 .00001 .3434 .0581

PF14259 132 .00001 .1797 .0328

Table A.2: Domain Sequence Divergence For Simulation Study (10 gen-
erations, 5% Domain Mutation Rate). The domain sequence divergence was
calculated for each of the domains present in the simulated proteins by aligning the
domain to the original domain sequence (from the domain bank at the start of the
simulation) and using the protdist function in the Phylip [38] package to compute
the distance using the JTT amino acid substitution model. The number of obser-
vations of each domain is shown, along with the minimum, maximum, and average
distance from the root domain sequence, computed by Phylip.
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Pfam Accession # Observations Min. Distance Max. Distance Avg. Distance

PF02770 292 .00001 .5927 .0995

PF00113 110 .00001 .3084 .0461

PF00291 85 .00001 .3014 .0592

PF00418 271 .00001 .6572 .0814

PF00439 167 .00001 .5908 .0805

PF00486 98 .00001 .5071 .0486

PF00512 273 .00001 .4335 .0610

PF00516 84 .00001 .3921 .0713

PF00528 114 .00001 .2203 .0552

PF00534 638 .00001 .6484 .1547

PF01242 134 .00001 .3176 .0470

PF01427 202 .00001 .4150 .0635

PF01571 125 .00001 .3723 .0631

PF01609 95 .00001 .2409 .0375

PF01827 155 .00001 .3346 .0820

PF01979 103 .00001 .4162 .0757

PF02770 2867 .00001 .7103 .1467

PF02880 147 .00001 .4139 .0534

PF04324 193 .00001 .4868 .0621

PF09806 1405 .00001 .6239 .1298

PF10633 152 .00001 .3059 .0509

PF11744 128 .00001 .4149 .1166

PF12166 97 .00001 .3710 .0795

PF12701 123 .00001 .3735 .0584

PF12728 245 .00001 .3134 .0438

PF12796 148 .00001 .4204 .0406

PF13181 242 .00001 .3779 .0599

PF13193 141 .00001 .3785 .0523

PF13465 250 .00001 .5726 .0906

PF14259 162 .00001 .3288 .0447

Table A.3: Domain Sequence Divergence For Simulation Study (10 gener-
ations, 10% Domain Mutation Rate). The domain sequence divergence was
calculated for each of the domains present in the simulated proteins by aligning the
domain to the original domain sequence (from the domain bank at the start of the
simulation) and using the protdist function in the Phylip [38] package to compute
the distance using the JTT amino acid substitution model. The number of obser-
vations of each domain is shown, along with the minimum, maximum, and average
distance from the root domain sequence, computed by Phylip.
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Pfam Accession # Observations Min. Distance Max. Distance Avg. Distance

PF02770 188 .00001 .8741 .2121

PF00113 105 .00001 1.1403 .1741

PF00291 105 .00001 .8921 .2367

PF00418 285 .00001 1.2044 .1114

PF00439 163 .00001 .7981 .1821

PF00486 206 .00001 .7507 .1817

PF00512 176 .00001 .7429 .1567

PF00516 92 .00001 1.0311 .1805

PF00528 106 .00001 1.1956 .2086

PF00534 820 .00001 1.6910 .3053

PF01242 118 .00001 .7781 .1303

PF01427 165 .00001 .7812 .1053

PF01571 99 .00001 .8865 .1947

PF01609 157 .00001 .7415 .1407

PF01827 136 .00001 1.0805 .2198

PF01979 105 .00001 .5625 .1228

PF02770 2795 .00001 1.4419 .2849

PF02880 187 .00001 .5464 .1254

PF04324 216 .00001 1.0056 .1551

PF09806 1285 .00001 1.2243 .2809

PF10633 114 .00001 .5334 .1374

PF11744 97 .00001 .8168 .2159

PF12166 129 .00001 1.0245 .2394

PF12701 107 .00001 .9542 .1290

PF12728 274 .00001 1.0581 .2192

PF12796 180 .00001 .9818 .1451

PF13181 216 .00001 1.4731 .1804

PF13193 188 .00001 1.1947 .2359

PF13465 293 .00001 1.6849 .1576

PF14259 182 .00001 1.2385 .1529

Table A.4: Domain Sequence Divergence For Simulation Study (10 gener-
ations, 25% Domain Mutation Rate). The domain sequence divergence was
calculated for each of the domains present in the simulated proteins by aligning the
domain to the original domain sequence (from the domain bank at the start of the
simulation) and using the protdist function in the Phylip [38] package to compute
the distance using the JTT amino acid substitution model. The number of obser-
vations of each domain is shown, along with the minimum, maximum, and average
distance from the root domain sequence, computed by Phylip.
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Pfam Accession # Observations Min. Distance Max. Distance Avg. Distance

PF02770 166 .00001 1.9835 .3101

PF00113 105 .00001 1.1790 .1987

PF00291 104 .00001 1.2815 .2610

PF00418 131 .00001 1.4427 .3166

PF00439 182 .00001 2.2229 .3105

PF00486 160 .00001 1.4399 .2371

PF00512 283 .00001 1.7876 .3182

PF00516 85 .00001 1.6101 .3261

PF00528 111 .00001 1.7047 .3072

PF00534 851 .00001 2.7046 .5324

PF01242 95 .00001 .9996 .2301

PF01427 181 .00001 1.9270 .3338

PF01571 114 .00001 1.1002 .2341

PF01609 104 .00001 1.8162 .2556

PF01827 181 .00001 1.2179 .2714

PF01979 108 .00001 1.5831 .3055

PF02770 2688 .00001 3.5951 .5377

PF02880 171 .00001 1.0860 .2087

PF04324 163 .00001 1.3672 .1267

PF09806 823 .00001 2.1084 .5241

PF10633 199 .00001 1.7192 .2101

PF11744 78 .00001 .8478 .2293

PF12166 106 .00001 1.3340 .2317

PF12701 184 .00001 2.6217 .2613

PF12728 146 .00001 .8739 .1883

PF12796 210 .00001 2.0612 .2849

PF13181 213 .00001 1.8760 .1982

PF13193 169 .00001 1.2438 .1900

PF13465 206 .00001 .5726 .0899

PF14259 167 .00001 .9294 .1265

Table A.5: Domain Sequence Divergence For Simulation Study (10 gener-
ations, 40% Domain Mutation Rate). The domain sequence divergence was
calculated for each of the domains present in the simulated proteins by aligning the
domain to the original domain sequence (from the domain bank at the start of the
simulation) and using the protdist function in the Phylip [38] package to compute
the distance using the JTT amino acid substitution model. The number of obser-
vations of each domain is shown, along with the minimum, maximum, and average
distance from the root domain sequence, computed by Phylip.
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Pfam Accession # Observations Min. Distance Max. Distance Avg. Distance

PF02770 1092 .00001 .4058 .0913

PF00113 412 .00001 .2286 .0673

PF00291 496 .00001 .3104 .0716

PF00418 1688 .00001 .5500 .0896

PF00439 750 .00001 .3198 .0544

PF00486 1452 .00001 .3956 .0771

PF00512 947 .00001 .3960 .0531

PF00516 388 .00001 .3648 .0784

PF00528 542 .00001 .3043 .0738

PF00534 3228 .00001 .4953 .1217

PF01242 1530 .00001 .3253 .0735

PF01427 1445 .00001 .3266 .0707

PF01571 874 .00001 .2853 .0780

PF01609 586 .00001 .2941 .0680

PF01827 788 .00001 .3182 .0639

PF01979 499 .00001 .3333 .0800

PF02770 16204 .00001 .5819 .1120

PF02880 844 .00001 .3136 .0648

PF04324 1878 .00001 .4656 .0873

PF09806 5979 .00001 .4810 .1106

PF10633 1327 .00001 .3967 .0703

PF11744 377 .00001 .3406 .0741

PF12166 600 .00001 .3151 .0739

PF12701 1039 .00001 .2775 .0769

PF12728 1710 .00001 .3527 .0697

PF12796 969 .00001 .4648 .0773

PF13181 2342 .00001 .4912 .0836

PF13193 844 .00001 .2843 .0632

PF13465 2239 .00001 .4881 .0851

PF14259 1603 .00001 .4215 .0728

Table A.6: Domain Sequence Divergence For Simulation Study (15 gen-
erations, 5% Domain Mutation Rate). The domain sequence divergence was
calculated for each of the domains present in the simulated proteins by aligning the
domain to the original domain sequence (from the domain bank at the start of the
simulation) and using the protdist function in the Phylip [38] package to compute
the distance using the JTT amino acid substitution model. The number of obser-
vations of each domain is shown, along with the minimum, maximum, and average
distance from the root domain sequence, computed by Phylip.
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Pfam Accession # Observations Min. Distance Max. Distance Avg. Distance

PF02770 733 .00001 .5408 .1155

PF00113 415 .00001 .5492 .1337

PF00291 472 .00001 .6747 .1505

PF00418 1836 .00001 1.2456 .1318

PF00439 1466 .00001 .6510 .1438

PF00486 1039 .00001 .6896 .1528

PF00512 1134 .00001 .6907 .1097

PF00516 565 .00001 .5747 .1637

PF00528 547 .00001 .5109 .1234

PF00534 3311 .00001 .8435 .2120

PF01242 932 .00001 .5227 .1227

PF01427 1544 .00001 .7476 .1243

PF01571 474 .00001 .5644 .1333

PF01609 650 .00001 .7300 .1463

PF01827 717 .00001 .5591 .1280

PF01979 430 .00001 .8273 .1534

PF02770 14918 .00001 1.0764 .1995

PF02880 1245 .00001 .6382 .1589

PF04324 1388 .00001 .6237 .1258

PF09806 5866 .00001 1.0638 .2062

PF10633 1079 .00001 .7911 .1435

PF11744 392 .00001 .5696 .1459

PF12166 479 .00001 .6433 .1781

PF12701 1041 .00001 .7591 .1238

PF12728 1395 .00001 .6268 .1422

PF12796 1067 .00001 .5692 .1162

PF13181 1819 .00001 .7246 .1442

PF13193 1349 .00001 .6813 .1427

PF13465 1541 .00001 .8756 .1431

PF14259 1679 .00001 .6406 .1598

Table A.7: Domain Sequence Divergence For Simulation Study (15 gener-
ations, 10% Domain Mutation Rate). The domain sequence divergence was
calculated for each of the domains present in the simulated proteins by aligning the
domain to the original domain sequence (from the domain bank at the start of the
simulation) and using the protdist function in the Phylip [38] package to compute
the distance using the JTT amino acid substitution model. The number of obser-
vations of each domain is shown, along with the minimum, maximum, and average
distance from the root domain sequence, computed by Phylip.
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Pfam Accession # Observations Min. Distance Max. Distance Avg. Distance

PF02770 1053 .00001 1.6188 .3630

PF00113 493 .00001 1.6496 .3873

PF00291 483 .00001 1.6658 .3562

PF00418 1381 .00001 2.4142 .3745

PF00439 841 .00001 1.2248 .2819

PF00486 890 .00001 1.2955 .2688

PF00512 1202 .00001 1.4160 .3046

PF00516 287 .00001 1.2925 .3083

PF00528 626 .00001 1.3498 .3254

PF00534 4092 .00001 2.2503 .5562

PF01242 1192 .00001 2.0210 .4148

PF01427 1384 .00001 1.5072 .2451

PF01571 607 .00001 1.4329 .3520

PF01609 724 .00001 1.4936 .3427

PF01827 821 .00001 1.5797 .3294

PF01979 447 .00001 1.4111 .3823

PF02770 16764 .00001 2.7732 .4721

PF02880 1081 .00001 1.6471 .3253

PF04324 1228 .00001 1.3597 .2306

PF09806 6157 .00001 2.2985 .5130

PF10633 1401 .00001 1.5854 .3665

PF11744 320 .00001 1.1888 .2637

PF12166 656 .00001 1.5326 .3740

PF12701 578 .00001 1.3839 .2246

PF12728 1200 .00001 2.1197 .2792

PF12796 1527 .00001 1.8043 .3056

PF13181 1433 .00001 1.5268 .2883

PF13193 1083 .00001 1.2918 .2923

PF13465 1262 .00001 1.9528 .3686

PF14259 978 .00001 1.4898 .2565

Table A.8: Domain Sequence Divergence For Simulation Study (15 gener-
ations, 25% Domain Mutation Rate). The domain sequence divergence was
calculated for each of the domains present in the simulated proteins by aligning the
domain to the original domain sequence (from the domain bank at the start of the
simulation) and using the protdist function in the Phylip [38] package to compute
the distance using the JTT amino acid substitution model. The number of obser-
vations of each domain is shown, along with the minimum, maximum, and average
distance from the root domain sequence, computed by Phylip.
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Pfam Accession # Observations Min. Distance Max. Distance Avg. Distance

PF02770 794 .00001 2.8696 .3979

PF00113 494 .00001 2.1698 .5421

PF00291 587 .00001 2.6268 .6126

PF00418 1425 .00001 2.7114 .4092

PF00439 1506 .00001 2.8624 .5506

PF00486 915 .00001 2.4956 .4396

PF00512 1049 .00001 2.0375 .3760

PF00516 386 .00001 2.7561 .6586

PF00528 575 .00001 2.2565 .5428

PF00534 4558 .00001 3.2343 .8539

PF01242 1403 .00001 2.8605 .5896

PF01427 1366 .00001 2.3335 .5269

PF01571 624 .00001 4.6530 .7246

PF01609 700 .00001 2.1328 .5438

PF01827 725 .00001 2.0549 .5422

PF01979 402 .00001 2.3132 .4405

PF02770 18786 .00001 5.6419 .7800

PF02880 963 .00001 2.6428 .4993

PF04324 989 .00001 2.2610 .4199

PF09806 7709 .00001 4.9030 .8293

PF10633 1323 .00001 2.3718 .5131

PF11744 389 .00001 2.6458 .5843

PF12166 494 .00001 2.1157 .6153

PF12701 1270 .00001 2.6350 .5074

PF12728 2207 .00001 2.5400 .5242

PF12796 1520 .00001 2.6481 .5056

PF13181 2086 .00001 3.0850 .4338

PF13193 1112 .00001 2.1758 .5644

PF13465 1060 .00001 2.2210 .4891

PF14259 998 .00001 2.4839 .4272

Table A.9: Domain Sequence Divergence For Simulation Study (15 gener-
ations, 40% Domain Mutation Rate). The domain sequence divergence was
calculated for each of the domains present in the simulated proteins by aligning the
domain to the original domain sequence (from the domain bank at the start of the
simulation) and using the protdist function in the Phylip [38] package to compute
the distance using the JTT amino acid substitution model. The number of obser-
vations of each domain is shown, along with the minimum, maximum, and average
distance from the root domain sequence, computed by Phylip.
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Protein Identifier Pfam Domains

P1 PF00615.14, PF02196.10, PF02188.12

P2, P20, P38 PF15405.1, PF09128.6, PF00621.15

P3, P40 PF00169.24, PF00615.14, PF00069.20

P4 PF06718.6, PF00610.16, PF00631.17, PF00615.14

P5, P6, P7, P8, P9, P14, P19, P21, P24 PF00615.14

P28, P32, P33, P36, P39, P41, P44, P46, P47

P51, P53

P10, P17, P22, P31, P52, P55 PF00615.14, PF00069.20

P11, P25, P43 PF00169.24, PF13716.1, PF00018.23

PF00435.16, PF00615.14, PF00621.15

P12 PF00595.19, PF00615.14, PF02196.10

PF00640.18, PF02188.12, PF11470.3

P13, P23, P45 PF08833.5, PF00615.14, PF00778.12

P15, P26, P34, P48, P54 PF00610.16, PF00631.17, PF00615.14

P16 PF00615.14, PF02194.10, PF08628.7, PF00787.19

P18 PF09128.6, PF00595.19, PF00621.15

P27 PF03938.9, PF09128.6, PF00595.19, PF00621.15

P29 PF00615.14, PF02196.10, PF02188.12, PF11470.3

P30 PF15171.1, PF00615.14

P35, P37 PF09128.6, PF00621.15

P42 PF12761.2, PF00615.14, PF02194.10

PF08628.7, PF00787.19

P49 PF00615.14, PF02194.10, PF08628.7, PF00787.19

P50 PF00595.19, PF03153.8, PF00615.14

Table A.10: Non-Overlapping HMMER Domain Architectures for RGS Pro-
tein Family.
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Protein Identifier Pfam Domains

P1 PF00615.14, PF02196.10, PF02188.12

P2, P20, P38 PF15405.1, PF09128.6, PF00621.15

P3, P40 PF00169.24, PF00615.14, PF00069.20

P4 PF06718.6, PF00610.16, PF00631.17 PF00615.14

P5, P6, P7, P8, P9, P14, P19, P21, P24 PF00615.14

P28, P32, P33, P36, P39, P41, P44, P46, P47

P51, P53

P10, P17, P22, P31, P52, P55 PF00615.14, PF00069.20

P11, P25, P43 PF00169.24, PF13716.1, PF00018.23, PF00435.16

PF00615.14, PF14604.1, PF00621.15

P12 PF00595.19, PF00615.14, PF02196.10

PF00640.18, PF11470.3, PF02188.12

P13, P23, P45 PF08833.5, PF00615.14, PF00778.12

P15, P26, P34, P48, P54 PF00610.16, PF00631.17, PF00615.14

P16, P49 PF00615.14, PF02194.10, PF08628.7, PF00787.19

P18 PF09128.6, PF00595.19, PF00621.15

P27 PF03938.9, PF13180.1, PF09128.6

PF00595.19, PF13476.1, PF00621.15

P29 PF00615.14, PF02196.10, PF11470.3, PF02188.12

P30 PF15171.1, PF00615.14

P35, P37 PF09128.6, PF00621.15

P42 PF12761.2, PF00615.14, PF02194.10

PF08628.7, PF00787.19

P50 PF00595.19, PF03153.8, PF00615.14

Table A.11: Restricted Overlap (5%) HMMER Domain Architectures for
RGS Protein Family.
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Protein Identifier Pfam Domains

P1 PF00615.14, PF07631.6, PF02196.10, PF02188.12
P2, P20, P38 PF15405.1, PF09128.6, PF00621.15
P3 PF00169.24, PF00615.14, PF00069.20

PF07714.12, PF15413.1
P4 PF06718.6, PF00631.17, PF00615.14, PF00610.16
P5, P6, P7, P8, P9, P14, P19, P24, P28 PF00615.14
P32, P33, P36, P39, P41, P46, P47, P51
P10, P17, P22, P31, P52, P55 PF00615.14, PF00069.20, PF07714.12, PF14531.1
P11, P25, P43 PF00169.24, PF00018.23, PF00435.16, PF00015.16

PF13716.1, PF14604.1, PF00621.15, PF00615.14
P12 PF00615.14, PF11470.3, PF00595.19, PF02196.10

PF00640.18, PF02188.12, PF13180.1
P13, P23, P45 PF00615.14, PF00778.12, PF08833.5
P15, P26, P34, P48, P54 PF00631.17, PF00615.14, PF00610.16
P16 PF00615.14, PF02194.10, PF08628.7

PF00787.19, PF02284.11
P18 PF09128.6, PF00595.19, PF11333.3

PF00621.15, PF13180.1, PF00615.14
P21 PF09128.6, PF00615.14, PF03748.9
P27 PF03938.9, PF13180.1, PF09128.6

PF13476.1, PF00595.19, PF00621.15
P29 PF00615.14, PF11470.3, PF02196.10, PF02188.12
P30 PF00615.14, PF15171.1
P35, P37 PF09128.6, PF00621.15
P40 PF00169.24, PF00615.14, PF00069.20, PF07714.12

PF15413.1, PF06293.9, PF14531.1
P42 PF06246.7, PF00615.14, PF02194.10

PF12761.2, PF08628.7, PF00787.19
P44, P53 PF00615.14, PF10774.4
P49 PF00615.14, PF02194.10, PF08628.7, PF00787.19
P50 PF00615.14, PF00595.19, PF03153.8, PF13180.1

Table A.12: Unrestricted Overlap HMMER Domain Architectures for RGS
Protein Family.
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Cluster (AGV) Node NCBI Accession Protein Type

1 (159.0567) P44 NP 001155294.1 RGS 17 isoform 1

P53 NP 064342.1 RGS 17 isoform 2

2 (146.7074) P33 NP 067349.2 RGS 20 isoform 2

P19 NP 001171266.1 RGS 20 isoform 1

P6 NP 080722.1 RGS 19

3 (134.7646) P38 NP 032514.1 Rho guanine nuc. ex. factor 1 isoform d

P37 NP 001123622.1 Rho guanine nuc. ex. factor 1 isoform a

P35 NP 001123623.1 Rho guanine nuc. ex. factor 1 isoform b

P20 NP 001123625.1 Rho guanine nuc. ex. factor 1 isoform c

P2 NP 001123624.1 Rho guanine nuc. ex. factor 1 isoform c

4 (119.9047) P3 NP 796052.2 Beta-adrenergic receptor kinase 2 isoform 1

P40 NP 570933.1 Beta-adrenergic receptor kinase 1

P47 NP 001030608.1 Beta-adrenergic receptor kinase 2 isoform 2

5 (71.9517) P26 NP 001185932.1 RGS 7 isoform 2

P54 NP 036010.2 RGS 7 isoform 1

P4 NP 056627.1 RGS 6

6 (71.1609) P31 NP 001106182.1 GPCR kinase 6 isoform c

P55 NP 036068.2 GPCR kinase 6 isoform b

P22 NP 001033107.1 GPCR kinase 6 isoform a

P36 XP 894544.3 PREDICTED: RGS 21

P5 XP 921002.3 PREDICTED: RGS 21

P24 NP 001074212.1 GPCR kinase 4 isoform 2

P51 NP 080656.2 RGS 8

P41 NP 035397.2 RGS 16

P10 NP 062370.2 GPCR kinase 4 isoform 1

P46 NP 033087.2 RGS 2

P28 NP 033088.2 RGS 4

P8 NP 056626.2 RGS 1

P14 NP 033089.2 RGS 5

P32 NP 075019.1 RGS 18

P21 NP 080694.1 RGS 10

P52 NP 061357.3 GPCR kinase 5

P7 NP 694811.1 RGS 13

P18 NP 001003912.1 Rho guanine nuc. ex. factor 11

P17 NP 036011.3 Rhodopsin kinase precursor

P16 NP 001014973.2 Sorting nexin-13

P27 NP 081420.2 Rho guanine nuc. ex. factor 12

P39 NP 064305.2 A-kinase anchor protein 10, mit. precursor

P9 NP 001182677.1 RGS 22

P1 NP 058038.2 RGS 14

P49 NP 766514.2 Sorting nexin-14

P50 NP 599018.3 RGS 3 isoform 2

P29 NP 001156984.1 RGS 12 isoform B

P42 NP 997096.2 Sorting nexin-25

P30 NP 001230152.1 RGS protein-like

P12 NP 775578.2 RGS 12 isoform A

7 (68.8465) P48 NP 035398.2 RGS 9 isoform 1

P34 NP 001159406.1 RGS 9 isoform 2

P15 NP 001074538.1 RGS 11

9 (55.5742) P11 NP 835177.2 Guanine nuc. ex. factor DBS isoform 1

P43 NP 001152958.1 Guanine nuc. ex. factor DBS isoform 2

P25 NP 001152957.1 Guanine nuc. ex. factor DBS isoform 3

9 (36.2278) P23 NP 001153070.1 Axin-1 isoform 1

P45 NP 033863.2 Axin-1 isoform 2

P13 NP 056547.3 Axin-2

Table A.13: Game Theory Clustering For RGS Proteins (Non-Overlapping
Domains). Proteins are listed in descending order according to their game value
with the average game value for the cluster shown next to cluster number.
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Cluster Node NCBI Accession Protein Type

1 P28 NP 033088.2 RGS 4

P41 NP 035397.2 RGS 16

P47 NP 001030608.1 Beta-adrenergic receptor kinase 2 isoform 2

P32 NP 075019.1 RGS 18

P33 NP 067349.2 RGS 20 isoform 2

P9 NP 001182677.1 RGS 22

P39 NP 064305.2 A-kinase anchor protein 10, mit. precursor

P51 NP 080656.2 RGS 8

P44 NP 001155294.1 RGS 17 isoform 1

P8 NP 056626.2 RGS 1

P21 NP 080694.1 RGS 10

P36 XP 894544.3 PREDICTED: RGS 21

P24 NP 001074212.1 GPCR kinase 4 isoform 2

P46 NP 033087.2 RGS 2

P14 NP 033089.2 RGS 5

P53 NP 064342.1 RGS 17 isoform 2

P6 NP 080722.1 RGS 19

P5 XP 921002.3 PREDICTED: RGS 21

P7 NP 694811.1 RGS 13

P19 NP 001171266.1 RGS 20 isoform 1

2 P30 NP 001230152.1 RGS protein-like

3 P13 NP 056547.3 Axin-2

P45 NP 033863.2 Axin-1 isoform 2

P23 NP 001153070.1 Axin-1 isoform 1

4 P16 NP 001014973.2 Sorting nexin-13

P49 NP 766514.2 Sorting nexin-14

5 P42 NP 997096.2 Sorting nexin-25

6 P4 NP 056627.1 RGS 6

7 P26 NP 001185932.1 RGS 7 isoform 2

P54 NP 036010.2 RGS 7 isoform 1

P15 NP 001074538.1 RGS 11

P34 NP 001159406.1 RGS 9 isoform 2

P48 NP 035398.2 RGS 9 isoform 1

8 P3 NP 796052.2 Beta-adrenergic receptor kinase 2 isoform 1

P40 NP 570933.1 Beta-adrenergic receptor kinase 1

9 P55 NP 036068.2 GPCR kinase 6 isoform b

P52 NP 061357.3 GPCR kinase 5

P31 NP 001106182.1 GPCR kinase 6 isoform c

P10 NP 062370.2 GPCR kinase 4 isoform 1

P17 NP 036011.3 Rhodopsin kinase precursor

P22 NP 001033107.1 GPCR kinase 6 isoform a

10 P35 NP 001123623.1 Rho guanine nuc. ex. factor 1 isoform b

P37 NP 001123622.1 Rho guanine nuc. ex. factor 1 isoform a

11 P2 NP 001123624.1 Rho guanine nuc. ex. factor 1 isoform c

P38 NP 032514.1 Rho guanine nuc. ex. factor 1 isoform d

P20 NP 001123625.1 Rho guanine nuc. ex. factor 1 isoform c

12 P27 NP 081420.2 Rho guanine nuc. ex. factor 12

13 P43 NP 001152958.1 Guanine nuc. ex. factor DBS isoform 2

P11 NP 835177.2 Guanine nuc. ex. factor DBS isoform 1

P25 NP 001152957.1 Guanine nuc. ex. factor DBS isoform 3

14 P18 NP 001003912.1 Rho guanine nuc. ex. factor 11

15 P50 NP 599018.3 RGS 3 isoform 2

16 P12 NP 775578.2 RGS 12 isoform A

17 P29 NP 001156984.1 RGS 12 isoform B

P1 NP 058038.2 RGS 14

Table A.14: Biclusters For RGS Proteins (Non-Overlapping Domains).
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Cluster Node NCBI Accession Protein Type

1 P50 NP 599018.3 RGS 3 isoform 2

P29 NP 001156984.1 RGS 12 isoform B

P12 NP 775578.2 RGS 12 isoform A

P1 NP 058038.2 RGS 14

P21 NP 080694.1 RGS 10

P28 NP 033088.2 RGS 4

P14 NP 033089.2 RGS 5

P41 NP 035397.2 RGS 16

P33 NP 067349.2 RGS 20 isoform 2

P51 NP 080656.2 RGS 8

P48 NP 035398.2 RGS 9 isoform 1

P32 NP 075019.1 RGS 18

P8 NP 056626.2 RGS 1

P34 NP 001159406.1 RGS 9 isoform 2

P19 NP 001171266.1 RGS 20 isoform 1

P15 NP 001074538.1 RGS 11

P6 NP 080722.1 RGS 19

P36 XP 894544.3 PREDICTED: RGS 21

P5 XP 921002.3 PREDICTED: RGS 21

P53 NP 064342.1 RGS 17 isoform 2

P4 NP 056627.1 RGS 6

P44 NP 001155294.1 RGS 17 isoform 1

P46 NP 033087.2 RGS 2

P54 NP 036010.2 RGS 7 isoform 1

P26 NP 001185932.1 RGS 7 isoform 2

P7 NP 694811.1 RGS 13

2 P22 NP 001033107.1 GPCR kinase 6 isoform a

P31 NP 001106182.1 GPCR kinase 6 isoform c

P55 NP 036068.2 GPCR kinase 6 isoform b

P40 NP 570933.1 Beta-adrenergic receptor kinase 1

P10 NP 062370.2 GPCR kinase 4 isoform 1

P3 NP 796052.2 Beta-adrenergic receptor kinase 2 isoform 1

P47 NP 001030608.1 Beta-adrenergic receptor kinase 2 isoform 2

P52 NP 061357.3 GPCR kinase 5

P17 NP 036011.3 Rhodopsin kinase precursor

P24 NP 001074212.1 GPCR kinase 4 isoform 2

3 P18 NP 001003912.1 Rho guanine nuc. ex. factor 11

P2 NP 001123624.1 Rho guanine nuc. ex. factor 1 isoform c

P20 NP 001123625.1 Rho guanine nuc. ex. factor 1 isoform c

P38 NP 032514.1 Rho guanine nuc. ex. factor 1 isoform d

P35 NP 001123623.1 Rho guanine nuc. ex. factor 1 isoform b

P37 NP 001123622.1 Rho guanine nuc. ex. factor 1 isoform a

P27 NP 081420.2 Rho guanine nuc. ex. factor 12

4 P43 NP 001152958.1 Guanine nuc. ex. factor DBS isoform 2

P11 NP 835177.2 Guanine nuc. ex. factor DBS isoform 1

P25 NP 001152957.1 Guanine nuc. ex. factor DBS isoform 3

5 P45 NP 033863.2 Axin-1 isoform 2

P23 NP 001153070.1 Axin-1 isoform 1

P13 NP 056547.3 Axin-2

6 P16 NP 001014973.2 Sorting nexin-13

P42 NP 997096.2 Sorting nexin-25

7 P9 NP 001182677.1 RGS 22

8 P39 NP 064305.2 A-kinase anchor protein 10, mit. precursor

9 P30 NP 001230152.1 RGS protein-like

10 P49 NP 766514.2 Sorting nexin-14

Table A.15: MCL Clusters For RGS Proteins (Non-Overlapping Domains).
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Node NCBI Accession UniProt ID Protein Type UniProt Family

P651 NP 796052.2 Q3UYH7 Beta-adrenergic receptor Protein kinase superfamily,
kinase 2 AGC Ser/Thr protein kinase family,

GPRK subfamily

P883 NP 035398.2 O54828 Axin-1 n/a

P884 NP 056547.3 O08849 Axin-2 n/a

P4208 NP 001074212.1 O70291 GPCR kinase 4 Protein kinase superfamily,

AGC Ser/Thr protein kinase family,
GPRK subfamily

P4209 NP 061357.3 Q8VEB1 GPCR kinase 5 Protein kinase superfamily,
AGC Ser/Thr protein kinase family,

GPRK subfamily

P4210 NP 001033107.1 O70293 GPCR kinase 6 Protein kinase superfamily,

AGC Ser/Thr protein kinase family,
GPRK subfamily

P8445 NP 694811.1 Q8K443 RGS 13 n/a

P8446 NP 075019.1 Q99PG4 RGS 18 n/a

P8447 NP 080722.1 Q9CX84 RGS 19 n/a

P8448 NP 001182677.1 G3UYX5 RGS 22 n/a

P8449 NP 766514.2 O08849 RGS 2 n/a

P8450 NP 599018.3 Q9DC04 RGS 3 n/a

P8451 NP 033088.2 O08899 RGS 4 n/a

P8452 NP 033089.2 O08850 RGS 5 n/a

P8453 NP 056627.1 Q9Z2H2 RGS 6 n/a

P8454 NP 036010.2 O54829 RGS 7 n/a

P8455 NP 080656.2 Q8BXT1 RGS 8 n/a

P8456 NP 035398.2 O54828 RGS 9 n/a

P9620 NP 001014973.2 Q6PHS6 Sorting nexin-13 Sorting nexin family

P9621 NP 766514.2 Q8BHY8 Sorting nexin-14 Sorting nexin family

P9628 NP 997096.2 Q3ZT31 Sorting nexin-25 Sorting nexin family

Table A.16: RGS Proteins In Swiss-Prot Mouse Proteome.
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[25] A. Conesa, S. Götz, J.M. Garćıa-Gómez, J. Terol, M. Talón and M. Robles,

“Blast2GO: A Universal Tool For Annotation, Visualization, and Analysis in Func-

tional Genomics Research,” Bioinformatics, Vol. 21, No. 18, pp. 3674-3676, 2005.

[26] D.A. Dalquen, M. Anisimova, G. Gonnet and C. Dessimoz, “ALF - A Simulation

Framework For Genome Evolution,” Molecular Biology and Evolution, Vol. 29, No.

4, pp. 1115-1123, 2012.

[27] M. Dayhoff and R. Schwartz, “A Model of Evolutionary Change in Proteins,”

In: Atlas of Protein Sequence and Structure, 1978.

[28] B. Deng, B. Hinds, E.N. Moriyama and X. Zheng, “Bioinformatic Game Theory

and Its Application to Biological Affinity Networks,” Applied Mathematics, Vol.

4, pp. 92-108, 2013.

[29] R.F. Doolittle, “Of URFs and ORFs: A Primer On How To Analyze Derived

Amino Acid Sequences,” University Science Books, 1986.

[30] W. Doolittle, “Phylogenetic Classification and the Universal Tree,” Science, Vol.

284, No. 5423, pp. 2124-2129, 1999.

[31] R. Durbin, S. Eddy, A. Krogh and G. Mitchison, “Biological Sequence Analysis,”

Cambridge University Press, 1998.



154

[32] S.R. Eddy, “A Probabilistic Model of Local Sequence Alignment That Simplifies

Statistical Significance Estimation,” PLoS Compututational Biology, Vol. 4, No. 5,

e1000069, 2008.

[33] S.R. Eddy, “Accelerated Profle HMM Searches,” PLoS Computational Biology,

Vol. 7, No. 10, 2011.

[34] M. Eigen, R. Winkler-Oswatitsch and A. Dress, “Statistical Geometry in se-

quence Space: A Method of Quantitative Comparative Sequence Analysis,” Pro-

ceedings of the National Academy of Sciences, USA, Vol. 85, No. 16, pp. 5913-5917,

1988.

[35] A.J. Enright, S. Van Dongen and C.A. Ouzounis “An Efficient Algorithm For

Large-Scale Detection of Protein Families,” Nucleic Acids Research, Vol. 30, pp.

1575-1584, 2002.

[36] J. Felsenstein, “Confidence Limits On Phylogenies: An Approach Using The

Bootstrap,” Evolution, Vol. 39, pp. 783-791, 1985.

[37] J. Felsenstein, “Evolutionary Trees from DNA Sequences: A Maximum Like-

lihood Approach,” Journal of Molecular Evolution, Vol. 17, No. 6, pp. 368-376,

1981.

[38] J. Felsenstein, “PHYLIP - Phylogeny Inference Package (Version 3.2),” Cladistics

Vol. 5, pp. 164-166, 1989.

[39] J. Felsenstein, “Inferring Phylogenies,” Sinauer Associates, Inc., Sunderland,

MA, 2004.



155

[40] R.D. Finn, A. Bateman, J. Clements, P. Coggill, R.Y. Eberhardt, et al., “Pfam:

The Protein Families Database,” Nucleic Acids Research, Vol. 42, pp. D222-230,

2014.

[41] W. Fitch, “Toward Defining the Course of Evolution: Minimum Change for a

Specific Tree Topology,” Systematic Biology, Vol. 20, No. 4, pp. 406-416, 1971.

[42] W. Fletcher and Z. Yang, “INDELible: A Flexible Simulator of Biological Se-

quence Evolution,” Molecular Biology and Evolution, Vol. 26, No. 8, pp. 1879-1888,

2009.

[43] K. Forslund and E. L. Sonnhammer, “Evolution of Protein Domain Architec-

tures,” Methods in Molecular Biology, Vol. 856, pp. 187-216, 2012.

[44] N.C. Grassly, J. Adachi, and A. Rambaut, “PSeq-Gen: An Application for the

Monte Carlo Simulation of Protein Sequence Evolution Along Phylogenetic Trees,”

Computer Applications in the Biosciences, Vol. 13, pp. 559-560, 1997.

[45] D. Graur and W.H. Li, “Fundamentals of Molecular Evolution,” 2nd Ed., Sinauer

Associates, Inc., Sunderland, MA, 2000.

[46] I. Griva, S. Nash and A. Sofer, “Linear and Nonlinear Optimization,” Society

for Industrial Mathematics, 2009.

[47] S. Guindon, J.F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk and O. Gascuel,

“New Algorithms and Methods To Estimate Maximum-likelihood Phylogenies: As-

sessing the Performance of phyml 3.0,” Systems Biology, Vol. 59, No. 3, pp. 307-321,

2010.



156

[48] S. Halary, J. W. Leigh, B. Cheaib, P. Lopez and E. Bapteste, “Network Analyses

Structure Genetic Diversity in Independent Genetic Worlds,” Proceedings of The

National Academy of Sciences, USA, Vol. 107, No. 1, pp. 127-132, 2010.

[49] B.G. Hall, “Simulating DNA Coding Sequence Evolution With EvolveAGene 3,”

Molecular Biology and Evolution, Vol. 25, pp. 688-695, 2008.

[50] M. Hasegawa, H. Kishino and T. Yano, “Dating of the Human-Ape Splitting by

a Molecular Clock of Mitochondrial DNA,” Journal of Molecular Evolution, Vol.

22, No. 2, pp. 160174, 1985.

[51] S. Henikoff and J. Henikoff, “Amino Acid Substitution Matrices from Protein

Blocks,” Proceedings of The National Academy of Sciences, USA, Vol. 89, pp.

10915-10919, 1992.

[52] S. Henikoff, E.A. Greene, S. Pietrokovski, P. Bork, T. K. Attwood and L. Hood,

“Gene Families: The Taxonomy of Protein Paralogs and Chimeras,” Science, Vol.

278, No. 5338, pp. 609-614, 1997.

[53] R.D. Hernandez, “A Flexible Forward Simulator For Populations Subject to

Selection and Demography,” Bioinformatics, Vol. 24, pp. 2786-2787, 2008.

[54] J. Hofbauer, “Deterministic Evolutionary Game Dynamics,” Proceedings of Sym-

posia in Applied Mathematics, Vol. 69, pp. 61-79, 2011.

[55] C.J. Hoggart, M. Chadeau-Hyam, T.G. Clark, R. Lampariello, J.C. Whittaker,

M. De lorio and D.J. Balding, “Sequence-level Population Simulations Over Large

Genomic Regions,” Genetics, Vol. 177, pp. 1725-1731, 2007.

[56] C. Holloway and R. Beiko, “Assembling Networks of Microbial Genomes Using

Linear Programming,” BMC Evolutionary Biology, Vol. 10, pp. 360, 2010.



157

[57] Y. Hong, D. Chalkia, K.D. Ko, G. Bhardwaj, G.S. Chang, et al., “Phylogenetic

Profiles Reveal Structural and Functional Determinants of Lipid-binding,” Journal

of Proteomics & Bioinformatics, Vol. 2, pp. 139-149, 2009.

[58] Y. Hong, J. Kang, D. Lee and D.B. van Rossum, “Adaptive GDDA-BLAST:

Fast and Efficient Algorithm For Protein Sequence Embedding,” PLoS ONE, Vol.

5, No. 10, e13596, 2010.

[59] R.R. Hudson, “Generating Samples Under a Wright-Fisher Neutral Model of

Genetic Variation,” Bioinformatics, Vol. 18, pp. 337338, 2002.

[60] J. Huelsenbeck and F. Ronquist, “MRBAYES: Bayesian Inference of Phyloge-

netic Trees,” Bioinformatics, Vol. 17, No. 8, pp. 754-755, 2001.

[61] S. Hunter, P. Jones, A. Mitchell, R. Apweiler, T.K. Attwood, et al., “InterPro in

2011: New Developments In the Family and Domain Prediction Database,” Nucleic

Acids Research, Vol. 40, pp. D306- D312, 2012.

[62] D.H. Huson and C. Scornavacca, “A Survey of Combinatorial Methods for Phy-

logenetic Networks,” Genome Biology and Evolution, Vol. 3, pp. 23-35, 2011.

[63] D.T. Jones, W.R. Taylor and J.M. Thornton “The Rapid Generation of Mutation

Data Matrices from Protein Sequences,” CABIOS, Vol. 8, pp. 275-282, 1992.

[64] S. Karlin and S.F. Altschul, “Methods for Assessing the Statistical Significance

of Molecular Sequence Features by Using General Scoring Schemes,” Proceedings

of The National Academy of Sciences, USA, Vol. 87, pp. 2264-2268, 1990.

[65] K. Katoh and D.M. Standley, “Mafft Multiple Sequence Alignment Software

Version 7: Improvements In Performance and Usability,” Molecular Biology and

Evolution, Vol. 30, No. 4, pp. 772-780, 2013.



158

[66] Y. Kim and S. Subramaniam, “Locally Defined Protein Phylogenetic Profiles

Reveal Previously Missed Protein Interactions and Functional Relationships,” Pro-

teins, Vol. 62, pp. 1115- 1124, 2006.

[67] M. Kimura, “A Simple Method for Estimating Evolutionary Rates of Base Substi-

tutions Through Comparative Studies of Nucleotide Sequences,” Journal of Molec-

ular Evolution, Vol. 16, No. 2, pp. 111-120, 1980.

[68] K.D. Ko, G. Bhardwaj, Y. Hong, G.S. Chang, K. Kiselyov, et al., “Phylogenetic

Profiles Reveal Structural/Functional Determinants of TRPC3 Signal-Sensing An-

tennae,” Communcative & Integrative Biology, Vol. 2, pp. 133-137, 2009.

[69] E.V. Koonin, L. Aravind and A.S. Kondrashov, “The Impact of Comparative

Genomics on Our Understanding of Evolution,” Cell, Vol. 101, No. 6, pp. 573-576,

2000.

[70] H.W. Kuhn and A.W. Tucker, Ed., “Contributions to the Theory of Games,”

Ann. of Math. Stud., Vol. 24, Princeton University Press, Princeton, 1950.

[71] S.K. Kummerfeld and S.A. Teichmann, “Protein Domain Organisation: Adding

Order,” BMC Bioinformatics, Vol. 10, pp. 39, 2009.

[72] S. Le and O. Gascuel, “An Improved General Amino-acid Replacement Matrix,”

Molecular Biology and Evolution, Vol. 25, No. 7, pp. 1307-1320, 2008.

[73] P. Legendre and V. Makarenkov, “Reconstruction of Biogeographic and Evolu-

tionary Networks Using Reticulograms,” Systematic Biology, Vol. 51, No. 2, pp.

199-216, 2002.



159

[74] I. Letunic, R.R. Copley, S. Schmidt, F.D. Ciccarelli, T. Doerks, J. Schultz, C.P.

Ponting and P. Bork, “SMART 4.0: Towards Genomic Data Integration,” Nucleic

Acids Research, Vol. 32, No. Suppl 1, pp. D142-D144, 2004.

[75] M. Li, J.H. Badger, X. Chen, S. Kwong, P. Kearney and H. Zhang, “An

Information-Based Sequence Distance and Its Application To Whole Mitochondrial

Genome Phylogeny,” Bioinformatics, Vol. 17, No. 2, pp. 149-154, 2001.

[76] G. Lima-Mendez, J. Van Helden, A. Toussaint and R. Leplae, “Reticulate Repre-

sentation of Evolutionary and Functional Relationships between Phage Genomes,”

Molecular Biology and Evolution, Vol. 25, No. 4, pp. 762-777, 2008.

[77] R. Luce and H. Raiffa, “Games and Decisions: Introduction and Critical Survey,”

Dover Press, 1989.

[78] S.C. Madeira and A.L. Oliveira, “Biclustering Algorithms For Biological Data

Analysis: A Survey,” IEEE/ACM Transactions on Computational Biology and

Bioinformatics, Vol. 1, No. 1, pp. 24-45, 2004.

[79] V. Makarenkov and P. Legendre, “From a Phylogenetic Tree to a Reticulated

Network,” Journal of Computational Biology, Vol. 11, No. 1, pp. 195-212, 2004.

[80] A. Marchler-Bauer, S. Lu, J.B. Anderson, F. Chitsaz, M.K. Derbyshire, C.

DeWeese-Scott, J.H. Fong et al., “CDD: A Conserved Domain Database For The

Functional Annotation of Proteins,” Nucleic Acids Research, Vol. 39, No. Suppl 1,

pp. D225-D229, 2011.

[81] MATLAB and Statistics Toolbox Release 2013b, The MathWorks, Inc., Natick,

Massachusetts, United States.



160

[82] J. Maynard Smith, “The Theory of Games and the Evolution of Animal Con-

flicts,” Journal of Theoretical Biology, Vol. 47, No. 1, pp. 209-221, 1974.

[83] J. Maynard Smith, “Evolution and the Theory of Games,” Cambridge University

Press, 1982.

[84] S. McGinnis and T. Madden, “BLAST: At the Core of a Powerful and Diverse

Set of Sequence Analysis Tools,” Nucleic Acids Research, Vol. 32, Suppl 2, pp.

W20-W25, 2004.

[85] K.M. Murali and S. Kasif, “Extracting Conserved Gene Expression Motifs From

Gene Expression Data,” Pacific Symposium on Biocomputing, No. 8, pp. 77-88,

2003.

[86] J.C. Nacher, T. Ochiai, M. Hayashida and T. Akutsu, “A Bipartite Graph Based

Model of Protein Domain Networks,” In: Complex Sciences, Vol. 4 (J. Zhou, ed.).

pp. 525-535 Lecture Notes of the Institute for Computer Sciences, Social Informat-

ics and Telecommunications Engineering. Springer Berlin Heidelberg, 2009.

[87] J. Nash, “Equilibrium Points in N-person Games,” Proceedings of the National

Academy of Sciences, Vol. 36, No. 1, pp.48-49, 1950.

[88] J. Nash, “Non-cooperative Games,” The Annals of Mathematics, Vol. 54, No. 2,

pp. 286-295, 1951.

[89] J. von Neumann, “Zur Theorie der Gesellschaftsspiele,” Mathematische Annalen,

Vol. 100, No. 1, 1928, pp. 295-320, English translation: “On the Theory of Games

of Strategy,” In: A. W. Tucker and R.D. Luce, Ed., Contributions to the Theory

of Games, Vol 24, Princeton University Press, 1959.



161

[90] J. von Neumann and O. Morgenstern, “Theory of Games and Economic Behav-

ior,” Princeton University Press, 1944.

[91] A. Ochoa, M. Llinas and M. Singh, “Using Context To Improve Protein Domain

Identification,” BMC Bioinformatics, Vol. 12, pp. 90, 2011.

[92] A. Pang, A.D. Smith, P.A.S. Nuin and E.R.M. Tillier, “SIMPROT: Using An

Empirically Determined Indel Distribution In Simulations of Protein Evolution,”

BMC Bioinformatics, Vol. 6, pp. 236, 2006.

[93] L. Parida, “Pattern Discovery in Bioinformatics: Theory & Algorithms.,” Chap-

man and Hall/CRC, 2007.

[94] W.R. Pearson and D.J. Lipman, “Improved Tools for Biological Sequence Com-

parison,” Proceedings of The National Academy of Sciences, USA, Vol. 85, pp.

2444-2448, 1988.

[95] M. Pellegrini, E. Marcotte, M. Thompson, D. Eisenberg and T. Yeates, “Assign-

ing Protein Functions By Comparative Genome Analysis: Protein Phylogenetic

Profiles,” Proceedings of The National Academy of Sciences, USA, Vol. 96, pp.

4285-4288, 1999.

[96] B. Peng and M. Kimmel, “simuPop: A Forward-time Population Genetics Sim-

ulation Environment,” Bioinformatics, Vol. 21, pp. 3686-3687, 2005.

[97] B. Peng and X. Liu, “Simulating Sequences of the Human Genome With Rare

Variants,”, Human Heredity, Vol. 70, pp. 287-291, 2010.

[98] P. Pipenbacher, A. Schliep, S. Schneckener, A. Schonhuth, D. Schomburg, et al.,

“ProClust: Improved Clustering of Protein Sequences With An Extended Graph-

based Approach,” Bioinformatics, Vol. 18, Suppl 2, pp. S182-S191, 2002.



162

[99] C.P. Ponting and R.R. Russell, “The Natural History of Protein Domains,” An-

nual Review of Biophysics and Biomoleular Structure, Vol. 31, pp. 45-71, 2002.

[100] D. Posada and K. Crandall, “Intraspecific Gene Genealogies: Trees Grafting

Into Networks,” Trends in Ecology and Evolution, Vol. 16, No. 1, pp. 37-45, 2001.

[101] A. Prelic, S. Bleuler, P. Zimmermann, A. Wille, P. Buhlmann, et al., “A Sys-

tematic Comparison and Evaluation of Biclustering Methods For Gene Expression

Data,” Bioinformatics, Vol. 22, pp. 1122-1129, 2006.

[102] T. Przytycka, G. Davis, N. Song and D. Durand, “Graph Theoretical Insights

Into Evolution of Multidomain Proteins,” Journal of Computational Biology, Vol.

13, pp. 351-363, 2006.

[103] M. Punta, P.C. Coggill, R.Y. Eberhardt, J. Mistry, J. Tate, C. Boursnell, N.

Pang, K. Forslund, G. Ceric, J. Clements, A. Heger, L. Holm, E.L. Sonnhammer,

S.R. Eddy, A. Bateman, and R.D. Finn, “The Pfam Protein Families Database,”

Nucleic Acids Research, Vol. 40, Database Issue, pp. D290-D301, 2012.

[104] A. Rambaut and N.C. Grassly, “Seq-Gen: An Application for the Monte Carlo

Simulation of DNA Sequence Evolution Along Phylogenetic Trees,” Bioinformatics,

Vol. 13, pp. 235-238, 1997.

[105] J.A. Ranea, C. Yeats, A. Grant and C.A. Orengo, “Predicting Protein Func-

tion With Hierarchical Phylogenetic Profiles: The Gene3D Phylo-Tuner Method

Applied To Eukaryotic Genomes,” PLoS Computational Biolology, Vol. 3, e237,

2007.



163

[106] B. Rannalaa and Z. Yang, “Probability Distribution of Molecular Evolutionary

Trees: A New Method of Phylogenetic Inference,” Journal of Molecular Evolution,

Vol. 43, No. 3, pp. 304-311, 1996.

[107] M.S. Rosenberg, “MySSP: Non-stationary Evolutionary Sequence Simulation,

Including Indels,” Evolutionary Bioinformatics Online, Vol. 1, pp. 81-83, 2005.

[108] W. Rudin, “Principles of Mathematical Analysis,” Vol. 3, New York: McGraw-

Hill, 1976.

[109] N. Saitou and M. Nei. “The Neighbor-joining Method: A New Method For

Reconstructing Phylogenetic Trees,” Molecular Biology and Evolution, Vol. 4, No.

4, pp. 406-425, 1987.

[110] S.F. Schaffner, C. Foo, S. Gabriel, D. Reich, M.J. Daly and D. Altschuler, “Cal-

ibrating a Coalescent Simulation of Human Genome Sequence Variation,” Genome

Research, Vol. 15, pp. 1576-1583, 2005.

[111] N. Shah, “Clustering and Classification of Multi-domain Proteins,” Master’s

thesis. The United States: University of Nebraska-Lincoln, 2013.

[112] N. Shah, S.D. Scott and E.N. Moriyama, “Domain-Content Based Clustering

of Multi-domain Proteins,” 2014, In Review.

[113] T.F. Smith and Michael S. Waterman, “Identification of Common Molecular

Subsequences,” Journal of Molecular Biology, Vol. 147, No. 1, pp. 195-197, 1981.

[114] P.H.A. Sneath, “Reticulate Evolution in Bacteria and Other Organisms: How

Can We Study It?” Journal of Classification, Vol. 17, pp. 159-163, 2000.



164

[115] R.R. Sokol and C.D. Michener, “Statistical Methods for Evaluating Systematic

Relationships,” University of Kansas Scientific Bulletin, Vol. 38, pp. 1409-1411,

1958.

[116] C.C.A. Spencer and G. Coop, “SelSim: A Program to Simulate Population

Genetic Data With Natural Selection and Recombination,” Bioinformatics, Vol.

20, pp. 3673-3675, 2004.

[117] J. Stoye, D. Evers and F. Meyer, “ROSE: Generating Sequence Families,” Bioin-

formatics, Vol. 14, pp. 157-163, 1998.

[118] C.L. Strope, S.D. Scott and E.N. Moriyama, “indel-Seq-Gen: A New Protein

Family Simulator Incorporating Domains, Motifs, and Indels,” Molecular Biology

and Evolution, Vol. 24, pp. 640-649, 2007.

[119] C.L. Strope, K. Abel, S.D. Scott and E.N. Moriyama, “Biological Sequence

Simulation for Testing Complex Evolutionary Hypotheses: indel-Seq-Gen Version

2.0,” Molecular Biology and Evolution, Vol. 26, No. 11, pp. 2581-2593, 2009.

[120] A. Tanay, R. Sharan and R. Shamir, “Discovering Statistically Significant Bi-

clusters in Gene Expression Data,” Bioinformatics, Vol. 18, Suppl. 1, pp. S136-S144,

2002.

[121] The Gene Ontology Consortium, “Creating the Gene Ontology Resource: De-

sign and Implementation,” Genome Research, Vol. 11, pp. 1425-1433, 2001.

[122] A.E. Todd, C.A. Orengo and J.M. Thornton, “Evolution of Function In Protein

Superfamilies, From A Structural Perspective,” Journal of Molecular Biology, Vol.

307, No. 4, pp. 1113-1143, 2001.



165
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