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Many bioinformatics analyses use multiple sequence alignments (MSAs) as their

input data. Therefore, the quality of an MSA is critical. When selecting an MSA,

users often rely on the overall accuracy reported in published studies where various

MSA programs are evaluated using only a small number of benchmark datasets. For

protein sequences, such benchmark alignments are often generated based on protein

3D-structure information, limiting the numbers and types of alignments that can be

tested. The main objective of this study is to develop a method that can improve

the quality of MSAs. Toward this goal, we first developed SuiteMSA, a graphical

MSA viewing and assessment software package. It helps users to visually and quan-

titatively assess MSAs produced by any automated programs. A learning problem

of this nature requires a large number of reference protein alignments and currently

available benchmark databases are not sufficiently large nor diverse. Therefore, we

constructed a new simulated alignment benchmark database, SimDom. It includes a

large number of protein sets with a wide range of properties and levels of divergence

as well as multi-domain architectures. Using this benchmark, we evaluated the per-

formance of five MSA programs and developed a system of measures that quantify

the shift in performance between the programs. We determined which aspects of the

sequence sets and resulting alignments influenced the performance shift. Based on

this knowledge, we developed a multi-class classifier based on a multi-layer perceptron



to select the alignment closest to the optimal. Using this ”SeLecting an Alignment

Program” (SLAP) classifier, we successfully increased the average quality score of

the selected alignments by as much as 0.052 for the simulated datasets and by as

much as 0.259 for the non-simulated datasets over the best effort of a single program.

Successful selection of the alignment closest to the optimum will allow for better re-

sults from downstream analyses and thus contribute to the improvement of various

bioinformatics and molecular evolutionary analyses.
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BEST average maxCSS for a dataset
CSSSLAP average CSS of the SLAP predicted alignment for a specific dataset
CSSCLTW2 average CSS of the CLTW2 alignment on a specific dataset
CSSLINSI average CSS of the LINSI alignment on a specific dataset
CSSMUSCLE average CSS of the MUSCLE alignment on a specific dataset
CSSPROB average CSS of the PROB alignment on a specific dataset
CSSOMEGA average CSS of the OMEGA alignment on a specific dataset

∆BP(p) BEST for a specific dataset - CSSp

where p is the program used to generate the alignment
∆SP(p) CSSSLAP− CSSp for a specific dataset

where p is the program used to generate the alignment

Ratio variables

SLAP RAT ratio between the SLAP predicted CSSSLAP and the maxCSS
RAT CLTW2 ratio between the CLTW2 CSS and the maxCSS
RAT LINSI ratio between the LINSI CSS and the maxCSS
RAT MUSCLE ratio between the MUSCLE CSS and the maxCSS
RAT PROB ratio between the PROB CSS and the maxCSS
RAT OMEGA ratio between the OMEGA CSS and the maxCSS
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Chapter 1

Introduction

1.1 Motivation

The multiple sequence alignment (MSA) plays a central role in nearly all bioinfor-

matics and molecular evolutionary analyses. It is involved in, e.g., similarity search,

phylogenetic analysis, identification of conserved motifs and domains, and prediction

of protein structures. In all of these tasks, the first step is to compare the sequences

by building MSAs. The process of building an MSA is to infer homologous positions

between the sequences and place gaps in the sequence in order to align these homol-

ogous positions. These gaps represent evolutionary events of their own. Gaps are

caused by either insertions or deletions of nucleotides or amino acids (therefore also

called indels) on a particular lineage of sequences during the evolution. In this sense,

building an MSA is to reconstruct the evolutionary history of the sequences involved.

With the advent of new technology making the sequencing of genomes cheaper

and faster, there is an abundance of sequence data to be analyzed. With this in-

creasing volume of data comes an increasing dependence on automated programs to

generate MSAs quickly and accurately. Alignment quality reflects how accurately the

alignment depicts the evolutionary relation between a set of sequences. Alignment

quality is critical to the accuracy of the subsequent studies. For example:
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• A higher false positive rate in the screening for positive selection events has

been linked to alignment quality [1]. By positive selection, we mean the process

by which new advantageous genetic variants enter the population. Decreas-

ing accuracy in the MSA causes non-homologous positions to be erroneously

aligned,leading to more sites incorrectly identified to be under positive selec-

tion.

• Differences in alignments can cause a disagreement in the outcomes of phyloge-

netic analysis. For example, Morisson and Ellis [2] found that variations in the

MSA produced greater differences in the resulting trees than were produced by

using different phylogeny reconstruction methods on the same alignment.

• The prediction of protein 3D-structure is also very sensitive to alignment qual-

ity. Raghava et al.[3] stated in reference to protein 3D-structure, “the utility

of any prediction is completely dependent on the accuracy of the alignment.”

This opinion is shared and nicely summed up by D. T. Jones, a professor of

Bioinformatics at the University College London and the author of many pro-

tein structure prediction methods: “As the familiar joke goes, there are really

only three things that govern the overall accuracy of comparative modeling:

alignment quality, alignment quality, and ... alignment quality.” [4]

Due to its significant impact on many bioinformatics and molecular evolutionary

analyses, MSA reconstruction is one of the most heavily scrutinized bioinformatics

fields. In the quest for better automated MSAs, numerous MSA reconstruction meth-

ods have been developed. Assessment of MSAs, however, is usually reserved for power

users. Often regular users simply run one MSA method on default parameters and

proceed directly to the next analysis without examining the alignment output. Con-

sidering the importance of MSAs, it is desirable if quality assessment of MSA can be
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performed more easily and more intuitively by all researchers who are interested in se-

quence analysis. As Morrison [5] also pointed out, visual inspection of multiple MSAs

would greatly help improve the quality of MSAs and consequently the reconstruction

of phylogenies and other downstream analyses.

When assessing alignment methods, reports are usually made on the average accu-

racy of an alignment program using a small number of benchmark datasets generated

usually based on structural alignments of proteins. Not only are these benchmark

datasets relatively low in the variety of reference alignments they offer, but also they

represent only a best educated approximation of a correct alignment. Compounding

this with the fact that these studies do not examine the case by case difference in

alignment, either qualitatively or quantitatively, then the results can at best be viewed

as only vague recommendations. Even if an alignment program had the highest av-

erage accuracy across all alignment problems tested, it is not known if all sequence

sets of specific characteristics can be aligned with the highest accuracy by this single

alignment program, even if this alignment program had the highest average accuracy

across all alignment problems tested. In other words, an alignment program that

would not be recommended for use due to its lower average accuracy score could

actually produce the alignment closest to the optimal on sequence set of different

characteristics.

In this study, our main objective was to develop a method that can improve the

quality of multiple sequence alignments. To help the user select the alignment that

was closer to the optimal alignment, we first developed SuiteMSA, a graphical MSA

viewing and assessment program. A project of this nature requires a large number of

protein sequence sets along with reference alignments to model as training and testing

data. Currently available benchmark databases do not have a sufficient amount of

data to successfully train a classifier of sufficient capability to learn this difficult
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problem. Therefore, we constructed a large simulated alignment benchmark database,

SimDom. The SimDom benchmark MSA database along with utilities provided by

SuiteMSA were used to compare the performance of five currently available MSA

programs. We determined the characteristics of sequence sets and alignments that

indicated where one program would outperform another. Using this knowledge, we

developed a classifier that makes the choice of the “closest to optimal” alignment

from those generated by a group of alignment programs. The novelty of our approach

is that it uses the strengths of each of the five alignment program, each shown to

produce high quality alignment on specific sequences set, to help improve the accuracy

of alignment over all sequence sets.

1.2 Thesis

No single alignment program consistently produces an alignment closer to the op-

timal alignment than any other. With a benchmark database consisting of a large

number of true alignments of realistic protein sequences, the characterizing attributes

of the alignments resulting from different alignment programs can be used to train

a multi-class classifier to select an alignment closer to the optimal than if the choice

of alignment is made simply by the average performance of the individual alignment

program alone.

1.3 Outline of dissertation and contributions

The rest of the dissertation is organized as follows:

• Chapters 2 gives general background information on the concepts of protein

sequences, domain structures, protein evolution, multiple sequence alignments

(MSAs), and representative MSA methods.
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• Chapter 3 discusses the representative metrics used to assess MSA quality. It

also discusses the currently available non-simulated benchmark databases and

two previous studies that attempted to use multiple programs to improve MSA

quality.

• Chapter 4 presents the SuiteMSA package we developed for both visual and

computational assessment of MSA. Three novel viewers that assist the user in

evaluating protein sequence alignments are highlighted. This work has been

published in [6] and [7]

• Chapter 5 discusses the development of a new simulated alignment benchmark

database, SimDom, which contains 144,000 sets of multi-domain protein se-

quences and their true alignments. Our choice of the sequence simulation

method, the simulation design, and the novel approach of how the protein se-

quences and their domain architectures are modeled are described.

• Chapter 6 starts with a survey of the alignment evaluation studies that have

been conducted over the last several years. We then evaluate the relative perfor-

mances of the five alignment programs most frequently used using the SimDom

database. We highlight our method of determining the extent of the improve-

ment possible by employing the strength of the five alignment programs on

different sequence sets. We then analyze the characteristic of the alignment to

determine which can be used as indicators of the shift in relative performance

between the individual alignment programs and used as attributes in the data

model of our multi-class classifier described in Chapter 7.

• Chapter 7 discusses the design of the data model of the input vector that rep-

resent each sequence set used to train the classifier, SeLecting an Alignment
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Program, for the “closest to optimal” problem. This classifier will select an

alignment closer to the optimal than if the choice of alignment is made simply

by the average performance of the individual alignment program alone. We as-

sembled a set of attributes and performed attribute selection trials. The critical

difference between our approach and what has been done in other studies is that

we use attributes that describe each alignment from the group of alignments

to be chosen from for a specific sequence set. Previous studies confined their

attributes to sequence set based characteristics.

• Chapter 8 discusses the training and evaluation of the results for the classifier

SLAP using the sequence sets from SimDom. We discuss the development

of a metric, SLAP RAT, which shows the alignment quality achieved by the

classifier SLAP relative to the maximum quality possible from the set of align-

ment programs. Using this metric, we demonstrated that in spite of the rather

low level of classifier accuracy (¡ 66%, measured using the Cline shift score),

significant increase in the average alignment quality was observed (as much as

5% depending on the datasets and alignment programs compared against). We

further employed the classifier SLAP on non-simulated datasets. Again signif-

icant increase in the average alignment quality as much as 26% was observed.

• Chapter 9 concludes by summarizing the work performed in the dissertation,

the contributions of this work and the work for the future.

1.4 Contributions

The overall objective of this study was to improve the quality of multiple sequence

alignments. Our contributions towards this end are as follows:
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• Development of the SeLecting an Alignment Program(SLAP) classi-

fier. We provided a classifier to help identify alignment closest to the optimal.

It achieved a substantial improvement in average alignment accuracy for both

simulated and non-simulated protein sequences.

• Development of SuiteMSA. We provided a user-friendly program that con-

tains three novel alignment viewers to assist in the visual assessment of MSA

quality. These three viewers are as follows:

1. MSAviewer. It allows graphical assessments of MSAs using functional

information such as secondary structures and transmembrane prediction

2. MSAcomparator. It allows the detailed comparison between two align-

ments with column-wise alignment quality and conservation scores.

3. PixelPlot. It allows a large-scale visual comparison among multiple MSAs.

It can incorporate functional information such as secondary structures and

transmembrane prediction as color schemes.

• Development of SimDom database. We created a large-scale simulated

protein alignment benchmark database, SimDom. It specifically designed for

the evaluation of alignment programs for maximum quality. SimDom has the

following advantages:

1. Availability of true (error free) reference alignments for alignment quality

evaluation

2. Inclusion of a large (1000) protein types incorporating 1750 different do-

main models

3. Inclusion of 144 individual evolutionary scenarios per protein type
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4. Inclusion of a total of 144,000 sequence sets with true alignments

5. Possibility to be easily supplemented by additional simulations

• Development and performance of an alignment program evaluation

protocol. We developed an alignment program evaluation protocol that in-

cluded a system of measures to document relative performance differences in

quality between the alignment programs evaluated. Using this protocol we

showed that the shift in relative performance was much larger than indicated

in previous evaluation studies where only the average quality values had been

used. We also revealed trends that have not been seen previously (i.e., CLTW2

can generate much better MSAs from highly divergent sequence sets compared

to other MSA methods.

• Positive impacts for downstream analyses. Successful selection of the

alignment closest to the optimum will allow for better results from downstream

analyses. Therefore, the results described in this dissertation contributes to the

improvement of various bioinformatics and molecular evolutionary analyses.
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Chapter 2

Background on Proteins and Multiple Sequence Alignments

2.1 Amino acids and proteins

Proteins are the products of the genes located in the DNA of an organism and are one

of the main the materials with which an organism is built. Each individual protein

molecule is made up of a series of amino acids. Amino acids are organic compounds

containing an amine (-NH2) group and a carboxyl (-COOH) group (Figure 2.1). Its

this side chain gives each amino acid its distinctive characteristic. There are twenty

types of amino acids that can be found in proteins. Table 2.1 shows a listing of each

amino acid along with its single letter code and their physico-chemical characteristics.

Amino acids can be grouped by common physico-chemical characteristics, such as the

presence of sulfur in the side chain, the size of the molecule, its polarity or how it

reacts with water. Figure 2.2 shows one example of how these twenty amino acids

can be grouped.

A protein, also known as a poly-peptide, is a series of amino acids joined together

through the peptide bond (Figure 2.1). The peptide bond occurs when the nitrogen

in the amine group of one amino acid forms a double bond with the carbon in the

carboxyl group of the next amino acid, liberating the oxygen of the carboxyl group

and the two hydrogens of the amine group as a molecule of water. The order of

amino acids within a protein is encoded by the DNA sequence of a gene. This code is
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Figure 2.1: The polypeptide bond. A schematic representation of forming a single polypep-
tide bond is shown. The red background represents the amine group, while the blue back-
ground represents the carboxyl group. R1 and R2 represent the side chains of the individual
amino acid. The purple back ground in the middle and bottom of the figure represents where
a peptide bond is formed producing a side-product of one water molecule.

a series of a three-nucleotide set (codon), which is transcribed to the messenger RNA

(mRNA), then translated into the amino acid sequence. The amino acid sequence is

referred to as the primary structure of the protein.

The secondary structure of the protein occurs when the side chains of the amino

acid next to each other in the sequence react in such a way as to cause the amino

acids to form compact regular arrangements. Protein secondary structures can be

categorized into three general types: 1) α-helix, 2) β-strand or sheet, or 3) loop or

coil (Figure 2.3). The α-helix is a compact and rigid helical arrangement of adjacent

amino acids. There is one complete turn of the helix for approximately 3.6 amino

acids. α-helices can contain anywhere from four to over forty consecutive residues.

A β-strand is a segment of the polypeptide that assumes a flat arrangement.

When two or more of these strands are loosely connected by hydrogen bonds, they
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Table 2.1: Twenty amino acids. Amino acids are listed with their single letter code and

side chain characteristics.
Side Chain molecular

name code class polarity charge hydropathy weight frequency
Aspartic acid D acid/amide acidic polar negative -3.5 133.1 5.49
Glutamic acid E acid/amide acidic polar negative -3.5 147.13 6.32

Alanine A aliphatic nonpolar neutral 1.8 89.09 8.76
Asparagine N acid/amide polar neutral -3.5 132.12 3.93

Cysteine C sulfur nonpolar neutral 2.5 121.15 1.38
Glutamine Q acid/amide polar neutral -3.5 146.15 3.9

Glycine G aliphatic nonpolar neutral -0.4 75.07 7.03
Isoleucine I aliphatic nonpolar neutral 4.5 131.18 5.49
Leucine L aliphatic nonpolar neutral 3.8 131.18 9.68

Methionine M sulfur nonpolar neutral 1.9 149.21 2.32
Phenylalanine F aromatic nonpolar neutral 2.8 165.19 3.87

Proline P cyclic nonpolar neutral -1.6 115.13 5.02
Serine S hydroxyl polar neutral -0.8 105.09 7.14

Threonine T hydroxyl polar neutral -0.7 119.12 5.53
Tryptophan W aromatic nonpolar neutral -0.9 204.23 1.25

Tyrosine Y aromatic polar neutral -1.3 181.19 2.91
Valine V aliphatic nonpolar neutral 4.2 117.15 6.73

Arginine R basic basic polar positive -4.5 174.2 5.78
Lysine K basic basic polar positive -3.9 146.19 5.19

Histidine H basic basic polar positive(10%) -3.2 155.16 2.26
neutral(90%)

form β-sheets, which tend to take a pleated sheet shape. The third category of the

secondary structure, a loop or coil (Figure 2.3), is more the absence of either an α-

helix or β-strand or sheet. The coil sections give the protein the flexibility it needs to

assume its ultimate structure and function. Amino acids have different propensities

for forming these secondary structure arrangements. The prediction of their presence

from an amino acid sequence is mainly based on this propensity.

The tertiary structure of a protein, referred to as a “fold”, is the 3-dimensional

structure that a protein assumes when its synthesis is complete. A protein transitions

to this structure by what is historically known as the polypeptide “folding” on itself,

which is the source of the 3D structure of a protein being referred to as a “fold”.

Proteins can exist in stable form after assuming their 3D shape. However, there are

quite a few that form larger complexes with other proteins, where each individual

protein is considered a subunit of the larger structure. When this occurs where

proteins are actual subunits of a larger structure, the final complex is referred to as
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Figure 2.2: Groupings of amino acids. A Venn diagram demonstrates the shared charac-
teristics between amino acids [8].

Figure 2.3: Secondary structures of protein. The three predominant secondary structure
arrangements for protein, the α-helix and the β-sheet, along with coil or loop section, which
is essentially the absence of secondary structure, are illustrated. [9].

the quaternary structure of the protein. Not all proteins have a quaternary structure.

The central dogma of molecular biology is that DNA is transcribed to mRNA,

then translated into the amino acid sequence. The amino acid sequence determines

the secondary structure, which folds into the tertiary structure and where required,
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assembled into the quaternary structure, which provides the function of the protein.

The final shape of a protein is critical to its function. Changes to the amino acid

sequence can lead to changes in its final structure, which can cause an alteration in

its function. By way of evolution, this is how new functions arise. More frequently,

however, these changes are deleterious resulting in the weakening and death of the

individual organisms, and are eventually eliminated from the population.

2.2 Protein sequence evolution

There are a large number of proteins that occur in natureand they have different

structures and functions. The simplest mutation that can occur within a protein

is a change in a single amino acid in a specific position of the sequence. If the

new amino acid is similar in the specific characteristic critical to the function of

the protein as the amino acid replaced, the mutation is more likely to be accepted

and passed to the next generation. If the amino acid is too different in this specific

characteristic, then the mutation is likely to alter the structure of the protein to

the point of rendering the function limited or completely disabled. However, Mother

Nature is not so much an inventor as a tinkerer. Therefore proteins that perform the

same function usually are more similar in sequence and structure than different. For

instance, the human genome shares up to 80% of its genes with cows and up to 60%

with chickens [10]. According to the Tree of Life Web Project [10], “Evidence from

morphological, biochemical, and gene sequence data suggests that all organisms on

Earth are genetically related, and the genealogical relationships of living things can

be represented by a vast evolutionary tree, the Tree of Life.” Therefore, we share not

only genes with other red blooded animals, but also with sharks, shiitake mushrooms,

corn, seaweed and bacteria.
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Inferring the relationship between different organisms starts by comparing the the

sequences of ”homologous” genes or proteins that are presumed to have been derived

from the common ancestor. Homologous proteins usually maintain similar amino

acid sequences and perform the same function. Therefore, these proteins are grouped

into the same family of proteins. Protein families can be also grouped into a protein

superfamily based on their sequences and functions.

Similarity of two proteins can be quantified based on the similarity of their amino

acid sequences. They will most likely not be exactly the same, since with time, DNA

changes will have been introduced to to either or both of the two gene sequences,

causing changes to the amino acid sequences of the coded proteins.

The evolutionary more diverged the two species are, the less similar their DNA

and hence their protein sequences will be. The most frequent change is a substitution

mutation in the DNA some of which can introduce a change in the amino acid in

a specific site in the sequence. The next type of change is when genetic material

has been inserted into the DNA, resulting in the addition of amino acids within

the sequence, or, conversely, when genetic material has been deleted from the DNA

causing the removal of amino acids from the sequence. The former is referred to as

an insertion event and the latter as a deletion event. Together these are referred

to as indel events or simply indels.

2.3 Pairwise protein sequence alignment

In order to compare two sequences, the sequences must be aligned. This means they

must be placed, one over the other, with the order in each sequence preserved, so

that all amino acids (for protein sequences) that are believed to come from the same

position in the ancestral sequence are aligned one over the other.
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Figure 2.4: An example of a sequence evolution. The series of evolutionary events from
the starting sequence (Start seq.) to the current sequence (Current), demonstrating the
insertion (a), deletions (b), and substitution event (c) is illustrated. The gap only columns
in c are merely place holders for the deletions that occurred in Stage 2.

Figure 2.5: Alignment of homologous positions. The homologous positions inherited from
the starting sequence (Start seq.) to the current sequence (Current) are aligned and marked
with the vertical lines at those positions. The scores listed at the bottom are based on a
linear gap penalty, -3 for the each insertion or deletion site, and the BLOSUM 62 scoring
matrix for each aligned amino acid pair.

As an example, we will examine the toy problem of two short evolutionary related

sequences, the ancestral sequence “T H I S L I T E ” and the descendant sequence

“I S A L I G N E D”. Figure 2.4 shows one possible evolutionary scenario from the

starting (ancestral) sequence to the current (descendant) sequence. Three insertion

events occurred between the Start sequence and Stage 1 (Figure 2.4.a). Next are

the three deletion events between Stages 1 and 2 (Figure 2.4.b). Finally between
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Figure 2.6: The BLOSUM62 scoring matrix [11]. This matrix is symmetric about the
upper left to lower right diagonal. This indicates the value for Xij is equal to Xji.

Stage 2 and Current (Figure 2.4.c), a substitution occurred in the 7th residue of Stage

2, resulting in the current sequence. This progression is only one of many possible

evolutionary scenarios.

In essence, to create an alignment is to make a choice between two alternatives

for each amino acid position: 1) decide the two amino acids come from the same

ancestral position and assign them to the same column or 2) decide that the two

amino acids are not from the same ancestral sites and introduce a gap. If an insertion

event has occurred in one sequence, dashes are placed in the corresponding columns

of the other sequence. Likewise, when a deletion event has occurred in a sequence,

dashes are placed in that sequence at the position where the deletion occurred. In

this manner,as shown in Figure 2.5, when the process is complete, the two rows of

this pairwise alignment are the same length (including gaps).

Making the decision between these two alternatives is assisted by the use of scoring

matrices and gap penalties. Scoring matrices express by a numeric value how “likely”

the alignment between two specific amino acids is. This value will be at a maximum
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Figure 2.7: Comparison of global (a) and local (b) pairwise alignment. The value for
each column is given using the BLOSUM62 scoring matrix and -5 for the gap penalty. A
local alignment ends when the running total of the score drops below 0. The blue outline
indicates the positions included in the local alignment. The total alignment scores (99 for
the global alignment and 106 for the local alignment) are shown in blue numbers.

for an individual amino acid when it is paired with another amino acid of the same

kind and will decrease from there for different amino acids. This number therefore

reflects the likelihood that the two amino acids appear at homologous positions. The

actual calculation for these values vary from matrix to matrix, reflecting the change in

likelihood with different evolutionary distances [12][11]. Figure 2.6 gives an example

of a scoring matrix, the BLOSUM62 [11]. Notice that the maximum value between

like amino acids is not the same. The higher the frequency of the two amino acids

occurring as a homologous pair, the higher this maximum value is.

When creating an alignment, the objective is to maximize the alignment score,

which is the summation of all column-wise scores. When two residues are aligned

in a column, the score for that column is taken from the scoring matrix. When a

residue is aligned with a gap, a gap penalty is assigned as the column score. In the

toy alignment given in Figure 2.7, where -3 is assessed for a gap and the BLOSUM62

scoring matrix is used for aligned positions, the final score for the alignment is 6.

The gap penalty scheme used in this sample alignment problem is a linear gap

penalty, where all gaps are treated equally and incur the same penalty. An al-
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ternative gap penalty scheme is the affine gap penalty. This scheme breaks the

penalty into two parts: the gap opening penalty, gpopen and the gap extension penalty,

gpextend. The total gap penalty, gp for an uninterrupted gap section in an alignment

is given as gp = gpopen + gpextendL where L is the length of the uninterrupted gap

section. This scheme is most often used in many programs both for pairwise and

multiple alignments.

The first efficient algorithms that would both align two sequences and guarantee

the best alignment based on a specific scoring scheme are named after their developers:

1. The Needleman and Wunsch [13] algorithm creates a global alignment of two

sequences where all amino acids in both sequences are aligned. Figure 2.7.a

shows the global alignment between two sequences, where a gap penalty of -5

and the BLOSUM62 scoring matrix is used. The total score can be calculated

as 99 in this example.

2. The Smith and Waterman [14] algorithm creates a local alignment of two se-

quences, where only segments of the sequences whose consecutive alignment

score is positive are considered (Figure 2.7.b). The segment with the highest

score is the final local alignment.

Both of these algorithms are based on dynamic programming and take Θ(nm) for

both time and memory, where n and m are the lengths of the two sequences to be

aligned. When the two sequences are of comparable lengths, both algorithms take

roughly Θ(n2) for both time and memory. Pairwise alignment is used, for example,

when calculating the evolutionary distance or identity between two sequences and

sequence similarity search.
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2.4 Multiple sequence alignment

Bioinformatics studies more often than not involve many more than two sequences.

When more than two sequences are involved in an alignment, it is referred to as

a multiple sequence alignment or MSA. An MSA is a representation of the

evolutionary relation of the sequences to each other. Any sequence not related to the

other, if included in the alignment process, can introduce error to the final alignment.

To extend the dynamic programming solutions described in Section 2.3, to include

more than two sequences would increase the complexity to Θ(nk), where k is the

number of sequences. Any growth rate above Θ(n2) quickly becomes intractable in

time. As such heuristics had to be devised to generate multiple sequence alignments

more quickly than Θ(n3) while still maintaining confidence in the solution.

The most used heuristic multiple alignment algorithm is a progressive alignment

[15]. Progressive alignment methods require several steps, and how each step is

accomplished gives rise to the variety of programs. The basic steps of the progressive

alignment algorithm are as follows:

1. Form a pairwise distance matrix which gives a measure of how divergent each

pair of sequences is from the other.

2. Create a phylogeny from this distance matrix and use this as a guide tree.

3. Form the alignment using a heuristic, following the guide tree by starting with

the most closely related sequences and adding the others in order of relation.

Progressive alignment algorithms makes intuitive sense since more similar se-

quences are more likely related to one another from a common ancestral sequences

and are aligned first. More closely related sequences are aligned easily and these align-

ments are more likely to be done correctly. Therefore, these sequences are aligned
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first. However, the disadvantage of any progressive alignment method is that after

a sequence has been added to the growing alignment, it is not possible to go back

and correct mistakes from either the alignment procedure itself or for an error in the

estimated guide tree. The introduction of error early on in the alignment process can

cause larger mistakes toward the end. To correct this potential source of error pro-

grams have added a refinement step after the initial progressive alignment process has

been completed [16] [17]. Some of these programs are described in the next section.

2.5 Discussion of specific alignment programs

In this section, we will discuss the five alignment programs, all variations of the

progressive alignment strategy, that are used in this work. All five are readily available

for free download and lend themselves to batch file usage for aligning large numbers

of sequence sets which is required for the purpose of this study. The five alignment

programs (and their versions) used in this study are:

• ClustalW version 2.1 [18]

• MAFFT version 7.157 [19]

• MUSCLE version 3.8.31 [16]

• Probalign version 1.4 [20]

• Clustal-Omega version 1.2.1.2 [21]

2.5.1 ClustalW2

ClustalW [18] was one of the first progressive alignment programs developed that

also came with a user-friendly interface [22], both of which made it one of the most
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widely used alignment programs for constructing MSAs [8][17]. ClustalW estimates

a guide tree by performing pairwise alignments of all sequences and computing a

distance matrix (no multiple hit correction is used for the guide tree construction).

This distance matrix is then used to construct the guide tree using the Neighbor-

Joining (NJ) method [23]. This guide tree is used for determining the order that the

sequences are aligned and the branch length are used for determining the weighting

factors for the score during alignment.

The program uses the affine gap penalty scheme. Both the gpopen and gpextend, are

adjusted as the alignment process proceeds based on several factors: the alignment

length, the difference in length of either sequence, amino acid composition and the

location of adjacent gaps in the alignment. For example, if a gap has occurred in

the same position in the growing alignment, the penalty is lowered. However, if a

gap has occurred within eighth positions of adjacent gaps, the penalty is increased.

An example of the composition adjustment is the increased penalty for opening a

gap for runs of hydrophobic amino acids. This is because indels tend to occur in

loop areas, which tend to be hydrophilic, but not in structured areas such as the

transmembrane, which are hydrophobic. Sequences are also assigned a weight based

on the guide tree which is used when tallying alignment scores, so that the alignment

is not overly biased due to a large number of very similar sequences in the group.

To accomplish this, the weight factor of the non-similar sequences will be higher

than those of the similar. ClustalW does not performs any refinement step after the

alignment procedure is complete. In the newer version of ClustalW (version 2 or

ClustalW2), an option for the iteration has been included although this option is not

the default.
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2.5.2 MAFFT (the L-INS-i) algorithm

MAFFT stands for Multiple sequence Alignment based on Fast Fourier Transform

[24][17]. It is a program that offers various strategies to optimize the alignment

process for a sequence set of different characteristics. We will focus our discussion

on only the L-INS-i strategy, which assumes that there is only one conserved area

within the sequences. This strategy uses the Smith-Waterman algorithm for the local

alignment of two sequences (described in Section 2.3) to establish the distance matrix

from which to generate a guide tree using the UPGMA method[25].

Before the alignment process, each of these initial pairwise alignments is broken

into n gap-free segments. An “importance value” for each position that occurs in

these gap-free segments is calculated based on the frequency that each residue in

a gap-free segment actually appears in a gap-free segment. This importance value

is used during the progressive alignment step to calculate to assist in aligning two

groups of sequences.

After the progressive alignment step, the alignment is then subjected to iterative

refinement steps which optimize the objective scores involving the weighted sum-of-

pair score and the importance value.

2.5.3 MUSCLE

The major advantage introduced by MUSCLE (MUltiple Sequence Comparison by

Log- Expectation ) [26] is its faster method of estimating the distance matrix of the

first iteration, using the k-mer distance. The three stages this program goes through

are as follows:

1. A pairwise distance matrix is configured using k-mer counting with a compressed

alphabet. A compressed alphabet of size N is a partition of the standard 20-
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letter amino acid alphabet into N disjoint subsets (classes) containing similar

amino acids [27]. Using the distance matrix configured from a compressed al-

phabet, a phylogeny is generated using the UPGMA method. Then, as with

many of the other alignment programs, a progressive alignment is carried out

using this phylogeny as a guide tree, aligning sequences in a prefix order (chil-

dren of a common node before the children of the siblings of the common node).

At each internal node, the profile for each subtree is created and aligned.

2. Using the alignment created above, a new distance matrix is generated using the

Kimura’s method [28]. A new phylogeny is created from this using the UPGMA

method. A progressive alignment is performed on sections of the alignment

where the branching orders changed relative to the first tree produced.

3. A refinement step is carried out by systematically dividing the tree into two

subtrees, forming profiles for each tree, and then realigning these profiles. If

the Sum of Pairs Score (SPS score, the alignment score totaled from o the value

taken form the scoring matrix for each aligned pair of amino acids) is improved,

the new alignment is kept; otherwise it is thrown out. This refinement step is

repeated until convergence or an iteration limit has been reached.

2.5.4 Probalign

Probalign [20] estimates an amino acid posterior probability matrix for each pair of

sequences in the set to be aligned using the Gonnet 160 scoring matrix [29] along

with gap open and extension penalties set at -20 and -1, respectively. A probabilistic

consistency transformation is applied to improve these estimated probabilities.

A guide tree is computed from this matrix using the UPGMA method with the

pairwise expected accuracy alignment scores as distance. Sequence profiles are then
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aligned in a post-order walk along this tree. Finally, iterative refinement is performed

to improve the alignment for up to 100 rounds.

2.5.5 Clustal-Omega

Clustal-Omega [21] is a combination of several existing packages to allow for the

alignment of very large sequence sets. It also has the feature that allows new sequences

to be added to the alignment without the full alignment procedure being carried out,

which is beneficial when aligning with sets in excess of 1000 sequences. The first

innovation employed in this program is in the production of the initial guide tree. To

start this, mBed [30] is used which transforms each sequence to an n dimensional space

where n is proportional to logN (N being the number of sequences). Each sequence

is then replaced by an n-element vector, where each element of the vector is the

distance to one of n ‘reference’ sequences. These vectors, each of which now represent

each sequence, are then clustered to form the guide tree. The input sequences are

now aligned using the HHalign package, which is a process that aligns an HMM (

described in the next section) to an HMM [31].

The refinement step recommended when dealing with large sequences sets forms

an HMM from this initial alignment and using it as an ‘External Profile Alignment’

(EPA). The input sequences are then realigned and the guide tree reconfigured in

multiple iterations. This refinement step is repeated as needed.

2.6 Modeling the MSA with a profile HMM

An MSA can be modeled with an HMM using the profile-HMM architecture [32]

(shown in Figure 2.8). The hidden states allow for the three processes that take

place in evolution, substitution, insertion and deletion. By adjusting the emission
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Figure 2.8: Diagram of a profile HMM modeling an MSA. States marked with an ‘M’ are
match states, with an ‘I’ are insertion states, and ‘D’ are deletion states. Arrows indicate
the directional transitions between states. The pink area represents the repeated pattern
of three states.

frequencies per state, position specific evolutionary rates can be achieved. For the

profile HMM, the model is configured as a series of three distinct states interconnected

with directed edges. These three states are a match state, an insertion state and a

deletion state. Figure 2.8 shows how these sets of three states are laid out. The pink

background high-lights the single set of three states that is repeated to create the

model. Each state has a probability of transition to three other states, one of each

type. The insertion state is the only state that includes a loop back onto itself. This

allows a single state to model the multiple insertions between two conserved columns

in an MSA.

The MSA used to build the profile-HMM can be viewed as the training data. To

form the profile HMM from an MSA, the frequency of each residue in each column is

calculated. Figure 2.9.a shows the start of a DNA alignment from which the profile

HMM will be modeled. A DNA alignment is used for simplicity of the example,

having only four residues (A,T,C, and G), versus the 20 residues for an amino acid

alignment. The principles for the construction of the profile HMM are the same for

both types of sequences (DNA vs. amino acid).

Once the actual counts for those residues present have been calculated (Fig.2.9.b),

pseudo-counts (default probability of an element not represented in the column) are
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Figure 2.9: Modeling a profile HMM from an MSA. The process of creating a profile HMM
from an MSA is illustrated. a) the DNA alignment to be modeled, b) counts for individual
residues, c) the transitions represented by the alignment, and d) the transition counts based
on the alignment. There is an assumption not visible on the image and that is the next
column, not shown on the alignment, would be a full column designated as a match state,
M4. All unlabeled transitions would be given appropriate default frequencies.

added to account for residues that do not appear in the column. The values of

these are dependent on the number of sequences in the alignment. The frequency

of the missing residue should be less than any residue that actually appears in the

column and can be adjusted to reflect the nature of the sequences being modeled. If

the column under consideration is in a highly conserved areas the pseudo-counts or

frequencies would be much lower than if the expected variation within the section of

the sequences that the column appears was higher.

The strategy for assigning columns to states is straightforward. The non-gapped
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columns are assigned to match states. If gaps are present in the column, the number

of gaps is compared to the number of sequences in the MSA. If the ratio is below a

specific threshold, then the column is labeled a match state and the gaps are accounted

for by the transition probability to the deletion state from the preceding match state.

If the ratio is above the specific threshold, then the whole column can be treated as

an insertion state from the preceding column and the frequency of residues counted

as the emission from this insertion state. This threshold can be adjusted to account

for varying amounts of divergence in the MSA. As can be seen in Figure 2.9.b, of the

six columns of the alignment shown in 2.9.a, three of the residues have been assigned

as match states and the other three have been assigned to a single insertion state

between M2 and M3, labeled in Figure 2.9 as I2.

Once the states have been assigned, the state transitions for each state can be

counted. As an example, from the data given in Figure 2.9 the first two gaps in

the gnat sequence are counted as a M-D transition (begin state to D1) and a D-D

transition from D1 to D2. The first ‘A’ in the gnat sequence then contributes one

count to the D1 to I2 transition. The next two ‘A’s contribute two counts to the I2 to

I2 transitions, followed by a single I2 to M3 transition. To complete the model, the

appropriate pseudo-counts or frequencies are added to the transition, again dependent

on the size of the training data (number of sequences in the MSA the model is based

on) and on prior knowledge of the sequences involved.

The profile HMM can be used to give the total probability that any individual

sequence “belongs” to the same family that the profile HMM was modeled on. The

algorithm used for this is called the Forward Algorithm [33], which uses dynamic

programming to calculate the full probability of a sequence. The equations involved

are given by Equation 2.1. These equations are expressed in log space to avoid the

underflow error that occurs when representing small numbers.



28

(2.1)
FM
j (i) = log

eMj(xi)

qxi
+ log[aMj−1Mj

exp(FM
j−1(i− 1)) + aIj−1Mj

exp(F I
j−1(i− 1))

+ aDj−1Mj
exp(FD

j−1(i− 1))];

(2.2)
F I
j (i) = log

eIj(xi)

qxi
+log[aMjIj exp(FM

j (i−1))+aIjIj exp(F I
j (i−1))+aDjIj exp(FD

j (i−1))];

(2.3)FD
j (i) = log[aMj−1Dj

exp(FM
j−1(i))+aIj−1Dj

exp(F I
j−1(i))+aDj−1Dj

exp(FD
j−1(i))];

The initialization conditions for this calculation are FM
begin(0) = 0 and F I

0 (0) = 0.

Profile HMMs are used by Pfam (discussed in the next section) to model protein

domains (conserved regions) and families and in the sequence simulation program we

will discuss in Section 5.2.2.

2.7 Pfam

Each protein has a specific function that is determined by the structure of the protein.

Those parts of the protein sequences that are involved with important function are

bound by what is referred to as a functional constraints. The amount of change

allowed from generation to generation for this part of the sequence is suppressed and

low, resulting in these parts of the sequence being much more conserved than the

section of the protein that are not involved in important functions. Note that by

conserved, we mean that the sequences remain the same or nearly the same as the

genetic material is passed from generation to generation.

The conserved regions in protein sequences are referred to as domains. A protein

generally has one or more of these regions or domains. Domains are separated by

sections of amino acid sequences called linkers, taken from the idea that they link
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the domains together to form the sequence. Different combinations of domains in

different proteins give rise to a large number of types of proteins (protein families)

along with their associated functions. Determining the functions of a domains in one

sequence allows that knowledge to be applied to proteins that have not been studied.

When the same series of domains occurs in two different proteins, the probability of

the two proteins having the same function is very high. As such when the function

of a protein has not been determined by experiment, computationall identifying the

domains within a protein allows the function of the protein to be conjectured.

The Pfam database [34][35][36] is a reference database containing domain families

and their profile HMMs. A Pfam entry is generally classified as either a domain,

family or clan. However, there are less frequent instances where an entry can be

classified as a disorder region, motif, a repeat, a coiled coil, areas of low complexity,

or transmembrane. The current version of Pfam(version 30) has about 16,306 domain

entries.

Each Pfam entry has a seed alignment and a profile HMM that is based on that

seed alignment. Usually there is no profile HMM for Pfam entries such as disordered

areas or low complexity areas. To demonstrate the information available through

Pfam, we will discuss an example domain, EFG IV (PF03764). Figure 2.10 shows an

HMM logo [37] which visualizes the profile HMM for this domain. Figure 2.11 shows

the seed alignment that was used to generate the profile HMM logo. It can be seen

that the four areas in the alignment with high proportion of gaps in each column,

corresponds to the four red vertical lines in the logo, which indicate areas of high

probability for insertions. In Pfam, this domain is given the following description,

“This domain is found in elongation factor G, elongation factor 2 and some tetracy-

cline resistance proteins and adopts a ribosomal protein S5 domain 2-like fold”. It has

the specific function within the protein elongation factor (EF2) of extending from the
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Figure 2.10: The profile-HMM logo for the Pfam domain EFG IV (PF03764). The height
of the letters is proportional to the frequency that the symbol appears in the column. The
three rows of values under the logo represent the probability of occupancy, the probability
of insertion and the probable insertion length, respectively. The areas of blue tinting in the
probability of occupancy represent the areas where the probability is below 0.99. The red
vertical line mark the areas where the probability of insertion is higher than the background
probability of 0.01.

‘body’ much like a lever arm, and is essential for the structural transition needed for

the translocation of peptidyl-tRNA and mRNA to take place (described in InterPro

entry IPR005517). Any protein in which this domain is found is likely to employ it

in a similar function.

Pfam is organized into two divisions: Pfam-A, which contains the alignments

of highly curated families and Pfam-B, which contains the the alignments of auto-

matically generated families. The work in this study deals only with data found in

Pfam-A. Pfam-A families are assigned using the following four-step process.
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Figure 2.11: The seed alignment for the Pfam domain EFG IV (PF03764). This alignment
image was generated by the SuiteMSA application [6] using the alignment viewer tool em-
ploying the hydrophobicity color scheme. The column-wise information and hydrophobicity
graph is shown at the bottom of the alignment.Additional information is available from the
statistics histogram featured on this alignment, specifically that 68% of the columns are
gap free and the average pairwise protein identity is 32%. .

1. A high-quality MSA (the seed alignment) is constructed and adjusted manually.

2. A profile HMM is constructed from the seed alignment (using HMMER3 [38])

3. The profile HMM is searched against the UniProtKB [39] sequence database for

sequences that contain the domain represented by the profile HMM.

4. Both a sequence and a domain gathering threshold are selected and all sequence

regions that score above the domain gathering threshold are included in the full

alignment (as opposed to the seed alignment) for the family.

In addition to the seed alignment and profile HMM, Pfam also provides a set

of domain architectures for each of its entries. A domain architecture is a specific
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Figure 2.12: One of the domain architectures where the domain EFG˙IV (PF03764) is
found. The colored rounded corner shapes represent the domains. The non-domain features,
such transmembrane, disorder, and low complexity areas, are represented by square cornered
light colored shapes.

arrangement of protein domains and other Pfam entries that combine to create a

sequence. Sequences that form proteins using this arrangement are associated with

the architecture. The version 30 of Pfam has more than 184,000 architectures. Con-

tinuing with the example of domain EFG IV, there are 76 domain architectures for

this domain, with a total of 7,048 protein sequences that contain EFG IV. Figure

2.12 shows an example of one of the 76 architectures where the domain EFG IV has

been identified. In this diagram, there are six individual domains. From the annota-

tion of the diagram found above the architecture, it can be seen that there are seven

sequences that use the architecture shown.

Pfam also provides an unrooted phylogeny for each seed alignment. This phy-

logeny was constructed using FastTree 2.1.9 [40], an application that can infer approximately-

maximum-likelihood phylogenetic trees from an MSA for very large numbers of se-

quences where the traditional methods of inferring a phylogeny would require sub-

stantially more time. It has been shown that FastTree is more accurate than PhyML

3 [41] with default settings, and much more accurate than the distance-matrix meth-

ods (NJ and UPGMA) that are traditionally used for large alignments [42]. We use

these trees, as downloaded from Pfam, to calculate the average pairwise divergence

of each model domain used in our simulation (discussed in Chapter 3).
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Pfam also provides links to other databases and established annotation such as

the Gene Ontology [43], the Protein Data Bank [44], SCOP [45] classification, and

InterPro informatio [46]. These additional features were not used in this study and

as such are not discussed here.
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Chapter 3

Assessment of MSAs

In this chapter we discuss the various metrics that are available to assess the quality of

an alignment. With the increasing awareness of the need for producing quality MSAs,

quite a few metrics have been developed to capture different aspects of an MSA and

to assist the user in assessing and comparing MSAs. We group these metrics into

two groups: 1) characteristic metrics that do not require a reference alignment for

comparison and 2) comparison metrics that do require a reference alignment. The

former is discussed as possible values to be used as attributes in the data model of

a specific sequence set while the latter as a metric to be used to determine the most

accurate, the closest to the optimal, alignment. We analyze the comparison metrics

and explain why we chose the Cline shift score (CSS) over the more frequently used

developer score for this study. We also discuss in detail the two previous studies that

bring together several alignment programs in an effort to improve the overall accuracy

3.1 Characteristic metrics

We define “characteristic metrics” as those that convey information on a specific

characteristic of an alignment but do not require a reference or true alignment. These

metrics include the following statistics for an alignment:

• The percent of gaps in the alignment compared to the minimum number needed
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• The percent of un-gapped columns

• The percent of completely conserved columns (those columns containing only

one type of amino acid)

• Average pairwise protein identity (discussed later in this section)

Characteristic metrics also include formal scoring schemes such as:

• Information score (used in this study; discussed in detail later in this section)

• NorMD [47]: A scheme that uses a scoring matrix, such as BLOSUM62 or

PAM100 to calculate a score for the full alignment. This metric is used in

AQUA (described in Section 3.5.1). The final score is strongly influenced by the

composition of the sequences as much as their similarities. As such it cannot be

used as a comparative indicator of alignment quality between different sequence

sets. Consequently, this metric was not used in this work.

• Guidance [48]: A computationally expensive scoring system that involves cre-

ating a large number of bootstrapped alignments, distance calculations, tree

construction and re-alignments using the resulting trees as the guide trees. It

requires that the alignment program being evaluated be able to take a guide

tree as input to guide the order of alignment. Not all alignment programs allow

the input of a guide tree, i.e.Probalign [20], which is one of the programs used

in this study. Consequently, this metric was not used in this work. Recently an

updated version [48] was released, which featured options to locate unreliable

sections of an alignment, which could be incorporated into our future work.
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3.1.1 Average pairwise protein identity

average pairwise protein identity (or protein identity in short) is the average number of

identical amino acids aligned together between each pair of protein sequences within

an MSA, divided by the total number of alignment positions within the pairwise

alignment. The algorithm for this calculation is shown in Algorithm 1.
Data: MSA

Result: Calculated Average Pairwise Identity for MSA

Initialize total Pair Identity = 0;

Initialize pair Count = 0;

forall pairs of sequences in the MSA do

initialize matches = 0;

initialize aligned Pair Count = 0;

for each aligned pair of residues between the sequences of a pair do

if both residues are the same then

increment matches;

end

increment aligned Pair Count;

end

pair Identity = matches / aligned Pair Count;

add pair Identity to total Pair Identity ;

increment pair Count;

end

average Pairwise Identity = total Pair Identity/pair Count ;

Algorithm 1: Calculation of the average pairwise protein identity.

As can be seen in this algorithm, residues aligned to the gap symbol do not

contribute to the score. In the extreme case, by making an alignment extremely gappy,

even if a very low number of amino acids are involved in the alignment, misleadingly
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high protein identity can be achieved. This score has been used as an indicator of

the level of divergence among sequences. For example, the range of protein identities

between 10% and 30%, so called the twilight zone of protein similarity, is known

to be indicative of sequence divergence large enough to cause false positives when

identifying homologous protein sequences [49].

3.1.2 Information score

The information score is the average column-wise information score [50]. It is based

on Shannons entropy [51], which is given in Equation 3.1. The higher the entropy of

the column, the less information is present and the lower the score should be for the

column. The calculation of the information score for a protein sequence is shown in

Equation 3.2. A fully conserved column, i.e. one that has no gaps and occupied by the

same amino acid, represents the situation of minimum entropy (0) and consequently

maximum information, which for protein sequences with 20 different amino acids,

would be log2(20) = 4.31. For DNA, with only four nucleotides, the maximum

information would be log2(4) = 2.0. The average information score for an alignment

is the summation of the information score from all columns of the alignment divided

by the number of columns (shown in Equation 3.3). Because of the relationship

between the entropy and information, the average column-wise information score can

be viewed as a measure of alignment conservation.

Shannon’s entropy = Σk pk · log2(pk) (3.1)

Information : I = log2(20)− Σk pk · log2(pk) (3.2)
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average information score = (ΣL
i=1I(i))/L (3.3)

where L is the number of columns in the alignment.

Gaps are not counted as a residue in the entropy calculation. Their presence is

accounted for as a discount of the resulting score [50]. For example, when calculating

the column-wise entropy for an MSA consisting of ten sequences, for a column with

one gap and all other residues the same, the entropy of such a column would be 0

resulting in the maximum score for the column. Therefore, it is necessary to discount

the score for such a column. This can be done by dividing the number of residues

in the column by the number of sequences. In the case above, 9/10 = 0.9. Since

for twenty amino acids, the maximum score is 4.31, for the example above (one gap

out of 10 residues) the final column-wise information score would be 4.31 x 0.90 =

3.888. Likewise, the score for a column occupied by only a single residue and nine

gaps would result in a column-wise information score of 4.31 x 0.10 = 0.431.

3.2 Comparison metrics

For the purposes of this study, a single numeric metric that would best describe the

quality or optimality of a reconstructed alignment when compared to the reference

alignment is needed. Frequently, two or more of these metrics must be compared to

obtain the full picture of the alignment quality. Several metrics have been defined to

compare two alignments of the same sequences [52][53][54]. For this work, we want

to be able to declare that one alignment from a set of alignments generated from the

same sequence set is closer to the optimal alignment than any of the others in the

set. The optimal alignment would be identical to the reference alignment and as such

must be indicated by the maximum value of the metric used. We describe the several
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of these metrics and discuss which we decided to use in this study.

3.2.1 Column score

The column score (CS) [55] is based on the number of full columns in the reference

alignment that were completely reproduced in the candidate alignment. Traditionally

only full columns (columns with no gaps) are considered in the calculation of CS. In

the case where there are x columns in the alignment with only y of these columns

with no gaps, if z of these columns were reproduced identically from the reference,

then the CS is yz . If all columns were considered, the CS would be xz .In the

case of very closely related sequences where the proportion of no-gap columns is

much higher than those with gaps, the two CS values can be close. However, as the

divergence between the sequences in the alignment increases, the number of gaps will

also increase, causing y to decrease, which in turn causes the difference between the

two CS values to widen. Therefore, CS could be representative of only a very small

portion of an alignment. The percent of columns involved in the column score would

be needed to better interpret the quality conveyed by the score.

In SuiteMSA, we have implemented a more liberal version of this traditional CS,

where the user may select a threshold of gaps, under which a column is eligible to

participate in the final score. This modified version is called the “CS with gaps” and

is explained in Section 4.3.

3.2.2 Developer and modeler score

The developer score, which is also referred to as the sum-of-pairs score (SPS), is a

directional metric; it is seen from the point of view from a specific alignment [56].

If the point of view is changed, the value of the metric would most likely not be

the same, except if the two alignments were identical. When comparing a candidate
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Figure 3.1: Comparison of developer and modeler scores. a) Illustration of the insensitivity
of the developer score (SPS) to the error of over-alignment. b) Illustration of the insensitivity
of the modeler score to the errors of under-alignment.

alignment C with a reference alignment R, C can be viewed as a test set and each

aligned residue pair within C can be viewed as a single prediction. As such, the

developer score can be seen as a measure of the recall and is expressed as

Sdeveloper =
aprc
apr

, (3.4)

where aprc is the number of aligned pairs in both the reference alignment and the

candidate alignment (true positives) and apr is the number of aligned pairs in the

reference (true positives plus false negatives). This measure is invariant under a

change in the number of false positives, which is the number of aligned pairs in C

that are not in R. This would occur when C is over-aligned (has too few gaps) which

generates a more compact alignment. Figure 3.1a gives an illustration of this. The

first three and last two columns of this sample alignment are identically aligned in
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both R and C. The differences between the two alignments occur within the sections

indicated by the dotted outline. The two alignments are not identical. However, since

all pairs within the orange dotted square of R are also aligned in C, even though the

alignments are not identical, the developer score (SPS) is 36/36 = 1, which is the

maximum value possible.

The modeler score [56] switches the perspective of the developer score. If C is

viewed as the test set, the modeler score can be viewed as the precision and is given

as

Smodeler =
aprc
apc

, (3.5)

where aprc is the number of aligned pairs in both the reference alignment R and

the candidate alignment C (true positives) and apc is the number of aligned pairs in

C (true positives and false positives). This measure is invariant under a change in

false negatives, or the number of aligned pairs in R that are not aligned in C. This

occurs when the alignment is under-aligned (has too many gaps). Figure 3.1b gives an

illustration of this under-alignment. Once again, the first three and last two columns

of this sample alignment are identically aligned in both R and C. The differences

between the two alignments are indicated by the dotted outline. All aligned pairs

that occur in the orange dotted outline in C also occur in R generating a modeler

score of 31/31 = 1. Once again, even though the two alignments are not identical,

the developer score is at the maximum value of 1.0.

Both of these scores, therefore, suffer from insensitivity to a specific type of errors

which should not be present in a quality/optimality score. When used together, the

amount of under-alignment and over-alignment can be noticed by the range in the

difference between the two numbers. Both of these scores are thus needed to fully

interpret the alignment quality.
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3.2.3 Cline shift score

The Cline shift score (CSS) represents a more robust metric that rewards correct

alignments while penalizing both over- and under-alignment [57]. This is accom-

plished by quantifying the shift information. “Shift” is a pairwise measurement of

misalignment. Given two alignments of the same sequence set, R and C, the CSS is

calculated as follows:

• Let |R| and |C| be the number of aligned pairs in R and C, respectively.

• Let SA and SB be two sequences present in these two alignments.

• Let ai be residue i of SA and let it be aligned to bj of sequence SB in C but to

bk in R. Then shift(ai, bk) is calculated as the number of residues from bj to

bk. Let bj of sequence SB in C be aligned to ag in R

• If ai is not aligned to any residue of SB, then shift(ai) is undefined.

• The score for aligned-pair i, Ci, involving aj and bk is given as

csR(Ci) =

 s(aj, bk) + s(bk, aj) if aj ∧ bk 6= gaps

0 otherwise
(3.6)

where the subscore s(aj, bk) is given by

s(aj, bk) =


1+ε

1+|shift(aj ,bk)|
− ε if shift(aj, bk) is defined

0 otherwise
(3.7)

where ε is a scoring parameter set to 0.2.

• CSS for the alignment C with respect to R is given as
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CSSR(C) =

∑|C|
i=1 csR(Ci)

|C|+|R|
. (3.8)

• CSS for the alignment R with respect to C will be the same value.

The range in csR(Ci) runs between -0.4 and 2 (-2ε). When an aligned pair appears

in both C and R, i.e., they were correctly aligned, both s(aj, bk) and s(bk, aj) equal

1, and csR(Ci) = 2 , effectively increasing the CSS, thereby demonstrating that this

metric rewards properly aligned pairs. For the situation where the aligned pair does

not exist in R, as long as shift(ai, bk) is less than 5, the alignment will contribute to

the CSS but at a discounted rate (the purpose of ε). Furthermore, if shift(ai, bk) is

larger than 5, indicating a largely misaligned section, the contribution of csR(Ci) is

negative, deducting from the score achieved by better aligned areas, demonstrating

that this metric penalizes improperly aligned pairs.

Now we will examine how this metric treats over- and under-alignment. First,

we will consider the case where C is identical to R. In the calculation for CSSR(C)

(Equation 3.8), each aligned pair will contribute a count of 2 to the numerator to-

taling 2|R| and the denominator will be effectively be |R|+|C|= |R|+|R|, so that the

CSSR(C) = (2|R|)
(2|R|) = 1, which is the maximum score.

In the case of the over-aligned alignment, as shown in Figure 3.1a, all aligned

pairs in R are also aligned in C. However, due to over-aligning, C has 3 more aligned

pairs than R. The denominator of the CSSR(C) (Equation 3.8) is |R|+|C|= 2|R|+3.

However, shift between this over-aligned pairs does not exist, resulting in csR(Ci) = 0

for these over-aligned pairs and as such, there is no contribution to the numerator for

them. Hence the only contribution to the numerator is for the |R| aligned pairs that

exist in R. Since these are all properly aligned, their contribution to the numerator
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is 2|R| resulting in CSSR(C) = 2|R|
(2|R|+3)

. It results in a lower than maximum score,

demonstrating that this metric penalizes over-alignment.

The same argument can be made for under-alignment. If five aligned pairs in

R are not present in C due to under-alignment as shown in Figure 3.1b, then the

denominator of CSSR(C) can be expressed as |R|+|R|−5. However, shift for the

aligned pairs in R where one of the amino acids is aligned to a gap is not defined, 2

counts for each missing aligned pair will not be contributed to the nominator. For

this example the numerator can be expressed as 2|R|−2(5), resulting in an expression

for the CSSR(C) = 2|R|−2(5)
(2|R|−5) which is less than 1. This demonstrates that the metric

penalizes under-alignment.

Since CSS rewards proper alignment and penalizes misalignment as well as over-

and under-alignment, CSS is a more robust metric than either the developer or mod-

eler scores.

3.2.4 Other assessment tools

In this section we will discuss other assessment tools for comparing two alignments.

These other tools, which were not used in this study, include the following:

• Mumsa [58]: This assessment tool determines the quality of an alignment by

comparing it to multiple alignments of the same sequence set. The assessment

is based on the concept that the areas in which the different alignments agree

can be considered reliably aligned. Hence, the score of each of the different

alignments is based on the same sections, and thus generating the same score.

While this assessment does determine candidates for reliable sections for a group

of alignments, it does not give a good indication of how the individual alignments

compare with each other. Hence, this metric was not used in this work.
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• AlignStat [58]: This metric starts by finding for each column in the reference

alignment, the best match column in the candidate alignment. This choice is

based on maximizing a similarity objective which considers only exact matches

of amino acid. Once the matching column has been identified, each amino acid

in a column is compared with its matching column and sorted into five scenarios:

two amino acids correctly aligned, a correct match of a conserved gap region,

a match of an amino acid in the reference with a gap in the candidate, a gap

in the reference matched with an amino acid in the candidate alignment, or

finally, if an amino acid in the reference is mismatched with an amino acid in

the candidate.

The resulting column-wise score for each category is used for different purposes.

To calculate the comparison score, the average column-wise correct match count

is divided by 1 minus the average column-wise correct match of conserved gap.

The other three categories are used to highlight the alignment in a visual graphic

to indicate the misaligned areas. This scoring system suffers from the same

insensitivity to over- and under-alignment as the developer and modeler scores.

After considering various metrics, we decided the CSS to be the more sensitive

metric for our purposes.

3.3 Benchmark datasets

Assessment of the various MSA programs requires benchmark MSA datasets where

alignments have at least three or more sequences. Having only two sequences is sim-

ply a pairwise alignment and consequently, does not present the challenges that are

inherent when attempting to align more than two sequences. The three benchmark

datasets that are discussed in this section and used in this work, are those that are
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most frequently used in assessment studies for protein sequence alignments. Table

3.1 shows the number of alignments in each dataset along with the average align-

ment length and number of taxa. Table 3.2 shows the average protein identity and

information scores for these benchmark databases.

Table 3.1: Three benchmark databases currently available. Average alignment length
and average number of taxa are obtained from the sequence sets that have three or more
sequences are used in the analysis and are counted here. SD: standard deviation.

total number Number of Alignment of Number of

name of alignments of alignments > 2 seqs length (SD) taxa (SD)

HOMSTRAD 605 402 243.3 ( 173.5 ) 5.5 ( 4.5 )
BAliBASE 608 608 864.8 ( 812.5 ) 27.9 ( 29.4 )
OXBench 672 399 155.0 ( 88.1 ) 8.3 ( 14.0 )

Table 3.2: The protein sequence divergence for the three benchmark databases. These
average values are based on the alignments that contain three or more sequences.

Average protein Information

name identity (SD) score (SD)

HOMSTRAD 0.389 ( 0.147 ) 3.34 ( 0.347 )
BAliBASE 0.477 ( 0.141 ) 2.86 ( 0.430 )
OXBench 0.534 ( 0.214 ) 3.52 ( 0.429 )

3.3.1 HOMSTRAD

HOMSTRAD (HOMologous STRucture Alignment Database) was formed as a re-

source for identifying functions in new protein sequences [59][60][61]. It provides

alignments consisting of protein sequences from the same family as determined by

the similarity of the structure of the domain areas present in the sequences. The

3D-structure information is taken from the Protein Data Bank (PDB)[44]. The align-

ments are heavily annotated with connections to Pfam [34], SCOP [45][62], and Swis-
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sProt [63]. HOMSTAD has 402 alignments that contain three of more sequences, with

an average of 5.46 sequences and an average alignment length of 243 amino acids.

3.3.2 BAliBASE

BAliBASE was designed specifically for the evaluation of MSA programs when align-

ing complete sequences [64][65]. It contains manually refined reference alignments

based on 3D-structure superpositions in the areas of each sequence where the solved

3D-structures are available. Because of this, the areas of the alignments based on

homologous structures are assumed to be more accurate than those areas free of 3D-

structure. BAliBASE 3 includes 6255 full protein sequences aligned in 608 curated

alignments. These are broken into the following six different groups each of which

represents a different alignment problem [65]:

1. 164 alignments with equidistant sequences of variable sequence lengths and

different degrees of variability.

2. 88 alignments that contain one or more highly divergent orphan sequence.

3. 82 alignments that contain divergent subfamilies.

4. 60 alignments that contain long end extension.

5. 49 alignments that contain large internal insertions.

6. 224 alignments containing protein families with linear motifs.

BAliBASE also contains several reference sets of alignments based on the struc-

tural portion of full sequences. These were constructed by fragmenting the full se-

quences into shorter sections containing only the portions of the sequence that can
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be verified by 3D-structure. As these are not full sequences, they are not used in this

work.

3.3.3 OXBench

OXBench was also formed for the purpose of providing quality reference alignments

for the assessments of MSA programs [3]. It is based on both 3-D structure and

sequence similarity and is heavily dependent on the STAMP structural alignment

program [66]. It contains three broad grouping of alignments:

• “Master set” contains the sections of the sequences that contain the structural

domain. The author recommends this set for general use when not attempting

to optimize parameters of the program used. This set contains 672 alignments,

399 of which contain more than two sequences.

• “Full set” contains the full protein sequences (domains along with linker sec-

tions). Additional reference alignments are not provided for this set.

• “Extended set” contains proteins of unknown structure combined with the mas-

ter set sequences. These are provided to be used to show the effect of having

more sequences, especially those sequences not determined to be homologous.

Reference alignments are not provided for this set.

We used 399 alignments from the master set in this study. These had an average

of 155.0 amino acids, with an average of 8.3 sequences per alignment.

3.3.4 Pairwise reference alignment databases

For two other alignment databases, SABmark and PREFAB, the reference alignments

are provided only in pairs [67] [68]. In the previous studies using these databases, the
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accuracy of multiple sequence alignments was compared on a pairwise scoring system

with these pairwise reference alignments. This scoring scheme is not compatible with

the full alignment metrics used in this study. Therefore, the alignments in these two

databases were not used in this study.

3.4 Strategies for improving alignment quality

In the pursuit of higher quality multiple sequence alignments, the following three

main strategies have emerged:

• to develop a new alignment program that takes a set of sequences and outputs

an alignment that is better than those produced by currently available methods

• to develop an alignment refinement technique that takes existing alignments

and adjusts them to create higher quality alignments or

• use a suite of existing alignment programs to create a set of MSAs from which

to select the highest quality alignment.

In the following sections, each of these strategies will be discussed and explain

why we invested our effort in the third strategy.

3.4.1 Developing a new alignment program

As discussed in Section 2.3, there exist dynamic programming algorithms that can

guarantee the top scoring alignment between any two sequences for a specific scoring

matrix. However, these algorithms have Θ(n2) growth where n is the length of the

sequences. To extend this algorithm would increase the exponent of n in Θ by one for

each sequence added, which is intractable in calculation. To circumvent this growth

rate, heuristics are employed to align more than two sequences which introduce variety
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in both the type of heuristic and in the implementation of the heuristic. This variety

results in variation in the resulting alignments. In all evaluation studies performed,

not only have differences in relative performance been noted, but also that no single

alignment program consistently achieves the highest quality for all sequence sets.

In other words, there were always sequence sets where an alignment program that

achieved the lower average quality score produced a higher quality alignment than

the program that had achieved the highest average quality. Therefore, we concluded

that while a new alignment program could achieve more accurate alignments for a

specific type of sequences, it is not likely that a new alignment technique will produce

better alignments for all sequence sets. Rather it is more reasonable and practically

more useful if we can identify a specific method that is more likely to perform better

than other methods for a given alignment problem.

3.4.2 Refining an existing alignment

The process of refining an alignment starts with an existing alignment or group of

alignments created from either a manual alignment process or as the result of an

automated alignment process. The refined alignment is then configured by different

techniques. Some of the refinement techniques are:

• RASCAL first clusters MSAs into subfamilies, identifies “core blocks”, uses

NorMD objective function [47] and finally realigns by a progressive method

[69].

• REFINE uses a predetermined block mode as a constraint, and iteratively re-

align individual sequences with block shifting and block editing [70].

• ComAlign is a variant of the dynamic programming technique and combines

sub-alignments iteratively at combination points [71].
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• M-Coffee is an extension of T-Coffee [72] and combines multiple MSAs using

consistency-based objective function[73].

• MUMSA groups pairs-of-aligned residues into occurrence patterns among align-

ments, extracts identically aligned regions, and disentangles unreliably aligned

residues [58].

• MergeAlign constructs consensus MSAs using a weighted directed acyclic graph

and a dynamic programming approach that incorporates multiple substitution

matrices [74].

These techniques can improve the accuracy and hence the quality of an alignment

but this is not always the case. For example, if you use MUMSA, the sections of the

refined alignment where the base alignments disagree are disentangled, which means

each amino acid is placed in a column by itself. If any aligned parts that appear in the

reference alignment are in a section that is disentangled then there will be a decrease in

both CSS and SPS scores. If any disagreements leading to disentanglement involved

full columns in the reference alignment then the CS can also decrease. The main

drawback to these techniques, therefore, is that while they can increase the quality,

there is always a chance that the resulting alignment can be overall less accurate and

hence lower quality than the starting alignment(s).

3.4.3 Selecting the best alignment from a group of alignments

The third strategy involves forming multiple MSAs using a group of alignment pro-

grams and selecting the best one from the group. Two previously developed methods

are:
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• AQUA selects the best MSA from those built by MUSCLE, MAFFT, and those

refined by RASCAL based on NorMD [47]. scores [75]

• AlexSys is a decision-tree-based learning algorithm that selects an aligner from

six methods depending on the sequence properties [76]

Although both AQUA and AlexSys had limited success (both are discussed in

detail in Section 3.5), this is the strategy we chose in this study. It allows the strengths

of each individual alignment programs to be used based on different types of sequence

sets. After examining the shortcomings of AQUA and AlexSys, we concluded that

with more thorough analysis of alignment problems and choosing or developing better

metrics that can efficiently identify quality alignments, this strategy has the best

potential in improving alignment quality. Another advantage of this approach is that

it can be used as either a final selection process as in the work described in this

dissertation or as a subroutine in a refinement program that will decide if the original

or the refined alignment is better. This selection strategy also makes provisions for the

first strategy in that if a better alignment program is developed, it can be incorporated

into the suite of programs that created the base alignments from which the classifier

will choose the best.

3.5 Previous studies on improving the overall alignment quality

There have been two published studies on approaches to improving alignment quality

based on using several alignment programs. Each one is discussed here with a de-

scription of the approach, a summation of the results of the approach and a discussion

of factors leading to their very limited success.
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3.5.1 AQUA

AQUA is a method developed to improve the quality of an alignment [75]. It uses

two existing alignment programs, MUSCLE [16] and MAFFT [77] in conjunction

with RASCAL [69] (a refinement algorithm), and the characterizing metric, NorMD

(described in Section 3.1). The results of the methods were judged on the ranked

values of the developer score (SPS, discussed in Section 3.1). The following is a

review of each component of the method:

• MUSCLE - This is one of the alignment programs used in the work of this study.

As discussed in Section 2.5.3, MUSCLE is a progressive alignment program with

refinement steps to improve alignment.

• MAFFT - As described in Section 2.5), this is also a progressive alignment

program with options that allow you to select the mode that best suits your

application. These options deal with the number of refinement step, the method

of calculating the initial guide tree and how gaps are handled. The sub-programs

that use the options that have the more accurate results, one of which is L-INS-i

(the version of MAFFT used in their study), take longer to run. Although the

article on AQUA does not indicate which version of MAFFT was employed on

their study, the default option (–auto mode) chooses the method automatically

based on, e.g., the data size.

• RASCAL - This is refinement program that uses a knowledge-based approach

that detects most common errors in aligning real families of proteins [69]. It

divides an alignment into vertical and horizontal zones and evaluates which

zones are reliably aligned and which contain error. The program evaluates and

corrects the following types of errors: poorly aligned core blocks of a member of



54

a subfamily, inappropriately aligned orphaned sequences (a sequence much more

distantly related than the sequences it is being aligned to), or more generally

unreliable zone. This program has been shown to increase the quality of some

alignments as measured by SPS and CS (discussed in Section 3.2.2 and 3.2.1,

respectively), and has been to not affect the alignment in the areas it determines

are reliably aligned. Thus, it can improve an alignment but will not deteriorate

the quality. It was also shown that the ending alignment is dependent on the

input. In other words, two alignments starting at different levels of accuracy

will not be corrected to the same level. Results are difficult to interpret as

there was little explanation to how the graph was generated. There does seem

to be “improvement” in subfamilies of proteins, where the sequences within

a subfamily are more closely related than they are to the other subfamilies

in the alignment. The improved performance for the reference 3 dataset is an

expected result as RASCAL uses a knowledge-based approach that is developed

for detecting errors often found in alignments involving protein families.

• NorMD This characteristic metric was described in Section 3.1 [47]. It evaluates

an alignment based on a scoring matrix, most commonly the BLOSUM62 [11].

This metric is heavily influenced by the composition of the sequence set and

gives no indication of over-alignment or under-alignment.

An outline of the method is as follows:

• Align the sequence set with both MAFFT and MUSCLE , producing two base

alignments

• Refine each of the base alignment with RASCAL, producing two refined align-

ments.
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• Evaluate each of the four alignments using NorMD.

• Output the alignment that has the highest NorMD score.

The authors tested AQUA on several datasets including the benchmark database

BAliBASE 3.0. The performance of AQUA was compared with the two original

alignments by MUSCLE and MAFFT as well as those refined by RASCAL based

on the CS value. Although AQUA seems to be able to choose better alignments, it

is not necessarily the best alignment and especially when divergent sequences were

aligned, it showed very low performance (CS<0.48). The minimum amount of the

results reported in their paper, unfortunately made quantitative and fair performance

comparison difficult. This method was successful in demonstrating that improvement

can be made in a final alignment if a selection can be made from a group of alignments.

However, the success was limited by several factors.

• The selection of alignment was limited to only two base alignment programs.

As shown in Chapter 6, the difference between various programs can change

depending on sequence set. Although two other alignments were included by

generating refinement alignments by RASCAL, as the results shown in [69]

indicate, except for when working with sequence sets that represent multiple

clusters of protein subfamilies, the expected improvement is 1% or less, which

is well below the average difference between programs[64]. RASCAL can also

sometimes lower the alignment quality as can be seen in the data presented in

[75] where the curves representing the refined alignments are consistently below

those of the base alignment. All of these factors must have contributed to the

limited success of AQUA.
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• As discussed in Section 3.2.1, using CS or SPS by itself cannot provide the

full picture of the significance of any change in alignments. For example, if the

true reference of an alignment had only ten conserved columns, and a candidate

alignment had only five of these columns correctly align, the CS would be 0.5.

But it would take only one more correct column to see an increase of CS in 0.1.

Therefore either CS or SPS by itself does not truly reflect the accuracy in an

alignment.

• The decision process in based on only one aspect of the sequence set and that is

the NorMD score. No account is given to such as the number of taxa, sequence

divergence, or other characterizing metrics. As described in Chapter 6, various

sequence and alignment properties are shown to be indicators of shifting relative

performance between alignment programs.

3.5.2 AlexSys

AlexSys uses machine learning to select an aligner a priori from a group of six align-

ment programs depending only on the nature of the input sequences [76]. Decision

trees representing each alignment program are polled for a prediction of the align-

ment program being either a strong or weak aligner for a specific sequence set. The

attributes are gathered from the sequence set, which include a number of sequences,

average protein identity, and a large number of annotations from existing databases

such as PDB and Pfam. The use of decision trees is based on the explicit requirement

of keeping the chain of decisions human readable. This means that the decisions can

be traced from the root of the tree to the prediction. The objective of AlexSys is also

to keep the amount of work needed to produce a high quality alignment as low as

possible, although it was accepted that this might be at a cost of accuracy.
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The quality of the final alignment chosen by AlexSys was tested using SPS. The

dataset used were 214 sequence sets from BAliBASE and 672 of the extended align-

ment dataset from OXBench. The authors performed a 10-fold cross-validation trial

using AlexSys and each alignment. The performance by AlexSys was not statistically

greater than that by MAFFT and took an average more than 100 times the cpu time

as MAFFT. The single program Probcons [78] outperformed AlexSys by 1.2% (non-

parametric Wilcoxon signed rank test, p = 0.15×10−6), although it did take between

4 and 5 time the cpu time.

AlexSys is the first attempt to evaluate the MSA problem with machine learning.

Its limited success can be accounted for by the following:

• The decision trees are used to determine if the alignment program is ‘weak’ or

‘strong’ (although no clear denition is given for these classes). Then if more than

one aligner received a classification of strong, AlexSys selected the alignment

program based on speed. While a 10-fold cross-validation showed that the

decision tree had 95% or higher accuracy, the criteria on which the label was

based do not seem to be a good discerner for quality, as indicated by the very

low overall results of the AlexSys.

• The training data is limited for the decision trees; 218 and 672 sequence sets

from BAliBASE and OXBench, respectively, were used to train and evaluate

the binary decision trees. 80% of the data was used to train and 20% was used

to evaluate using a 10-fold cross-validation (two folds for each test set).

• The insistence that the decision be human understandable (expressed as a series

of distinct decision points by the nodes of a decision tree) is to say that the

surfaces that separate the classes are well defined. The evaluation we performed
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in Chapter 6 indicates that there are no clear-cut indicators for the relative

behavior of the alignment programs.

• The objective that a selection of a high quality alignments be made as efficiently

as possible indicates that the approach is not optimized to seek the best, only

a “high quality” alignment.

• This objective also disallowed the formation of the alignments from all the

candidate alignment programs which in turn made it not possible to draw in-

ferences from the aspects of all resulting alignment to better decide on the best

alignment

In AlexSys, the authors attempted to use multiple existing alignment programs to

create the best alignment for each sequence set. As discussed previously in Sections

3.4.3, we consider this as an efficient approach. The existing programs can be used

on sequence sets where they perform the best and newer programs should be used

where they have a niche

Our approach to using multiple alignment programs is different in several points,

all of which are discussed in more detail in Chapter 7. The major points of the

difference are as follows:

• We used a multi-class classifier trained using the multi-layer perceptron as op-

posed to binary classifiers.

• Our data model for the training and testing data used include both sequences-

based, as AlexSys did, but also alignment-based attributes.

• We developed and fined-tuned our data model using a simulated database that

had both true reference alignments, and had sufficient numbers and types of

alignments to cover more of the instance space of the classifier during training.



59

• We developed a systematic method for quantifying the performance difference

amoung alignment programs and tracking the improvement in alignment quality

against the maximum improvement possible for a specific group of alignment

programs and reference alignments.
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Chapter 4

SuiteMSA

4.1 Motivation

Due to the significant impact of the MSA on many bioinformatics and molecular evo-

lutionary studies, multiple sequence alignment is one of the most scrutinized bioin-

formatics fields [54][79]. While a number of statistics has been developed to assess

an MSA, there is no definite answer on how to measure the ‘biological correctness’

of MSAs. It remains for the end user to incorporate the available statistics into

their evaluation of this ‘biological correctness’. Often the users simply run one MSA

method and procede to the next analysis without examining their alignment output

[5]. Considering how MSA quality affects the outcomes of further analysis, assessment

of MSAs should be included as regular part of sequence analysis.

There are a number of programs available that generate, display, and/or let users

analyze MSAs such as SeaView [80], ClustalX2 [81], Se-Al [82], Jalview [83], AliView

[84], AlignStat [85], webPRANK [86], as well as MEGA [87]. However, none of the

MSA viewing/editing programs currently available allows the user to display func-

tional information of sequences (e.g., secondary structures, transmembrane predic-

tions) along with the alignment or make direct comparisons between two or more

MSAs to determine the best one to procede with. Considering the importance of

MSA quality in a wide range of research, it is desirable for MSA assessment to be
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performed routinely and . To this end, we have developed SuiteMSA, a Java-based

application that provides unique MSA viewers to assist in this assessment [6][7]. To

aid MSA quality assessment, with SuiteMSA, functional information of sequences can

be overlaid onto alignment. Multiple MSAs can be directly compared and where the

MSAs agree (are consistent) or disagree (are inconsistent) can be visually assessed.

Several alignment statistics and metrics are provided to assist such comparisons. In

addition to MSA comparison tools, SuiteMSA provides a GUI for a feature-rich bio-

logical sequence simulator, indel-Seq-Gen v2.1 [88].

In this chapter, we describe the following three MSA assessment tools available

with SuiteMSA, emphasizing the unique feature of each tool:

• The MSAviewer: single alignment viewer and editor.

• The MSAcomparator: pairwise alignment viewer for comparison of two align-

ments.

• The Pixel plot: multiple alignment viewer for visual comparison of large align-

ments.

4.2 The MSAviewer

The MSAviewer provides utilities for displaying and assessing a single MSA. It pro-

vides many of the features that other alignment viewers have, such as displaying of

the MSA using various color schemes, editing of the MSA by way of inserting, deleting

or moving gaps within the display, and utilities to produce publication-ready images.

It also provides several unique utilities to assist in the process of assessment.

The MSAviewer generates several metrics for the alignment. Two of these are

frequency distribution of gaps and the column-wise information score [51]. (Figure
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(a) A screen-shot of the MSAviewer showing the frequency distribution of gaps within the
alignment and the column-wise information score.

(b) A screen-shot of the MSAviewer showing each amino acid using the hydrophobicity
color scheme with the second display showing the secondary structure prediction for the
alignment above it. The average hydrophobicity for each column is also plotted (bottom
display).

Figure 4.1: MSAviewer from SuiteMSA. The assessment options available with the

MSAviewer. The file lipo template alignment.fasta is used to demonstarte each function.
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Figure 4.2: MSAviewer with the secondary structure Color scheme. The secondary struc-
ture prediction was provided in an additional le containing the prediction information for
each amino acid in each sequence.

4.1a). The column-wise information score is graphically displayed in the bar chart. As

mentioned in Section 3.1, the column-wise information score can be used to determine

the level of conservation of the individual columns. To give an example of this, in

Figure 4.1a, columns 1, 51 and 53 all have only one type of amino acid residue and

no gaps, indicating complete conversation of the column. This is represented on the

information graphics as a full height blue bar under the column. When more than one

type of residue is present in a column, the information score is reduced corresponding

to the reduced height of the blue bar in that column. An example of this is shown in

column 52 which contains three different types of amino acids with no gaps.

Another feature of this viewer is that when the hydrophobicity color scheme is

selected, an average column-wise hydrophobicity plot is displayed (overlaid on the

information graphic). The alignment in Figure 4.1b is shown with the hydrophobicity

color scheme. In this color scheme, each amino acid is assigned a color between blue

and red, with the color getting progressively less blue and going toward red as the

hydrophobicity scale of the amino acid increases. The average hydrophobicity scale

for each column is plotted across the information score bar chart at the bottom.

The red line bisecting the blue bars represents the 0.0 hydrophobicity scale. Positive

values (above the red line) indicate more hydrophobic while negative values (below
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the red line) represent more hydrophilic.

The MSAviewer has two modes for the display of functional information associated

with the sequences involved in the alignment: as either a separate graphic under the

alignment or as the color scheme of the alignment display. Color schemes are available

for such as transmembrane and secondary structure prediction. There are also two

gradient scales (blue to green and red to yellow) for any data ranging between 0.0 and

1.0. Examples of these gradient schemes would be for solvent accessibility or disorder

scores for each amino acid.

The separate graphic mode can be used with any of the various types of functional

information. For example, in Figure 4.1b, the secondary structure for the sequences

of the alignment in lipo˙template˙alignment.fasta is displayed underneath the MSA.

The secondary structure information can be obtained from either prediction or data

confirmed from 3D-structure databases. As described in Section 2.1, protein sec-

ondary structure includes -helix, strand, coil or turn. In the second display of the

alignment, each amino acid in the alignment is replaced with a symbol (H, E, C, or

L) representing the predicted secondary structures.

The second mode for displaying the functional information is to apply the color

scheme directly to the alignment. Figure 4.2 shows the secondary structure color

scheme applied. These two modes of display allow multiple types of functional infor-

mation to be displayed simultaneously, assisting in the assessment of the MSA. All

functional information is communicated to the MSAviewer by way of a text file in

fasta format.

The MSAviewer also provides a utility that will generate publication-ready images

of the various assessment tools used. While other assessment packages also provide

for the production of publication-ready graphics, the MSAviewer allows publication

ready images of the information graphics and functional information graphics to be
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(a) Hydrophobicity color scheme with the information score display.

(b) Hydrophobicity color scheme with secondary structure display.

Figure 4.3: Publication ready images generated by the MSAviewer. This image was

created using the data in the file lipo template alignment.fasta.
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(a) The menu to configure the image file of the MSAviewer.

(b) The full alignment for 7 transmembrane protein sequences that contains an extremely
long N-terminal region.

Figure 4.4: Publication ready image utility.
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(a) The topology of a typical 7-transmembrane protein. There are seven transmembrane
regions (labeled I-VII) [89].

(b) Use of the image utility to generate a publication ready image including specic section
of the alignment. In this case, only the region covering the seven transmembrane regions
(from positions 540 to 899) was output. Amino acids predicted to be in transmembrane
regions are shown in green.

Figure 4.5: Display of Transmembrane MSA using MSAviewer.
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produced. Figures 4.3a and 4.3b show how this utility can generate an image of

the alignment and . Figure 4.3 shows how this utility can generate an image of the

alignment and other information. These images can be custom configured to allow

the user to select the specific graphic or sections of the alignment to be included in

the image. Figure 4.4a shows the options available for this utility. Creating images

is especially useful when an alignment is too long to be shown across the breadth of

a computer monitor. An image will allow full alignment to be studied. The partial

alignment feature of this utility allows for a specific section of an alignment to be

extracted and displayed. For example, Figure 4.4b shows the full alignment of 7-

transmembrane proteins. Some of these sequences contain extremely long N- and

C-terminal regions. If the user wishes to extract the portion of the alignment that

contains only the transmembrane areas, the partial alignment option on the image

generation menu can be used, resulting in a image such as shown in Figure 4.5b. The

hydrophobicity plot shows that the predicted transmembrane regions (color coded in

green) have high hydrophobicity (high positive values).

Another feature of the MSAviewer is the utility provided for extracting subsets of

sequences from the alignment displayed. In Figure 4.6a, a series of squares are visible

to the left of the sequence names (indicated by the red arrow). When the square

is dark, the sequence is selected. The default state is selected. If you click on the

square, it will turn white, indicating that the sequence is no longer selected. After

selecting sequences, the sub-alignment (Figure 4.6b) can be saved. If the resulting

sub-alignment contains all gap columns, another utility can be used to remove all gap

columns (Figure 4.6c). All gaps in the alignment can be also removed leaving just

amino acids in preparation for realigning the subset of sequences.
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(a) A screenshot of the MSAviewer illustrating the use of the subset selection utility. The
black squares (indicated by the red arrow) show that these sequences are selected to be
included in the subset.

(b) A screenshot of the MSAviewer displaying the subset of sequences. All gap columns are
outlined in magenta

(c) A screenshot of the MSAviewer displaying the subset of sequences after all gap columns
are removed.

Figure 4.6: Use of subset selection utility.
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(a) A screenshot of the MSAcomparator with column-wise information scores shown in bar
charts. The residues under the blue selection bar of the reference alignment are highlighted
in the bottom alignment. The consistency color scheme is used (indicated in the image
legend).

(b) MSAcomparator screenshot with column-wise SPS and CS. The color scheme to high-
light the columns that are 100alignments in blue. The graphic display between the two
alignments show the column-wise SPS and CS.

Figure 4.7: MSAcomparator from SuiteMSA. The alignment generated using Probalign

(the bottom) is compared against the one using MUSCLE.

4.3 The MSAcomparator

The MSAcomparator allows for the detailed viewing and comparison of two align-

ments of the same set of sequences. The top alignment is considered to be the

“reference” alignment, and the comparisons are with respect to this alignment.

The MSAcomparator display has a position scale above each alignment. It con-
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Figure 4.8: MSAcomparator screenshot with column wise CSS. The MSAcomparator is
shown with the color scheme set to high lighting in red any column not 100The graphic
display between the two alignments shows the column wise Cline Shift Score (CSS).

tains a colored bar, blue for the reference or top alignment and green for the bottom

or candidate alignment. The blue bar is referred to as the selection bar, because the

bar marks the column positions that are compared and highlighted in both align-

ments. For example, in Figure 4.7a, the selection bar is 10-positions wide and is

shown positioned over columns 22-31. The width of this bar can be changed to facili-

tate finer or larger comparisons. The residues in the columns under the selection bar

are highlighted in both alignments. The colors indicate the amount of consistency

the individual residue has between the alignment. The color indicates the percent of

residues that any specific residue is aligned to in reference alignment that it is also

aligned to in the candidate alignment. For instance, in column 22, the amino acid E in

the first sequence is shaded in pink (1-33% consistency). This is due to the fact that

in the reference alignment, this E is aligned with four other residues: E, K, Q and Q.

In the candidate alignment, the same amino acid E is aligned with only one of these

four residues. Therefore, the top E is aligned with one out of four, or 25was aligned

with in the reference alignment. In the same column, the K or either of the two Qs

are shaded in red (0% consistency). This is because in the candidate alignment these
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amino acids are aligned with none of those of their column in the reference alignment.

In column 23, in the reference alignment, there are only two residues and since both

are aligned with the other in the candidate alignment, regardless of the additional

residues that appear in the column in the candidate alignment, they are aligned with

100% of the residues they had in the reference alignment. They are thus shaded in

dark blue.

The consistency scheme provided under the selection bar is from the viewpoint

of each individual residue in the reference alignment and is referred to as residue

consistency. This is different from column consistency, which is defined as occurring

when a specific column in the reference alignment is aligned identically as a column

in the candidate alignment.

The MSAcomparator has an additional graphic tool, the SPS graphic (Figure

4.7b). It illustrates two metrics: 1) the column-wise contribution to SPS, and 2) the

columns involved in the CS calculation. The vertical bars in this graphic represent

the column-wise SPS (see Section 3.1 for a full description). The gold vertical bars

of the SPS graphic represent the maximum SPS for a specific column. The cap on

the maximum SPS score for any column is determined by the number of sequences

in the alignment and is given by N × (N − 1)/2, where N is the number of sequences

in the alignment. However, since a gap is not counted as a sequence, their presence

will reduce the maximum SPS possible for a specific column to n× (n− 1)/2, where

n is the number of amino acids in the column. The red bars represent the actual

SPS obtained by the specific column. If the column was identically reproduced in the

candidate alignment, then the achieved SPS will equal the maximum and the red bar

will hide the gold bar. As such the gold bar shows only in those columns where the

reference column was not identically reproduced.

The second metric in the SPS graphic, CS, is illustrated by the colored square
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underneath the vertical SPS bar for each position. A column that has a dark blue

square under this vertical bar has no gaps in it and will be used to calculate the

column score. The size of the square indicates the consistency of the column between

the two alignments. A large blue square indicates that the column is identical in

both alignments. Conversely, a small square indicates that there are inconsistencies

for that specific column between the two alignments. The average CS for the full

alignment is shown above the alignment.

In addition to the traditional CS, we have also provided for a more liberal definition

of the CS, where the user can determine the threshold of gaps that the column may

contain before it is not included in the calculation. We refer to this as the “CS with

Gaps”. If the column contains a lower number of gaps than the set threshold, a red

square is placed under the column. If the column is identically reproduced in the

candidate alignment, this square is larger than if it is not. Again, the un-gapped CS

for the whole alignment is shown above the alignments. It is calculated by dividing

the total number of columns included in the calculation (illustrated by those having

either a red or blue squares beneath them) by the number identically reproduced in

the candidate alignment (illustrated by those columns having large squares, either

red or blue, underneath them). The threshold number (maximum number of gaps

allowed) is also shown above the alignments.

A numeric value is also given for the full consistency, which is the total number

of columns identically reproduced in the candidate alignment regardless of number of

gaps in the column. This would be equivalent to the gap threshold set to the number

of sequences in the alignment to include all columns.

The final display available with the MSAcomparator is the CSS display (shown

in Figure 4.8; CSS is described in Section 3.2.3). Just as with the SPS display,

the gold bars represent the maximum column-wise CSS. The red bar represents the
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Figure 4.9: Example of a publication ready MSAcomparator image.

achieved column-wise score and when the actual value equals the maximum, that

gold bar is hidden. Figure 4.8 also shows an alternative highlighting scheme where

any column not identically reproduced in the candidate alignment are highlighted

with red. This feature is independent of the CSS display and is the complement for

the blue consistency highlighting, where each column identically reproduced in the

candidate column is highlighted dark blue.

A utility to configure publication-ready images is also available with the MSAcom-

parator. Figure 4.9 shows the full image of the alignment shown in Figure 4.7b. As

with the MSAviewer, all additional graphic can also be reproduced as publication-

ready images, with the same degree of freedom in choosing which graphics and which

part of the alignment to include in the image.

4.4 Pixel plot

The pixel plot is a novel display unique to SuiteMSA. It allows for the viewing,

comparing and assessing of multiple MSAs of the same set of sequences in a novel

graphic format developed for larger datasets. The basic format of the pixel plot

consists of a black pixel representing each residue and a white pixel representing a
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gap. The resulting reduced scale allows for the gap pattern of the alignment to be

assessed visually over a smaller space. Questions such as “do the gappy areas of

the alignment cluster in specific segments of the alignment or are them scattered

throughout?” can be answered using this tool. Any number of alignments can be

compared, limited only by the resources (monitor size, resolution and RAM) of the

system that SuiteMSA is being run on.

Figure 4.10 shows the pixel plot being used to compare five alignments created

by 5 different alignment programs using a set of transmembrane protein sequences.

This figure is a basic black and white pixel plot. It can be noted that the shape

of each of the alignments being compared is significantly different from the others.

However, the long insertion (outlined in green in Figure 4.10.a) could indicate a gap

section that was consistently captured in each alignment. There is no known or agreed

upon reference alignment for these sequences, so it is not possible to compare these

alignments with a reference. However, the areas where the alignments agree, can be

explored using the selection bar.

In Figure 4.10.b, the selection bar has a width of 10 alignment positions and is

located starting at position 646 of the top alignment. Just as with the MSAcompara-

tor, the residues that fall under the selection bar of the top alignment are highlighted

in magenta in all of the other compared alignments. The fact that for the most part

the magenta highlighting in the lower four alignments has smooth edges, with the

exception of the ClustalW2 alignment (the bottom alignment), indicates that in this

section, the alignments have a high degree of consistency.

In Figure 4.10.c, the selection bar is located starting at position 718, which is

to the immediate right of a rather large gapped area. The very large amount of

disagreement between the different alignments is made apparent by the magenta

highlighting. For example in the second and fifth alignments, there is a good amount
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of magenta to the left of the gapped areas. This is contrasted by all of the magenta

being to the right of the gapped area in the top alignment. Also, the jagged edges

of the magenta highlighting in all of the bottom four alignments indicates the large

amount of inconsistency within this section of the alignments.

In Figure 4.11a, the selection bar is located to the immediate left of a large gapped

area where disagreement is found mainly in the placement of the large insertion in the

15th sequence. In Figure 4.11b, the width of the selection bar has been increased to

28 positions and moved to be just above the position of the insertion. Very few of the

sequences have residues highlighted in magenta in the top alignment. If you examine

where the highlighting is found in the other alignments, it shows that in the different

alignments, there is disagreement on which residues were involved in the insertion. In

fact, with MSAs 2 and 4, the insertion shifted by up to 15 residues from its relative

position in the top alignment, indicating different residues selected for the insertion

event.

In addition to the basic black and white pixel plots, it can be colored using a

given color scheme and data. For example, Figure 4.11c has the color scheme for the

transmembrane protein data applied to it. With this color scheme in place, we can

see that the large gapped areas occur in the regions of the inner (beige) or the outer

(yellow) loops while the transmembrane regions (green) are relatively free of gaps in

most of the alignments. The pixel plot also comes with a utility for producing the

same level of publication images as the MSAviewer and the MSAcomparator.

4.5 Batch utilities

In addition to the three novel alignment viewers, Suite MSA has a variety of utilities

that can be launched from a script and run on large numbers of sequences sets. These
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Figure 4.10: Use of the pixel plot. a) The basic pixel plot format displaying the gap
pattern. The green outline shows an area where the gaps appear to be largely consistently
placed. b) Illustration of the use of the selection bar. It works similar to the selection bar in
the MSAviewer, over an area of the alignments with a high degree of consistency between
the alignments. c) Illustration of the selection bar over an area of the alignments that show
a high level of inconsistency. Starting from the top of the pixel plot image, the alignments
were created by: Praline [90], Promals [91], MAFFT [24], MUSCLE [26], and ClustalW2
[22].
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Figure 4.11: : The Use of the pixel plot selection bar. a) The selection bar is located on

the left side of the large gapped section. b) The selection bar width adjusted to 28 positions

wide and located on the large gapped section. From where the magenta marks fall in the

other four alignments, it is obvious that this gapped section was not well captured in each

of the alignments, specically with the MUSCLE alignment, MSA 4. c) The transmembrane

prediction color-scheme can assist in the assessment of the inconsistency of the long gapped

regions. The selection bar is located over a coil section on the inside of the cell, which has

lower functional constraint than the actual transmembrane sections and it accounts for the

large length variation the sequences in this area, and hence the high level of inconsistencies

in the various alignments made from the different alignment programs. The black dashed

outlines indicate areas of high inconsistency for this section of the alignment.
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utilities were used to perform the evaluation study conducted in Chapter 6 and to

form the alignment attributes for the input vectors discussed in Chapter 7. The

capability of these utilities include the following:

• calculation of column-wise information score with output file of column-wise

score

• calculation of column-wise protein identity with

• calculation of column-wise Kumar protein distance

• calculation of SPS (developers score) with output file of column-wise SPS

• calculation of CSS (Cline shift score) with output file of column-wise CSS

• calculation of CS (column core)
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Chapter 5

Development of a simulated alignment benchmark database,

SimDom

In this study, we develop an algorithm that selects the MSA that is closest to the

optimal from a group of alignments produced by five chosen alignment programs. We

use simulated benchmark datasets in the development and test of this algorithm. In

this chapter, we discuss the motivation for using simulated data in the evaluation

of alignment programs and the importance of using simulated data for training our

algorithm. We describe and explain our decision process of the simulation program.

We review the guidelines for developing a benchmark database for alignment program

evaluation and discuss how the design of our database SimDom follows this standard.

We then layout the specific procedure we followed in the creation of SimDom to ensure

that the resulting database was sufficiently large in the number of sequences sets and

in the variety of protein types and evolutionary histories, so that it can be used both

to evaluate alignment programs and to train our algorithm to select the alignment

closest to the optimal.

5.1 Motivation

For effective evaluation of MSA programs, benchmark or reference alignments are

required. These are the MSAs that are considered reliable enough to represent the



81

evolutionary history of the sequences involved in the alignment. However, with non-

simulated sequences, their true evolutionary history cannot be known. As such, for

non-simulated protein sequences, for example, reference alignments are most often

inferred based on the structural alignment information. This is usually available

for only a limited number of protein sequences or sections of the protein sequences.

Currently available non-simulated benchmark MSA databases for protein sequences

include PREFAB [68], OXBench [3], HOMSTRAD [59], BAliBASE [65], and SAB-

mark [67] (as described in Section 3.3). Because solving the 3D-structure of proteins

is time-consuming and expensive, such information is usually available for only a lim-

ited number of protein sequences or sections of the protein sequences. Therefore, the

sample size of alignments that contain three or more sequences in these databases is

very low compared to the number of known protein families.

There have been questions regarding the heavy reliance on structural alignments to

validate sequence alignments [53]. For example, different methods of structural align-

ment can create alignments that disagree with each other, not only in the structural

elements but also in the sequential elements. As such, it is believed that structure can

be relied on as accurate only in the same situations where the majority of sequence

alignment programs agree, i.e., with closely related sequences [53].

Researchers who are very familiar with the sequences they are studying will also

often adjust MSAs manually to create a “reference” alignment. However, there is no

standard way to adjust or improve an alignment and the procedure depends heavily on

the researcher’s knowledge of the function of specific proteins. Manual adjustment is

also very time consuming and just as with structural alignment, a manually adjusted

alignment cannot always be fully resolved; meaning only those areas in the sequence

that are highly conserved can be aligned with confidence. Therefore, while a small

number of alignments can be manually adjusted for a specific study, it is not a reliable
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and viable method with which to create a database sufficient in size and accuracy to

evaluate the automated process of sequence alignment.

A solution to many of the issues of establishing a reference alignment is offered by

Hillis [92]. He advocates sequence evolution simulation as an alternative method for

obtaining reference MSAs to evaluate MSA algorithms. Sequence simulation meth-

ods can generate a set of related sequences with a known evolutionary history, i.e.,

providing a fully-resolved reference MSA. The datasets generated by simulation, with

various evolutionary parameter settings, are also useful for evaluating the robustness,

consistency, and efficiency of phylogenetic reconstruction methods based on different

MSA methods. In addition to the wide variety of simulation conditions that can be

used, this strategy can generate sequence sets that represent a much larger number of

protein families than those currently available in non-simulated databases (see Section

3.3).

For these reasons, we created SimDom, a database of biologically realistic simu-

lated protein sequences, complete with true reference alignments and multi-domain

protein architectures. We based the configuration of domains and domain architec-

tures on the library of domain prole HMMs provided by Pfam [34]. By doing this,

we created a database much larger than any existing non-simulated database. Fur-

thermore, SimDom can always be augmented by additional simulations to allow for

growth as demanded by the discovery of new types of proteins, including also proteins

without domains. The design of this database allows us to perform a quantitative

analysis of alignment programs based on characteristics such as sequence divergence,

number of taxa, and number of domains. This will assist us in determining the rela-

tive performance of alignment programs and to identify the factors that can be used

as indicators of a relative performance shift between the programs. These indicators

will be incorporated into the data model for the multi-class classifier that will be
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trained to select the alignment that is “closest to the optimal”.

5.2 Simulation program

In order to develop an MSA machine learning algorithm that can be successfully

applied to any protein sequence alignment problems both presently available as well

as potentially new, biologically realistic protein sequences need to be simulated with

a sufficient size and scope. To create biologically realistic sequence sets with true

reference alignments, a program must be able not only to simulate the evolutionary

events including amino acid substitutions, insertions and deletions but also to simulate

sequence evolution maintaining the protein domain functions. In this section, we

discuss the available protein sequence evolution simulation programs and why we

chose REvolver. How REvolver models functional constraints using profile HMMs is

also briefly described.

5.2.1 Selection of simulation program

The database we needed to create must contain a set of sequences that are sufficiently

similar to real protein sequences containing one or more functional domains. There-

fore, we decided to simulate protein sequences including one or more domains. Since

not all sequence evolution simulation programs have the ability to generate realistic

protein sequences, the choice of the program is critical. Because the type of events

that can be included during the simulated evolution is limited to the capacity of the

simulator, we decided to choose a simulator that had not only the capability to model

amino acid substitutions as well as insertion/deletion events, but also the capability to

evolve segments that have domains based on given profile HMMs. Followings are the

capabilities we required for the simulation program to create our benchmark dataset:
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1. able to provide inputs for guide trees of varying topologies, number of taxa and a

multiplicative factor to change branch lengths (evolutionary distances between

nodes of the guide tree).

2. able to provide an input to allow for change in evolutionary models based on

standard scoring matrices, i.e., PAM120 [12], BLOSUM62 [11], or JTT [93].

3. able to provide an input to set insertion and deletion rates and to limit the

areas on the sequences where indels can occur.

4. able to provide for evolving a functional domain in designated areas on the

simulated sequences that maintains the constraint of the domain over time.

Table 5.1: A comparison of the capabilities of simulation programs for protein sequence
evolution.

guide adjustable adjustable domain reference
year tree model indel model modeling

ROSE 1998 X X X [94]
SIMPROT 2005 X X X [95]
INDELible 2009 X X X [96]

iSGv2 2009 X X X [88]
REvolver 2012 X X X X [97]

We examined five protein sequence simulators for these required capabilities. The

results are summarized in Table 5.1. All five of these programs provide for substitution

events. ROSE was the first program to provide for the simulation of insertion and

deletion events [94]. SIMPROT was one of the first program to incorporate the

application of different rates over different sections of a sequence, which was the

first step in providing functional constraint [95]. Nuin et al. [98] performed an

evaluation of nine alignment programs using the sequence sets and alignments created

by SIMPROT. At the time, SIMPROT was the state of the art protein simulation

program with its ability to include and vary indel rates along different sections of
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the sequences. However, the mechanism provided by SIMPROT was not sufficient to

allow for the preservation of motifs or domains The next large step in the simulation of

biologically realistic protein sequences came with the release of two successive versions

(1 and 2) of indel-Seq-Gen [99][88]. indel-Seq-Gen version 2 (iSGv2) provided for a

mechanism to control both substitution events and indels events on a position by

position bases, which, however, required detailed knowledge of each domain to be

simulated. While this was a step forward, it still lacked the facility to make use of the

domain models as rendered by, e.g., profile HMMs, available from databases such as

Pfam [35]. In 2012, REvolver [97] was released. This was the first program to fully

provide for the simulation of functionally constrained areas of a sequence by using

profile HMMs. REvolver has been shown to maintain 95% of the domain identity over

time [97]. Along with the ability to simulate domains, REvolver provides all other

evolutionary events: substitutions, insertions and deletions, and allows for multiple

areas of differing evolutionary condition on the same sequence. As the program that

provides the most biologically realistic sequences, we decided to use REvolver to

create a database of protein sequences and reference alignments for our development

effort of the MSA machine learning algorithm. We call this database, SimDom.

5.2.2 Simulation models

In this section, we describe the process we used with REvolver to simulate protein

sequences that include both functionally non-constrained and constrained sections

and how profile HMMs were used with REvolver to simulate domain sections.

We included the models of one to five domains in a sequence set in the design of

SimDom. The overview of the simulation model for a full protein sequence containing

multiple functional domains is represented in Figure 5.1. The proteins illustrated

in this figure, contain one to five domains. The proportion of domain with linker
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Figure 5.1: Full protein simulation scheme. This illustration shows how the functional
domains (colored oblong shapes) are connected with unconstrained linker sections (gray
rectangles). Note that the N- and C- terminal regions of proteins are treated just like as
“linker” sections for this simulation model.

section also varies. It can be seen in Figure 5.1 that the single domain protein has

a lower proportion of amino acids involved in domains than the protein sequence

containing four domains. Each domain and linker section is simulated independently

and as such can be subjected to varying evolutionary conditions. Using REvolver,

this can be accomplished in two ways: 1) by giving REvolver the full layout of the

desired protein containing the parameters that would describe the rates and models

for each section to be simulated, or 2) by giving REvolver each individual section to

be simulated separately but using the same guide tree, the results of which are joined

after simulation. For this work, we chose the latter method for the ability to evaluate

domain and linker section separately.

REvolver uses the Gillespies algorithm [100] (shown in Algorithm 2) to simulate

the sequences. The total event rate, Λ is given as ΛS + ΛI + ΛD, where ΛS, ΛI and

ΛD are the substitution, insertion and deletion rates, respectively. The following sub-

sections discuss how substitution, insertion and deletion events for both functionally
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un-constrained (linker) and constrained (domain) areas are simulated.

Data: Gillespies simulation algorithm

Result: Simulated set of sequences with reference alignment

Λ← ΛS + ΛI + ΛD;

trem tw ∼ EXP(Λ);

while tw ≤ trem do

randomVariable ∼ Uniform();

if randomVariable ≤ ΛI/Λ then

doInsertion();

else if randomVariable ≤ (ΛI + ΛD)/Λ then

doDeletion();

else

doSubstitution();

Λ = updateEventRate();

trem ← ttem − tw;

tw ∼ Exp(Λ);

end

Algorithm 2: The Gillespies algorithm used for protein sequence simulation in REvolver

[97]. Λ is the total event rate and Λ = ΛS + ΛI + ΛD where ΛS , ΛI = (L + 1)δl and

ΛD = LλD are the total substitution, insertion, and deletion rates, respectively.

5.2.2.1 Substitution models

REvolver uses different algorithms to simulate substitution events, depending on the

presence or absence of a domain model (profile HMM). Non-constrained segments,

those that contain no domains, include the N- and C- terminals of a sequence as well

as the linker regions between domains. These segments will, for simplicity, be referred



88

(a) State path of the ancestral sequence. The color of the units indicates the type of state
responsible for the emission of the amino acid indicated above it. The dark blue units
indicate a match state, the green units indicate an insertion state and the red units indicate
a deletions state. The specific state is shown in the unit label. This illustration emphasizes
that deletions are possible in the ancestral sequence.

(b) Tracking substitution events. The two substitution events, L to M at position 6 (S6-M)
and from G to M at position 5(S5-M), are illustrated. These events cause a change in the
sequence but no change in the state path.

(c) Tracking indel events. The magenta outline indicates the position of the insertion event
that occurred in Taxon 1 (I2-V) along with the corresponding gap insertion in Taxon 2.
The orange outline indicates the deletion event that occurred in Taxon 2 (D1) with no
corresponding change in the state path of Taxon 1.

Figure 5.2: Tracking evolutionary events during the simulation of a domain sequence. How

different evolutionary events are tracked during the simulation is illustrated.
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to as linkers. The ancestral sequence for a linker segment is modeled by a Markov

chain characterized by Q, a matrix containing the instantaneous rates qij, which is

the product of the relative substitution rate from amino acid i to amino acid j, ρij,

and the amino acid frequency πj. In REvolver, there are 14 substitution matrices

for the user to select from. In this study, we used the JTT substitution model. The

substitution rates for any amino acid is given as qi = Σj 6=iqij and the total substitution

rate is given as ΛS = ΣL
l=1qil where l is the position on the ancestral sequence and L

in the sequence Length..

A substitution rate at site l of the ancestral sequence is calculated as qirl, where

rl is the scaling factor and i is the current amino acid at site l, where the substitution

occurs. l is chosen proportional to qirl and the probability that amino acid i is

substituted with amino acid j is proportional to qij/qi for i 6= j.

When a domain model is used, the simulation is started by generating the ancestral

sequence using the profile HMM, yielding both a sequence of amino acids and gaps,

and a state path. The state path is the series of the states from the profile HMM that

generated the symbols of the sequence. An example of an ancestral sequence with its

state path is shown in Figure 5.2a. As the ancestral sequence evolves along the guide

tree, the evolutionary events are recorded in the sequence as well as in the state path

of the sequence.

Substitutions are determined by Ql, the customized model for each site l. The

rates in the model for each site are based on the substitution model selected by the

user (in this study, JTT) as well as the probabilities of the profile HMM for the site.

For each site l, the components of Ql are given as qij = Σj 6=iρijejMx
where ρij is

the relative rate of amino acid substitution taken from the substitution model (i.e.,

JTT) and ejMx
is the specific emission probability for the amino acid as given in the

profile HMM. The probability that amino acid i is substituted with amino acid j is
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proportional to qij/qi where for qi = Σj 6=iqij. A substitution event does not affect the

state path. As an example, Figure 5.2b shows substitutions along two branches of

the guide tree, resulting in changes of the amino acid in different positions in the two

taxa while no change occurred in their state paths.

5.2.2.2 Indel models

In an unconstrained linker section, the rates for insertions and deletions, are λI and

λD, respectively. The total deletion rate is given as ΛD = LλD, where L is the length

of the sequence. Since insertions can occur before the first amino acid and after each

amino acid of the current sequence, the total insertion rate is given as ΛI = (L+1)λI .

The positions of indel events are uniformly distributed, with the length of the indi-

vidual event determined by the Zipfian length probability distribution [101]. After

the length of an insertion is determined, the amino acids are selected by the equilib-

rium frequency, π. We used an indel rate of 0.0025 and the geometric distribution for

length of indel event in the simulation of this benchmark dataset.

In the domain section, indel events cause change to both the sequence and the state

path. The probability of placing an insertion after position l is P (Mx, Ix) if associated

with a match state, or P (Ix, Ix) if l is associated with an insertion state. The length

of the insertion is drawn from the Zipfian length probability distribution [101]. The

amino acid is selected by the emission probability of Il and placed immediately to

the right of Il. For an insertion resulting from the transition between Mi to Ii, the

new state Ii is inserted between the Mi and Mi+1 of the state path of all the taxa. If

the insertion resulted from the transition between Ii to Ii, the new state Ii is inserted

between the last Ii and Mi+1 of the state path. An example shown in Figure 5.2c

illustrates an indel occurring in position 2 resulting in a unit labeled I2 placed between

M2 and M3 in both taxa. The symbol for the inserted amino acid V is shown above
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this unit in Taxon 1 while a gap is placed above the unit in Taxon 2.

For a deletion, if the site is associated with the match state Mx−1 then that match

state Mx is replaced by the corresponding delete state Dx in the state path and a gap

symbol is placed in the sequence. The deletion probability is P (Mx−1, Dx). If l is

associated with the deletion state Dx−1, then again Mx is replaced by deletion state

Dx and the deletion probability is P (Dx−1, Dx). In this case, no change is needed in

the state paths of the other taxa.

5.3 Guidelines for the benchmark dataset used for alignment program

evaluation

When evaluating the performance of alignment programs, in addition to the “true”

reference alignments, the type of sequences in the database must be appropriate to

the purpose of the evaluation. As such, the developers of the benchmarks must have

clear objectives when using the specific benchmark and select sequence sets whose

characteristics are suitable for the purpose of the analysis. To assist in this endeavor,

guidelines for establishing good benchmark datasets have been proposed [102][103].

We have incorporated these guidelines into designing our benchmark dataset. There

are six criteria. Each of these criteria and how our design conforms to it is discussed

below:

• Relevance: Benchmarks should be adapted to the application. Our objective

is to evaluate the relative performance of various alignment techniques on full

protein sequences containing one or more domains. We need to establish a set of

sequence characteristics indicative of where the different programs outperform

other programs (as measured by alignment metrics). It should also allow users

to select the individual subgroups of this database that correspond to the char-
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acteristics of the sequences they are studying, such as the number of sequences,

sequence similarity, amino acid composition, and number of domains.

• Solvability: The tasks specified by the benchmark should not be either too

easily solved nor too difficult. Making the task too easy prevents the results

from being applied to the more difficult problems present in ongoing research.

If the tasks are too difficult, the results are poor across the board and yield little

data for comparisons. The difficulty of the alignment problem as represented by

the sequence sets of SimDom represents the full range of alignment problems as

seen in various studies: from very closely related sequences, as when studying

individuals of the same population, to very distantly related as when comparing

paralog proteins. The SimDom dataset includes sequences that are:

– equally distant sequences from the root sequence,

– uniformly varying in distance from the root sequence and

– randomly varyingly distant from the root sequence.

Additionally, the evolutionary rates were varied among the sequences as well as

between the domains and linkers in a single sequence.

• Scalability: The task specified by the benchmark should be sufficiently large

so that mature algorithms can be fully tested, but not too large that newly

developed techniques cannot be properly tested. In SimDom, the sequence sets

along with their evolutionary history (as represented by their true alignment)

vary from single domain proteins with sequences of 500 amino acids (aa) to those

with five domains that are more than 3000 aa long. There is also variation in

the number of sequences (taxa) per alignment (8, 16 and 32 taxa). This will

allow the user to select the subgroup of alignments from our datasets that best
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complement those that are being studied to optimize the alignment programs

with.

• Accessibility: The datasets along with test results must be publicly and easily

available along with test results. We have all of our data available on a website

that contains the datasets broken down into various libraries that will allow the

user to pick and choose according to their needs (see Section 5.6). Along with

this, our own test results will be available.

• Independence: The method or approach of evaluation should be independent

of any of the alignment techniques evaluated. This is to avoid bias toward

any particular algorithm. The reference or true alignment in SimDom were

generated during the simulation process. Therefore, they represent the exact

evolutionary relationship between the sequences. No other alignment program

or adjustment technique was used to create the reference alignment.

• Evolution: The database needs to be updated to present the current challenges

in sequence alignment. This is to prevent stagnation of “evolution” of the align-

ment techniques, meaning that researchers inadvertently fine-tune algorithms

to optimize performance on specific types of alignments. New sequence sets

should be added as new problems arise to avoid stagnation. We provide the full

plan for the creation of SimDom along with scripts and parameters used. There-

fore, if a challenge arises that does not have sufficient representation within the

benchmark we have developed, it would be possible to simulate new sequence

sets that more closely match the sequences involved in the challenge. With RE-

volver, it is also possible for the user to select any evolutionary model including

a custom model, any distribution of indels, both for occurrence and for length

of events, and any profile HMMs.
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5.4 Design of the SimDom database

We designed SimDom to be used as both a benchmark database for the evaluation of

alignment programs and the source of alignments to form the training data for the

development and proof of concept for of the machine learning algorithm to select the

alignment “closest to the optimal”. In addressing both purposes, we needed to remedy

the two most prevalent issues faced when dealing with non-simulated databases: the

number of alignments available and the scope of alignments available. By scope

we mean the number of different domains present in alignments of the dataset, the

variation in the amount of evolutionary distance present within the sequence set,

and the variation between the proportion of the segments in the alignment that

contain domains and those that do not. To create a database with a large number of

sequence sets and a variation in its scope, we based our simulation on a pattern of

1000 combinations of domains with 144 variations of evolutionary parameters.

A total of 1750 domain models were obtained from Pfam (version 29, 2016) [36].

The combination of one to five domain models was determined using the information

provided in the sequence architecture database obtained from Pfam, where an archi-

tecture is a list of the Pfam domains that appear together in a protein sequence. We

set two conditions for a domain to be selected as a model in SimDom: 1) each domain

must have a seed alignment. If a domain does not have a seed alignment, it does not

have a profile HMM and could not be modeled by REvolver; and 2) all domains put

together in a combination to simulate a multi-domain sequence must have occurred

together in at least one architecture as reported by Pfam.

The procedure for forming domain combinations is given in Algorithm 3. Note that

this domain selection process does not allow for duplicated domains within any single

combination or in more than one combination. This was to have the largest possible
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number of different domains present in the limited number of domain architectures

our database can contain. It should also be noted that the Pfam database is large

including over 138000 domains in more than 187,000 architectures, many more than

we plan to use for our simulatation. It was thus not possible to include all domains

in all architectures in our simulation.

For each domain combination, a set of lengths of linkers (a linker length is the

number of amino acids in the ancestral root sequence) is determined by a random

number assignment ranging from 25 to 150 amino acids (aa). As such, each domain

architecture is defined by a given combination of domains and a set of linker lengths

and 1,000 of domain architectures were produced as summarized in Table 5.2.

For each of the 1000 domain architectures, simulation of protein sequences was

done using 144 different sets of evolutionary parameters with 6 types of guide tree

topologies, 8 variations of evolutionary rates and 3 variations on taxon numbers as

shown in Table 5.3. The first type of variation is the difference in the guide tree

topologies. For each tree type, the taxon number varies (8, 16 or 32 taxa). The type

of guide trees are as follows (Figures 5.4-5.9 are provided at the end of this section):

• Full Ultrametric (FU) tree (Figure 5.4). This is a full binary tree. The 32-taxa

tree has the same distance of 1.0 from the root to each tip. The 16-taxa tree is

derived from the 32-taxa tree, such that the distances between taxa of the same

name are the same in both trees. Likewise, the 8-taxa tree is derived from the

16-taxa tree.

• Full Non-ultrametric (FN) tree (Figure 5.5). This tree allows for different dis-

tances from the root to the tips with the maximum distance being 1.0.

• Clustered Ultrametric (CU) tree (Figure 5.6). In this tree, all taxa have the

distance of 1.0 from the root to the tips. The taxa are grouped in clusters of
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Data: List of architectures, List of seed Alignments
Result: List of domain combinations
2, 1)
array of combo counts ← (25, 50, 125, 250, 550)
allowed combinations ← empty list
forall Architectures do

qualified domains ← empty list
foreach domain in current Architecture do

if domain is in List of seed Alignments and not in qualified domains
then

add to qualified domains
end

end
if qualified domains is not empty then

create combo with all domains in qualified domains add combo
allowed combinations list.

end

end
sort allowed combinations by number of Ids in each combination
domain combos ← empty list
used domains ← empty list
for n = each domain number do

number combos = 0;
while number combos < combo counts for n do

current combo ← “”
domainsAdded ← 0
extract top allowed combinations from list
while domainsAdded < n] do

take next domain from current combination if add domain to
current combo add domain to used domains increment
domainsAdded then domains not in used domain list

end

end
add combo to domain combos
increment number combos

end

end
return the domain combos

Algorithm 3: Creates 1000 combinations of domains to be used as the base pattern for

SimDom.
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four which creates a different number of nodes between each taxon and the root.

As before, the 16- and 8-taxa trees are derived from the 32- and 16-taxa trees,

respectively. The green outline in Figure 5.6 indicates the cluster made up of

taxa A1-A4, which is present in all three trees

• Clustered Non-ultrametric (CN) tree (Figure 5.7). This tree allows for different

distances from the root to the tips, the maximum being 1.0. The taxa are

grouped in clusters of four, which are much more obvious than on the ultrametric

trees shown in Figures 5.4and 5.6. As before, the 16- and 8-taxa trees are derived

from the 32- and 16-taxa trees, respectively.

• Random Ultrametric (RU) Tree (RU) (Figure 5.8). This tree allows for different

numbers of nodes between the taxon and the root while the distances from the

root to the tips are 1.0 for all taxa. The simulation for each of the 1000 protein

architecture uses its own unique tree. However, the same trees are used for

each of the 144 different simulations for a given protein architecture. For this

topology group, 32-, 16- and 8-taxa trees are generated independently.

• Random Non-ultrametric (RN) Tree (Figure 5.9). This tree allows both differ-

ent distances from the root to the tips, the maximum being 1.0, and different

numbers of nodes between the taxon and the root. Each protein architecture has

its own unique tree. However, these trees are shared across the 144 difference

simulation conditions for a given protein architecture.

The next types of variation in evolutionary parameters specify the amount of

divergence in sequences. The base-level divergence of each sequence region was deter-

mined based on the ”inherent divergence” associated with a specific domain profile

HMM. The inherent divergence for each domain was calculated from the phylogeny
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Figure 5.3: The example of the linker divergence calculation. The protein sequence in the
example has five domain regions, each given with the Pfam ID and its inherent divergence
(shown below in the number of amino acid substitutions per site). The average inherent
divergence for this protein is calculated as 1.12. With the tree branch factor of 1.0 and linker
factor of 2 and 4, the linker divergence can be calculated as 2.24 and 4.48, respectively.

provided by Pfam for each of the seed alignments of the domain. For each domain,

the average pairwise distance between taxa was calculated from the phylogeny. This

average distance, divided by 2, was used as the inherent divergence of the domain.

A branch factor, or more specifically ”tree branch factor”, is used to scale the

evolutionary rate for a simulation. We used four branch factors, referred to as the

tree branch factors values: 0.5, 1.0, 1.5, and 2.0. For segments of the sequences that

contain domains, the total divergence applied during a simulation is given by the

inherent divergence times the tree branch factor.

The linker sections are free of functional constraints and they tend to be much

more divergent than the domain regions. Thus, we used an additional branch factor

during the simulation of the linker sections, which is referred to as “linker branch

factor”, in conjunction with the tree branch factor. An example below illustrates

how these branch factors are applied to the linker sections shown in Figure 5.3:

• The inherent divergence of each domain to be used in the protein sequence

is averaged. For the five domains shown in Figure 5.3 the average inherent

divergences is 1.12.
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• The average inherent divergence is multiplied by the tree branch factor: either

0.5, 1.0, 1.5 or 2.0, depending on the simulation. In the example, 1.0 is used.

• This product is further multiplied by the linker branch factor (either 2 or 4).

The resulting linker divergence is applied to all of the linker sections in the

protein sequence during the simulation.

One novel aspect of how we created the SimDom database was that the simulation

of protein sequences was done only for the 32-taxa guide trees for FU, FN, CU and

CN. As described before and shown in Figures 5.4-5.7, the sequence sets for the

lower number of taxa were taken from the 32-taxa simulations by extracting specific

sequences according to the guide trees of the lower taxa tree. This strategy allows

a quantitative measure of how the increased number of sequences affects the relative

performance of the programs.
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Figure 5.4: Guide trees used in the subset FU (Full Ultrametric). a: A complete binary
tree with 32 taxa (FU32). b: Dotted red lines indicate the taxa removed from the 32-taxa
tree to create the 16-taxa tree shown in c. c: A complete binary tree with 16 taxa (FU16).
d: Dotted red lines indicate the taxa removed from the 16-taxa tree to create the 8-taxa
tree shown in e. e: A complete binary tree with 8 taxa (FU8). All trees have equal total
branch lengths from the root to taxa.
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Figure 5.5: Guide tree used in subset type FN (Full Non-ultrametric). a: A complete
binary tree with 32 taxa (FN32). b: Dotted red lines indicate the taxa removed from the
32-taxa tree to create the 16-taxa tree shown in c. c: A complete binary tree with 16-taxa
(FN16). d: Dotted red lines indicate the taxa removed from the 16-taxa tree to create the
8-taxa tree shown in e. e: A complete binary tree with 8 taxa (FN8). Taxa have different
total branch lengths from the root.
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Figure 5.6: Guide tree used in subset type CU (Clustered Ultrametric). a: A binary tree
with 32 taxa clustered in 8 groups (CU32). b: Dotted red lines indicate the taxa removed
from the 32-taxa tree to create the 16-taxa tree shown in c. c: A binary tree with 16 taxa
clustered in 4 groups (CU16). d: Dotted red lines indicate the taxa removed from the
16-taxa tree to create the 8-taxa tree shown in e. e: A binary tree with 8 taxa clustered in
2 groups (CU8). All trees have equal branch lengths from the root to taxa. Green boxes
indicate the example of the same set of four taxa (A1-A4) in 32-, 16-, and 8-taxa trees.
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Figure 5.7: Guide tree used in subset type CN (Clustered Non-ultrametric). ). a: A
complete binary tree with 32 taxa (CN32). b: Dotted red lines indicate the taxa removed
from the 32-taxa tree to create the 16-taxa tree shown in c. c: A complete binary tree with
16 taxa (CN16). d: Dotted red lines indicate the taxa removed from the 16-taxa tree to
create the 8-taxa tree shown in e. e: A complete binary tree with 8 taxa (CN8). Groups of
taxa have different total branch lengths from the root.
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Figure 5.8: Guide tree used in subset type RU (Random Ultrametric). ). a: A random
binary tree with 8 taxa (RU8). b: A random binary tree with 16 taxa (RU16). c: a random
binary tree with 32 taxa (RU32). All trees have equal total branch length from the root to
taxa. For all trees, each path from the root to a leaf has a random number of nodes. The
tree used for each of the 1000 domain combination is unique but the same tree is used with
the same domain combination through each of the 144 simulation scenarios.
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Figure 5.9: Guide tree used in the subset RN (Random Non-ultrametric). a: A random
binary tree with 8 taxa (RN8). b: A random binary tree with 16 taxa (RN16). c: A random
binary tree with 32 taxa (RN32). All trees have randomly determined total branch lengths
from the root to taxa as well as randomly determined number of nodes. The tree used for
each of the 1000 domain combination is unique but the same tree is used with the same
domain combination through each of the 144 simulation scenarios.
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Table 5.2: Number of simulated protein sequence sets and domain numbers.

number of number of sets ID range Total number
domains per 1000 per 1000 of sequences

5 25 1-25 3,600
4 50 26-75 7,200
3 125 76-200 18,000
2 250 201-450 36,000
1 450 451-1000 79,200

Table 5.3: Number of variables.

Area number values values
Guide tree topology 6 FU, CN, CU, CN, RU, RN
Number of taxa 3 8, 16, 32
Branch factor 4 0.5, 1.0, 1.5, 2.0
Linker factor 2 2X, 4X

5.5 Sequence properties of the SimDom benchmark database

The SimDom database is composed of 144 subsets of alignments, each subset con-

taining 1000 alignments and created by varying the simulation conditions. These

datasets are grouped into four categories based on the type of guide trees (ultramet-

ric or nonultrametric) and the linker branch factor (2X or 4X).

In Tables 5.4 - 5.7, we summarized several sequence properties including alignment

lengths, average pairwise identity, and average information score.

The ultrametric tree subgroups have higher average sequence divergence than the

non-ultrametric ones. This is because while the sequences generated by ultrametric

tree simulation have the same distance from the root, some of the sequences generated

by non-ultrametric simulation have shorter distances from the root than others. The

longest distance from the root in a non-ultrametric tree (e.g., FN) is equal to the

distance of all sequences in the ultrametric tree counterpart (e.g., FU).

For all subgroups increasing evolutionary distance (branch length) increases the

alignment length while both the protein identity and the information score are low-
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ered. As described in Section 3.1, the information score is used as an indication of

the conservation. Thus, the positive correlation between the protein identity and

the information score as well as the negative correlation between the evolutionary

distance and these two quantities is expected. It was also expected that the ultra-

metric topology groups would have lower protein identities resulted from having more

evolutionary distance during simulation than their non-ultrametric counterparts.

5.6 The advantage of the SimDom database

The advantages of the SimDom design can be summarized as follows:

• SimDom contains 144,000 sequence sets each with the true reference alignment

involving the full length of the sequences. In contrast, as described in Section

5.1, non-simulated protein benchmark databases (e.g., BAliBASE) do not have

true alignments of their sequences. The alignments included in these databases

are educated approximations for only those areas of the sequences whose 3D-

structures are known. For the regions where there is no 3D information, confi-

dence for the alignments are even lower. It has also been noted that structural

alignments are prone to mistakes when sequence divergence is high, similar to

the problem sequence alignment suffers.

• SimDom contains biologically realistic simulated sequences. The simulation

program we used, REvolver, uses profile HMMs to capture evolutionary con-

straints in the domain sequences. By preserving the domains during protein

sequence evolution, our simulation more likely preserves the functions of simu-

lated proteins.
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• SimDom uses combinations of domains as they appear in real protein sequence

architectures obtained from Pfam. This again ensures our protein sequence

simulations to be biologically realistic.

• Each combination of domains is subjected to 144 different simulation condi-

tions, giving rising to a large variation in alignment features on which to eval-

uated the performance of alignment programs. This large number of datasets

is grouped by specific characteristics such as sequence number, number of do-

mains, guide tree topology and sequence divergence level. This large variety

in protein sequences and their evolutionary patterns allows the evaluation of

alignment programs on many types of proteins. It also avoids over-training of

programs by optimizing alignment functions on a limited set of data.

5.7 Accessibility to the SimDom database

The SimDom database is packaged in the various bundles based on a specific sequence

set characteristic. Table 5.8 summarizes these packages. The groups are based on the

simulation parameters as well as characteristics of the reference MSAs.

For each sequence set, the linker sections and the domain sections are clearly

specified in each LorD (Linger or Domain) file. In this FASTA format text file, each

amino acid position for each sequence is represented with a character, either ’D’ or

’L’, indicating the type of section each amino acid originated from: ’D’ for part of

a domain simulation or ’L’ as part of the linker simulation. Also available is the

complete set of ancestral sequences generated from each simulation, along with the

reference (true) alignments.

The database will be available from: http://bioinfolab.unl.edu/canderson/SimDom/
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Table 5.4: The statistics on the ultrametric tree subset of the SimDom database with the
linker factor of 2. Each subgroup has 1000 sequence sets. “Branch”: tree branch factor;
“Algn. len”: alignment length; “Ident”: the average pairwise protein identity; “Info” the
average column-wise information score; and ”SD”: standard deviation.

Branch Algn. len (SD) Ident (SD) Info (SD)
8 Taxa 0.5 538.5 ( 276.8 ) 0.38 ( 0.06 ) 2.872 ( 0.18 )

1 557.7 ( 287.1 ) 0.23 ( 0.04 ) 2.503 ( 0.13 )
1.5 576.8 ( 296.1 ) 0.18 ( 0.03 ) 2.378 ( 0.11 )
2 591.6 ( 304.7 ) 0.15 ( 0.02 ) 2.332 ( 0.11 )

16 Taxa 0.5 548.2 ( 281.7 ) 0.39 ( 0.06 ) 2.692 ( 0.21 )
1 577.9 ( 299.0 ) 0.25 ( 0.05 ) 2.249 ( 0.17 )

1.5 604.7 ( 310.1 ) 0.19 ( 0.03 ) 2.091 ( 0.14 )
2 631.1 ( 327.7 ) 0.16 ( 0.03 ) 2.039 ( 0.15 )

32 Taxa 0.5 560.5 ( 287.4 ) 0.40 ( 0.06 ) 2.629 ( 0.22 )
1 600.8 ( 310.8 ) 0.26 ( 0.05 ) 2.156 ( 0.19 )

1.5 635.0 ( 325.6 ) 0.20 ( 0.03 ) 1.974 ( 0.15 )
2 671.8 ( 349.8 ) 0.17 ( 0.03 ) 1.912 ( 0.16 )

Clustered Ultrametric, 2X linker
Branch Algn. len (SD) Ident (SD) Info (SD)

8 Taxa 0.5 537.2 ( 275.7 ) 0.45 ( 0.06 ) 3.091 ( 0.14 )
1 552.9 ( 286.1 ) 0.32 ( 0.04 ) 2.782 ( 0.11 )

1.5 569.3 ( 297.6 ) 0.27 ( 0.03 ) 2.661 ( 0.10 )
2 583.2 ( 299.5 ) 0.23 ( 0.03 ) 2.605 ( 0.09 )

16 Taxa 0.5 551.0 ( 283.0 ) 0.43 ( 0.06 ) 2.819 ( 0.20 )
1 578.5 ( 300.3 ) 0.29 ( 0.05 ) 2.407 ( 0.15 )

1.5 608.3 ( 317.1 ) 0.22 ( 0.04 ) 2.266 ( 0.14 )
2 637.4 ( 331.7 ) 0.19 ( 0.03 ) 2.220 ( 0.14 )

32 Taxa 0.5 579.8 ( 295.9 ) 0.43 ( 0.06 ) 2.713 ( 0.20 )
1 632.8 ( 327.3 ) 0.28 ( 0.05 ) 2.321 ( 0.16 )

1.5 689.3 ( 362.1 ) 0.22 ( 0.04 ) 2.228 ( 0.16 )
2 748.2 ( 402.3 ) 0.18 ( 0.03 ) 2.215 ( 0.17 )

Random Ultrametric, 2X linker
Branch Algn. len (SD) Ident (SD) Info (SD)

8 Taxa 0.5 541.9 ( 281.0 ) 0.40 ( 0.10 ) 2.961 ( 0.26 )
1 558.8 ( 287.1 ) 0.26 ( 0.08 ) 2.621 ( 0.23 )

1.5 576.9 ( 298.6 ) 0.21 ( 0.07 ) 2.500 ( 0.18 )
2 594.8 ( 315.5 ) 0.18 ( 0.06 ) 2.451 ( 0.16 )

16 Taxa 0.5 553.9 ( 286.1 ) 0.38 ( 0.10 ) 2.702 ( 0.30 )
1 583.1 ( 299.7 ) 0.25 ( 0.08 ) 2.307 ( 0.25 )

1.5 614.9 ( 320.2 ) 0.20 ( 0.06 ) 2.185 ( 0.20 )
2 643.2 ( 337.3 ) 0.17 ( 0.05 ) 2.147 ( 0.18 )

32 Taxa 0.5 578.0 ( 300.0 ) 0.36 ( 0.10 ) 2.519 ( 0.31 )
1 631.9 ( 332.6 ) 0.23 ( 0.08 ) 2.149 ( 0.25 )

1.5 686.2 ( 365.8 ) 0.18 ( 0.06 ) 2.071 ( 0.20 )
2 744.7 ( 410.7 ) 0.16 ( 0.05 ) 2.086 ( 0.21 )
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Table 5.5: The statistics on the non-ultrametric tree subset of the SimDom database with
the linker factor of 2. Each subgroup has 1000 sequence sets. “Branch”: tree branch factor;
“Algn. len”: alignment length; “Ident”: the average pairwise protein identity; “Info” the
average column-wise information score; and ”SD”: standard deviation.

Branch Algn. len (SD) Ident (SD) Info (SD)
8 Taxa 0.5 534.5 ( 274.6 ) 0.44 ( 0.07 ) 3.038 ( 0.18 )

1 550.0 ( 284.0 ) 0.28 ( 0.05 ) 2.623 ( 0.16 )
1.5 563.4 ( 289.9 ) 0.21 ( 0.04 ) 2.448 ( 0.13 )
2 577.0 ( 295.0 ) 0.17 ( 0.03 ) 2.375 ( 0.11 )

16 Taxa 0.5 542.4 ( 278.6 ) 0.45 ( 0.07 ) 2.877 ( 0.21 )
1 566.9 ( 294.5 ) 0.29 ( 0.05 ) 2.389 ( 0.19 )

1.5 586.9 ( 302.7 ) 0.22 ( 0.04 ) 2.176 ( 0.15 )
2 608.7 ( 310.7 ) 0.18 ( 0.03 ) 2.089 ( 0.14 )

32 Taxa 0.5 552.9 ( 283.1 ) 0.47 ( 0.07 ) 2.818 ( 0.22 )
1 585.1 ( 304.2 ) 0.31 ( 0.05 ) 2.300 ( 0.21 )

1.5 613.8 ( 316.8 ) 0.23 ( 0.04 ) 2.071 ( 0.17 )
2 642.9 ( 330.7 ) 0.19 ( 0.03 ) 1.969 ( 0.15 )

Clustered Non-ultrametric, 2X linker
Branch Algn. len (SD) Ident (SD) Info (SD)

8 Taxa 0.5 526.2 ( 270.6 ) 0.61 ( 0.06 ) 3.539 ( 0.13 )
1 532.8 ( 275.1 ) 0.46 ( 0.06 ) 3.177 ( 0.15 )

1.5 538.4 ( 277.0 ) 0.38 ( 0.05 ) 2.958 ( 0.15 )
2 543.5 ( 278.5 ) 0.33 ( 0.05 ) 2.807 ( 0.14 )

16 Taxa 0.5 529.8 ( 272.5 ) 0.61 ( 0.06 ) 3.380 ( 0.18 )
1 541.2 ( 281.6 ) 0.44 ( 0.06 ) 2.905 ( 0.21 )

1.5 549.1 ( 283.2 ) 0.35 ( 0.06 ) 2.616 ( 0.20 )
2 557.3 ( 285.5 ) 0.29 ( 0.05 ) 2.425 ( 0.18 )

32 Taxa 0.5 539.4 ( 276.9 ) 0.62 ( 0.06 ) 2.886 ( 1.10 )
1 558.2 ( 289.7 ) 0.45 ( 0.06 ) 2.777 ( 0.22 )

1.5 572.8 ( 295.5 ) 0.35 ( 0.06 ) 2.467 ( 0.22 )
2 586.8 ( 299.5 ) 0.29 ( 0.05 ) 2.268 ( 0.19 )

Random Non-ultrametric, 2X linker
Branch Algn. len (SD) Ident (SD) Info (SD)

8 Taxa 0.5 532.4 ( 273.6 ) 0.58 ( 0.11 ) 3.417 ( 0.25 )
1 541.0 ( 278.3 ) 0.42 ( 0.11 ) 3.026 ( 0.28 )

1.5 548.8 ( 283.2 ) 0.34 ( 0.10 ) 2.813 ( 0.27 )
2 558.6 ( 288.6 ) 0.29 ( 0.09 ) 2.689 ( 0.24 )

16 Taxa 0.5 538.1 ( 276.3 ) 0.56 ( 0.10 ) 3.230 ( 0.28 )
1 552.8 ( 285.4 ) 0.40 ( 0.11 ) 2.762 ( 0.31 )

1.5 568.8 ( 296.7 ) 0.32 ( 0.10 ) 2.517 ( 0.29 )
2 584.0 ( 302.3 ) 0.27 ( 0.08 ) 2.378 ( 0.26 )

32 Taxa 0.5 550.1 ( 283.1 ) 0.55 ( 0.10 ) 3.077 ( 0.30 )
1 576.3 ( 298.3 ) 0.38 ( 0.10 ) 2.579 ( 0.31 )

1.5 602.9 ( 314.1 ) 0.30 ( 0.09 ) 2.337 ( 0.28 )
2 632.8 ( 333.4 ) 0.25 ( 0.08 ) 2.219 ( 0.25 )
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Table 5.6: The statistics on the ultrametric tree subset of the SimDom database with the
linker factor of 4. Each subgroup has 1000 sequence sets. “Branch”: tree branch factor;
“Algn. len”: alignment length; “Ident”: the average pairwise protein identity; “Info” the
average column-wise information score; and ”SD”: standard deviation.

Branch Algn. len (SD) Ident (SD) Info (SD)
8 Taxa 0.5 552.8 ( 283.4 ) 0.32 ( 0.06 ) 2.711 ( 0.17 )

1 584.2 ( 299.5 ) 0.21 ( 0.04 ) 2.491 ( 0.12 )
1.5 620.4 ( 317.2 ) 0.17 ( 0.03 ) 2.464 ( 0.13 )
2 648.4 ( 329.5 ) 0.15 ( 0.02 ) 2.478 ( 0.15 )

16 Taxa 0.5 569.9 ( 291.2 ) 0.33 ( 0.06 ) 2.480 ( 0.22 )
1 619.0 ( 318.5 ) 0.22 ( 0.04 ) 2.224 ( 0.15 )

1.5 670.7 ( 342.8 ) 0.17 ( 0.03 ) 2.195 ( 0.16 )
2 719.3 ( 368.6 ) 0.15 ( 0.02 ) 2.232 ( 0.19 )

32 Taxa 0.5 589.4 ( 299.8 ) 0.34 ( 0.06 ) 2.389 ( 0.23 )
1 656.8 ( 338.6 ) 0.23 ( 0.04 ) 2.106 ( 0.17 )

1.5 724.1 ( 370.0 ) 0.19 ( 0.03 ) 2.064 ( 0.17 )
2 789.7 ( 407.1 ) 0.16 ( 0.02 ) 2.096 ( 0.20 )

Clustered Ultrametric, 4X linker
Branch Algn. len (SD) Ident (SD) Info (SD)

8 Taxa 0.5 548.9 ( 281.5 ) 0.40 ( 0.06 ) 2.952 ( 0.15 )
1 577.0 ( 296.2 ) 0.29 ( 0.04 ) 2.733 ( 0.11 )

1.5 606.4 ( 314.3 ) 0.24 ( 0.03 ) 2.668 ( 0.10 )
2 630.2 ( 320.5 ) 0.21 ( 0.03 ) 2.651 ( 0.10 )

16 Taxa 0.5 572.8 ( 293.9 ) 0.37 ( 0.06 ) 2.623 ( 0.20 )
1 622.3 ( 319.6 ) 0.25 ( 0.04 ) 2.381 ( 0.15 )

1.5 675.3 ( 349.8 ) 0.20 ( 0.03 ) 2.354 ( 0.16 )
2 724.4 ( 371.4 ) 0.18 ( 0.03 ) 2.383 ( 0.19 )

32 Taxa 0.5 620.8 ( 316.9 ) 0.37 ( 0.07 ) 2.533 ( 0.20 )
1 718.4 ( 367.4 ) 0.25 ( 0.04 ) 2.382 ( 0.17 )

1.5 821.1 ( 427.8 ) 0.20 ( 0.03 ) 2.353 ( 0.15 )
2 924.9 ( 488.5 ) 0.17 ( 0.03 ) 2.534 ( 0.26 )

Random Ultrametric, 4X linker
Branch Algn. len (SD) Ident (SD) Info (SD)

8 Taxa 0.5 554.4 ( 286.5 ) 0.34 ( 0.09 ) 2.797 ( 0.25 )
1 582.6 ( 297.7 ) 0.24 ( 0.07 ) 2.577 ( 0.18 )

1.5 614.4 ( 315.2 ) 0.19 ( 0.06 ) 2.535 ( 0.14 )
2 644.8 ( 336.8 ) 0.17 ( 0.05 ) 2.540 ( 0.13 )

16 Taxa 0.5 574.3 ( 294.3 ) 0.33 ( 0.09 ) 2.510 ( 0.27 )
1 624.2 ( 318.4 ) 0.22 ( 0.07 ) 2.280 ( 0.20 )

1.5 675.7 ( 348.7 ) 0.18 ( 0.05 ) 2.261 ( 0.16 )
2 726.5 ( 379.3 ) 0.16 ( 0.04 ) 2.297 ( 0.16 )

32 Taxa 0.5 614.8 ( 316.3 ) 0.31 ( 0.09 ) 2.346 ( 0.27 )
1 708.3 ( 369.2 ) 0.21 ( 0.06 ) 2.200 ( 0.19 )

1.5 802.0 ( 425.8 ) 0.17 ( 0.05 ) 2.244 ( 0.18 )
2 898.4 ( 492.3 ) 0.15 ( 0.04 ) 2.328 ( 0.23 )
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Table 5.7: The statistics on the non-ultrametric tree subset of the SimDom database with
the linker factor of 4. Each subgroup has 1000 sequence sets. “Branch”: tree branch factor;
“Algn. len”: alignment length; “Ident”: the average pairwise protein identity; “Info” the
average column-wise information score; and ”SD”: standard deviation.

Branch Algn. len (SD) Ident (SD) Info (SD)
8 Taxa 0.5 545.5 ( 279.5 ) 0.37 ( 0.07 ) 2.831 ( 0.20 )

1 571.4 ( 292.8 ) 0.25 ( 0.05 ) 2.557 ( 0.14 )
1.5 597.1 ( 304.8 ) 0.19 ( 0.03 ) 2.481 ( 0.12 )
2 622.7 ( 316.5 ) 0.17 ( 0.03 ) 2.471 ( 0.13 )

16 Taxa 0.5 560.0 ( 286.6 ) 0.38 ( 0.07 ) 2.620 ( 0.23 )
1 599.2 ( 307.3 ) 0.26 ( 0.05 ) 2.297 ( 0.17 )

1.5 638.1 ( 325.8 ) 0.20 ( 0.04 ) 2.212 ( 0.15 )
2 680.1 ( 346.4 ) 0.17 ( 0.03 ) 2.216 ( 0.17 )

32 Taxa 0.5 576.2 ( 294.3 ) 0.39 ( 0.07 ) 2.534 ( 0.25 )
1 629.9 ( 323.2 ) 0.27 ( 0.05 ) 2.184 ( 0.19 )

1.5 683.4 ( 349.0 ) 0.21 ( 0.04 ) 2.091 ( 0.16 )
2 739.9 ( 378.6 ) 0.18 ( 0.03 ) 2.088 ( 0.18 )

Clustered Non-ultrametric, 4X linker
Branch Algn. len (SD) Ident (SD) Info (SD)

8 Taxa 0.5 530.9 ( 272.5 ) 0.53 ( 0.07 ) 3.326 ( 0.17 )
1 541.7 ( 278.3 ) 0.40 ( 0.06 ) 2.979 ( 0.18 )

1.5 552.0 ( 282.5 ) 0.33 ( 0.05 ) 2.791 ( 0.16 )
2 561.9 ( 287.8 ) 0.28 ( 0.05 ) 2.673 ( 0.14 )

16 Taxa 0.5 537.0 ( 275.6 ) 0.52 ( 0.08 ) 3.090 ( 0.23 )
1 555.4 ( 287.0 ) 0.38 ( 0.07 ) 2.650 ( 0.23 )

1.5 571.0 ( 292.0 ) 0.31 ( 0.05 ) 2.426 ( 0.20 )
2 587.3 ( 300.7 ) 0.26 ( 0.05 ) 2.294 ( 0.17 )

32 Taxa 0.5 552.4 ( 282.6 ) 0.53 ( 0.08 ) 2.974 ( 0.26 )
1 583.1 ( 299.7 ) 0.38 ( 0.07 ) 2.509 ( 0.24 )

1.5 610.7 ( 312.6 ) 0.30 ( 0.06 ) 2.288 ( 0.20 )
2 639.1 ( 326.1 ) 0.26 ( 0.05 ) 2.177 ( 0.17 )

Random Non-ultrametric, 4X linker
Branch Algn. len (SD) Ident (SD) Info (SD)

8 Taxa 0.5 538.2 ( 275.6 ) 0.50 ( 0.11 ) 3.195 ( 0.27 )
1 553.0 ( 284.1 ) 0.36 ( 0.10 ) 2.858 ( 0.26 )

1.5 567.3 ( 291.3 ) 0.29 ( 0.09 ) 2.707 ( 0.22 )
2 582.4 ( 298.2 ) 0.25 ( 0.08 ) 2.632 ( 0.19 )

16 Taxa 0.5 547.7 ( 280.9 ) 0.48 ( 0.11 ) 2.958 ( 0.31 )
1 573.1 ( 294.1 ) 0.34 ( 0.10 ) 2.568 ( 0.28 )

1.5 599.1 ( 310.6 ) 0.28 ( 0.08 ) 2.408 ( 0.24 )
2 624.9 ( 322.7 ) 0.24 ( 0.07 ) 2.339 ( 0.20 )

32 Taxa 0.5 567.9 ( 291.7 ) 0.46 ( 0.10 ) 2.787 ( 0.32 )
1 613.8 ( 315.3 ) 0.32 ( 0.09 ) 2.407 ( 0.27 )

1.5 658.3 ( 340.0 ) 0.26 ( 0.08 ) 2.276 ( 0.22 )
2 704.9 ( 367.3 ) 0.22 ( 0.07 ) 2.244 ( 0.19 )
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Table 5.8: The configuration of the SimDom database.

code common characteristic #seq. sets
FU Full ultrametric guide tree 24000
FN Full non-ultrametric guide tree 24000
CU Clustered ultrametric guide tree 24000
CN Clustered non-ultrametric guide tree 24000
RU Random ultrametric guide tree 24000
RN Random non-ultrametric guide tree 24000

T8 8 taxa 48000
T16 16 taxa 48000
T32 32 taxa 48000

D5 5 domains 3600
D4 4 domains 7200
D3 3 domains 18000
D2 2 domains 36000
D1 1 domains 79200

P5 Avg.Prot.Ident > 0.5 12368
P4 Avg.Prot.Ident <= 0.5 but > 0.4 17591
P35 Avg.Prot.Ident <= 0.4 but > 0.35 12851
P3 Avg.Prot.Ident <= 0.35 but > 0.3 16262
P2 Avg.Prot.Ident <= 0.3 but > 0.2 46381
P1 Avg.Prot.Ident <= 0.2 38547
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Chapter 6

Evaluation of alignment programs

We begin this chapter with a synopsis on the need for high quality multiple sequence

alignments. We continue with a brief review of recent studies of alignment program

performance. We then discuss the objective of our study and how we conducted

this relative performance study, followed by a discussion of the results and their

implication on the machine-learning problem of selecting the alignment “closest to

the optimal”.

6.1 Motivation

As described in Chapter 1, multiple sequence alignments (MSAs) are used as the

starting point for many of the bioinformatics studies. With the increasing volume of

data comes the increasing dependence on automated alignment programs to generate

MSAs quickly and accurately. Alignment quality reflects how accurately the align-

ment depicts the evolutionary relationship between a set of related sequences. As

such, alignment quality is critical to the accuracy of the subsequent studies

With this strong need for accuracy in MSAs, many evaluations have been per-

formed to compare different alignment programs. These evaluations have been per-

formed using different sets of alignment programs and a variety of benchmark datasets

and scoring metrics, with the exact combination dependent on the motivation of the
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Table 6.1: A summary of the evaluation studies on the quality of MSAs produced by

various programs. “year”: publication year; ”ref.”: reference; “metric”: the measure used

to determine the alignment quality; and “benchmark”: the reference datasets used in the

evaluation. The columns labeled MUSCLE, LINSI, PROB, CLTW2 and OMEGA provide

the overall rank of the corresponding program received in the study. A 0 indicates the

program was not included in the study.

year ref. metric benchmark MUSCLE LINSI PROB CLTW2 OMEGA
2004 [16] SPS* BB3 1 2 0 3 0
2005 [104] SPS prefab,HOM 2 1 0 3 0
2009 [20] SPS* BB3,HOM, 2 2 1 1 0
2012 [21] CS BB3 3 1 1 5 3
2012 [79] CS BB3 2 1 0 3 0
2014 [105] SPS sim. data (isg) 2 1 0 0 3
2016 [106] SPS sim. data (SimProt) 2 1 0 7 0
* test for statistical significance with some significant results

study, i.e., the release of new alignment program, phylogeny reconstruction, protein

structural prediction, etc.

Table 6.1 summarizes seven evaluation studies that included the five programs

that we used in this study. It should be noticed that the metric used for accuracy is

different from study to study and as such cannot be directly compared across studies.

What all of these studies showed was that no single program outperformed any other

program on all sequence sets. However, in all these studies, the accuracies for each

program were averaged over the datasets and usually reported without statistical

analysis. Therefore, it is often difficult to determine to what extent one method

outperformed another. Nevertheless, in Table 6.1, the methods are ranked based on

the average accuracies. Among these evaluations, only two reported on statistical

significance. One indicated that across all programs there was statistical significance

between some of the ranks but not all [16]. In this study, MUSCLE was found to

be significantly ranked above all programs except T-coffee, while only a few rankings

between the other programs showed significance. The second study to report on

statistical significance showed significance on only three of the 15 pairwise ranks
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[20]. Overall, from all of these studies, it is difficult to understand the difference

in performance between the alignment programs to gauge the potential in gain for

average accuracy if the alignment with the highest score was selected from each set.

In this chapter, we perform our own evaluation of five alignment programs most

frequently used in various bioinformatics research. Our objective in this study is both

to determine the relative performance difference between the five alignment programs,

and to identify those aspects that can be used as attributes to model training data

for a classifier to identify the best alignment. The novelty of our approach for this

performance study is that we track the difference in relative performance for each

sequence set as well as calculate the average accuracy for each program. Identifying

the difference in performance among alignment programs when they are applied to

different sequence set is critical to our study, which is to increase the average alignment

quality by selecting the program that can generate the highest quality alignment for

a given set of sequences. In the following section, we discuss the benchmark database

we used for testing, the alignment programs we evaluated and most importantly,

we define multiple variables for the purpose of tracking and evaluating the relative

performance difference between the alignment programs.

6.2 Evaluation methods

This section describes the setup of the evaluation study on the performance of five

alignment programs. We discuss the alignment programs, metrics and benchmark

alignment datasets that we used, as well as our objectives and the procedure we

followed.
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6.2.1 Alignment programs compared

The five alignment programs we compared are described in detail in Section 2.5.

They are all variations of the progressive alignment strategy and are reported to

perform well in many comparative studies. The executable and/or source code files for

these programs are readily available for free download and lend themselves to batch

file usage for aligning large numbers of sequence sets without reliance on internet

connection. The five programs along with the shortened names and version numbers

are as follows:

• ClustalW (CLTW2) version 2.1 [18]

• Mafft (LINSI) version 7.157 [19]

• Muscle (MUSCLE) version 3.8.31 [16]

• Probalign (PROB) version 1.4 [20]

• Clustal-Omega (OMEGA) version 1.2.1.2 [21]

We used the default parameters for each alignment program.

6.2.2 Sequence datasets used

We used the sequence sets from the SimDom database (described in Chapter 5). It

contains simulated protein sequence sets designed specifically for the evaluation of

alignment program performance in the presence of domains. As described in Section

2.7, domains are the regions of a protein sequence that are under functional constraints

and as such tend to be more conserved. The regions outside of domains (linkers) are

not under such constraints and their sequences can be highly divergent. The majority



118

of the benchmark alignment databases currently available contain non-simulated pro-

tein sequences that have reference alignments based on the 3-D structure of only the

domain areas. We refer to these databases as non-simulated benchmark databases.

The advantages of using the SimDom database instead of these non-simulated bench-

mark databases for this evaluation are discussed in detail in Chapter 5.1. They are

briefly reviewed here:

• As a simulated database, each sequence set in SimDom comes with the true

reference alignment involving the full length of the sequences. In contrast, non-

simulated protein benchmark alignments are educated approximations for only

those areas of the sequences whose 3D-structures are known. The alignments

derived from other parts of the sequences have even lower confidence.

• There are 144,000 sequence sets in SimDom, representing 1750 domains in 144

different evolutionary scenarios (conditions for sequence simulation are sum-

marized in Table5.3). The most frequently cited non-simulated benchmark

database, BAliBASE3[65], for example, has only 603 alignments that contain

more than two sequences. As discussed in Section 3.2, BAliBASE3 has the

largest number of reference alignments among non-simulated dataset.

• SimDom datasets are grouped based on specific characteristics such as sequence

number, number of domains, guide tree topology and sequence divergence level

(summarized in Table 5.8). With these different groups of sequence sets, it is

possible to evaluate the performance of alignment programs based on specific

characteristics.
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6.2.3 Characterization of sequence sets and alignments

We analyze the results of the relative performance of alignment programs based on

the following data points taken from each sequence set and reference alignment:

• Number of taxa (number of sequences)

• Number of domains in sequences set

• Alignment length

• Average sequence length with standard deviation

• Average pairwise protein identity. This is a metric used to establish the amount

of sequence divergence within a specific sequence set (discussed in Section 3.1.1).

Sequence divergence is one factor that has been shown to affect the level of dis-

agreement in the alignments created by various programs, which consequently

produces alignments of varying accuracies. Alignment programs are generally

in agreement (produce similar alignments) when their average pairwise identity

is above 60% [107]. At lower protein identities, alignment programs disagree

to a much greater extent with this disagreement increasing as protein identity

decreases. At the level of 30% and lower identity, which is considered to be the

threshold of the “twilight zone”, the largest disagreement occurs. Sequence sets

that fall below 10% are considered at high risk of containing unrelated sequences

and as such are not generally aligned [49].

• Information score. This is a metric of the average column-wise information,

which is an indication of how conserved the columns in a specific alignment

(discussed in Section 3.1.2.).
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6.2.4 Performance analysis

As previously stated, our aim is to better understand those aspects of sequence sets

and alignments that can affect the relative performance of alignment programs. We

approach this evaluation with the following objectives:

1. Establish that there is a performance difference between the five alignment

programs used in this study. By performance difference we mean that one

program produces an alignment that is closer to the optimal than another as

measured by an accuracy metric. We use the term outperform to describe

the situation where one program generates alignments closer to the reference

alignment than all the other programs. This one program is said to outperform

the others.

2. Establish that the relative performance between the five alignment programs

shifts depending on the sequence sets being used. By shifts we mean that the

program that outperforms the others changes on different sequence sets.

3. Establish the extent of the performance difference. As the performance differ-

ence increases, the choice of the alignment program becomes more critical.

4. Establish how the amount of performance difference is affected by general se-

quence set characteristics such as the taxon number, number of domains and

topology of the guide tree used in the simulation.

5. Establish the effect of sequence divergence level within a sequence set on the

relative performance. We expect that sequence divergence is a strong candidate

as an indicator for shifts in performance difference. We use protein identity to

measure divergence
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6. Establish the effect of column-wise conservation on the relative performance.

We expect that column-wise conservation is a candidate as an indicator for

shifts in performance difference. We use column-wise information score as a

measure of conservation (discussed in Section 3.1.2).

To accomplish these objectives, each of the five programs was used to align the

144,000 protein sequence sets from the SimDom database. We calculated the CSS on

each alignment against the reference alignment for the sequence set. As we discussed

in Section 3.2.3, CSS is an accuracy metric with the desired property of rewarding

the correct alignment while penalizing incorrect alignments including under and over

alignments. As such, we used CSS to compare the overall “goodness” of each align-

ment and interpreted the value as the higher the value, the better the alignment.

Using CSS as the base, the following summary variables are calculated and used in

our performance analysis:

• CSS(id, p) - the CSS for the alignment created by program p on the sequence

set identified by id.

• maxCSS - The largest value of CSS(id, p) obtained between all alignments gen-

erated by the five alignment programs from a single sequence set, id. The

alignment associated with this score is considered the best alignment of the five

and therefore the program that produced the best alignment is said to out-

perform the other programs. When referring to the maxCSS from a specific

sequence set, the notation is augmented by the id of the sequence, maxCSS(id).

• CSSprogram - this is the average CSS(id, p) for a specific program p, across all se-

quence sets in the dataset. This is an example of the “average accuracy” metric

that was often been used to compare alignment programs in the past evaluation
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studies. For the alignment programs evaluated in this study, the average CSS’s

are given as: CSSMUSCLE, CSSLINSI, CSSPROB, CSSCLTW2 and CSSOMEGA.

• BEST - This is the average of the maxCSS for all sequence sets in a dataset.

This measure will illustrate the maximum average of alignment quality if the

alignment with the maxCSS could be selected for each sequence set, as opposed

to using a single program on all sequence sets.

• ∆15 - The difference between the maxCSS and the lowest CSS(id, p) for all

programs on a single sequence set. This is in essence the range of alignment

quality for a specific sequence set.

• ∆12 - The difference between maxCSS and the second highest CSS(id, p) for all

programs on a single sequence set. Small values of ∆12 would indicate that the

alignments were comparable in accuracy and therefore, there would be little, if

any, concern about which alignment of the two was used. Large values of ∆12

indicates large differences in accuracy between alignments, which would make

the choice of alignment more critical. This value will help establish the extent

of the relative performance difference per alignment program.

• ∆23 - The difference between the second highest CSS(id, p) and the third highest

CSS(id, p) for all programs on a single sequence set. This quantity is used in

Chapter 8.

• ∆34 - The difference between the third highest CSS(id, p) and the fourth highest

CSS(id, p) for all programs on a single sequence set. This quantity is used in

Chapter 8.
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• ∆45 - The difference between the fourth highest CSS(id, p) and the lowest

CSS(id, p) for all programs on a single sequence set. This quantity is used

in Chapter 8.

• ∆BP - The difference between BEST and CSSprogram. For a specific program, p.

∆BP(p) shows how far a given program is behind in average CSS.

6.3 Performance evaluation

The performance of each alignment program was evaluated across 18 groups of the

SimDom datasets. These groups contain sequence sets that vary by the number of

taxa in each sequence set and the topology of the guide tree used in their simulation

(described in detail in Section 5.4). The names of each group are shown in the first

column of Table 6.2. The first two letters refer to the guide tree topology (described in

Section 5.4) while the number (8, 16, or 32) refers to the number of taxa (sequences)

in the sequence sets that make up the dataset.

In Table 6.2, the CSSprogram of each program within each dataset is shown along

with BEST. There is clearly a difference in the performance between programs. The

program with the highest CSSprogram (shown in blue in Table 6.2) varies beween the

groups and the range of CSSprogram for each group varies from 0.024 to 0.047 (both

shown in green). BEST for each dataset represents the maximum possible average

accuracy if the user was able to select the alignment based on the maxCSS.

The high standard deviation of CSSprogram for each program reflects the large het-

erogeneity in the sequence sets. This results in CSS(id, p) values that range from

0.09 to 1.00. At this time, the distribution of CSS(id, p) is not known and as such

we cannot analyze this difference statistically. In Figure 6.1, we compared CSS(id)

between each pair of the five alignment programs. These plots show that no single
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Table 6.2: Performance comparison among the five alignment programs. CSSprogram values
are compared among alignment programs for each group. Each group includes 8000 se-
quences sets and the standard deviations are shown in parentheses. The highest CSSprogram

for each dataset is shown with blue font and the lowest values are shown in red. The range is
the difference between the highest and the lowest CSSprogram for the dataset. The minimum
and maximum range values are shown in green font.

dataset CSSMUSCLE CSSLINSI CSSPROB CSSCLTW2 CSSOMEGA range BEST

FU8 0.736 0.731 0.717 0.757 0.718 0.040 0.770
( 0.131 ) ( 0.133 ) ( 0.130 ) ( 0.116 ) ( 0.129 ) ( 0.178 )

FU16 0.777 0.786 0.762 0.779 0.762 0.024 0.807
( 0.120 ) ( 0.119 ) ( 0.119 ) ( 0.108 ) ( 0.120 ) ( 0.171 )

FU32 0.814 0.829 0.782 0.801 0.799 0.047 0.842
( 0.106 ) ( 0.101 ) ( 0.109 ) ( 0.102 ) ( 0.110 ) ( 0.156 )

FN8 0.791 0.785 0.768 0.812 0.767 0.045 0.823
( 0.117 ) ( 0.120 ) ( 0.120 ) ( 0.102 ) ( 0.120 ) ( 0.168 )

FN16 0.828 0.834 0.804 0.831 0.806 0.030 0.853
( 0.103 ) ( 0.103 ) ( 0.109 ) ( 0.094 ) ( 0.109 ) ( 0.158 )

FN32 0.864 0.876 0.831 0.843 0.843 0.045 0.883
( 0.088 ) ( 0.084 ) ( 0.097 ) ( 0.085 ) ( 0.095 ) ( 0.142 )

CU8 0.759 0.757 0.739 0.783 0.741 0.044 0.793
( 0.104 ) ( 0.107 ) ( 0.106 ) ( 0.096 ) ( 0.104 ) ( 0.136 )

CU16 0.787 0.789 0.766 0.804 0.763 0.041 0.815
( 0.104 ) ( 0.105 ) ( 0.104 ) ( 0.092 ) ( 0.105 ) ( 0.146 )

CU32 0.802 0.808 0.780 0.809 0.776 0.033 0.825
( 0.102 ) ( 0.101 ) ( 0.104 ) ( 0.089 ) ( 0.105 ) ( 0.148 )

CN8 0.899 0.890 0.872 0.911 0.876 0.038 0.920
( 0.066 ) ( 0.068 ) ( 0.070 ) ( 0.061 ) ( 0.070 ) ( 0.089 )

CN16 0.938 0.939 0.911 0.929 0.916 0.028 0.948
( 0.051 ) ( 0.052 ) ( 0.063 ) ( 0.053 ) ( 0.062 ) ( 0.086 )

CN32 0.955 0.960 0.928 0.932 0.941 0.032 0.962
( 0.042 ) ( 0.039 ) ( 0.058 ) ( 0.050 ) ( 0.051 ) ( 0.077 )

RU8 0.752 0.744 0.722 0.768 0.724 0.046 0.783
( 0.124 ) ( 0.127 ) ( 0.126 ) ( 0.119 ) ( 0.127 ) ( 0.170 )

RU16 0.764 0.769 0.737 0.764 0.732 0.037 0.789
( 0.122 ) ( 0.121 ) ( 0.122 ) ( 0.117 ) ( 0.126 ) ( 0.171 )

RU32 0.765 0.781 0.740 0.753 0.734 0.047 0.792
( 0.123 ) ( 0.119 ) ( 0.120 ) ( 0.118 ) ( 0.126 ) ( 0.174 )

RN8 0.896 0.891 0.870 0.906 0.875 0.035 0.914
( 0.081 ) ( 0.084 ) ( 0.091 ) ( 0.074 ) ( 0.089 ) ( 0.114 )

RN16 0.907 0.908 0.878 0.905 0.882 0.030 0.920
( 0.071 ) ( 0.072 ) ( 0.083 ) ( 0.069 ) ( 0.083 ) ( 0.112 )

RN32 0.914 0.918 0.884 0.896 0.886 0.033 0.923
( 0.066 ) ( 0.065 ) ( 0.077 ) ( 0.068 ) ( 0.078 ) ( 0.111 )
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alignment program achieves the highest CSS on all or even most of alignments. The

plots also show the variations in the magnitude (distance of each point from the diag-

onal) of how one program outperformed the other. While these are not quantitative

in nature, it does lend support to the concept of improving the overall quality of the

selected alignments by being able to select the most accurate alignment from a group

of alignments on a per sequence set basis.

However, to show the variation between CSS(id, p) values for a specific alignment,

we have performed a pairwise plotting (CSS(id, pi) vs.CSS(id, pj)) among all align-

ment programs, resulting in ten plots, shown in Figure 6.1. Each plot represents the

CSS(id, p) from the alignments of the 144,000 sequence sets in SimDom. The two

programs, pi and pj, compared in each plot is identified from the row label and the

column label of the array of plots. CSS(id, p) of the same value for the two programs

on the same sequence set, will fall on the black diagonal line. These plots show

that no single alignment program achieves the highest CSS on all or even most of

alignments. The plots also show the variations in the magnitude (distance of point

form the diagonal) of how one program out performed the other. While these are not

quantitative in nature, it does lend support to the concept of improving the over all

quality of the selected alignments by being able to select the most accurate alignment

from a group of alignments on a per sequence set basis.

To determine the improvement that is possible between being able to select the

alignment with maxCSS and the performance of a single program p, we calculated

∆BP(p). The results are shown in Table 6.3. For each row in this table, the pro-

gram with the mininum ∆BP(p), resulting from its CSS being closest to BEST, is

considered to be the top-performing program for the group (shown in blue in Ta-

ble 6.3). For example, the mininum ∆BP for dataset CN32 was achieved by LINSI

(0.003) while the minimum BP in dataset RU8 was achieved by PROB (0.014). LINSI



126

Figure 6.1: Pairwise CSS plots. Each plot shows the CSS(id, p1) from one program against
the CSS(id, p2) from another program for the entire 144,000 sequence sets in SimDom.
The diagonal line represents where the CSS values of the alignments generated by the two
programs are equal, the CSS(id, p1)=CSS(id, p2). Both x and y axes of each plot range
from 0.0 to 1.0.

had the most occurrences of the minimum ∆BP for 10 datasets, while CLTW2 had

the second most with 8 occurrences. PROB and OMEGA never had the mininum

BP and MUSCLE only twice. These results are unexpected. In previous studies,

MUSCLE and OMEGA have always been able to perform better than CLTW2 [26],

[21]. PROB has been also shown to outperform LINSI [20]. As we describe later in

Section 8.6, both PROB and OMEGA performed better on the non-simulated bench-

marks datasets than with SimDom. For example, the minimum ∆BP for dataset

CN32 was achieved by LINSI (0.003) while the minimum ∆BP in dataset RU8 was

achieved by PROB (0.014). LINSI had the most occurrences of the minimum ∆BP

for 10 datasets, while CLTW2 had the second most with 8 occurrences. PROB and

OMEGA never had the minimum ∆BP and muscle only twice. These results are
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Table 6.3: ∆BP(p) values for each program for different datasets. ∆BP(p) values are
shown for each dataset with blue and red fonts representing the smallest and largest values,
respectively, which correspond to the best and worst average alignment quality, respectively,
for each dataset. The “average” shown in the bottom row is the average ∆BP(p) across all
datasets for each alignment program.

dataset MUSCLE LINSI PROB CLTW2 OMEGA

FU8 0.034 0.040 0.053 0.013 0.052
FU16 0.030 0.021 0.045 0.028 0.045
FU32 0.027 0.013 0.059 0.040 0.043
FN8 0.032 0.037 0.055 0.011 0.056
FN16 0.025 0.019 0.049 0.022 0.047
FN32 0.019 0.007 0.052 0.040 0.040
CU8 0.034 0.036 0.054 0.010 0.052
CU16 0.028 0.026 0.049 0.011 0.052
CU32 0.023 0.018 0.045 0.016 0.049
CN8 0.021 0.029 0.047 0.009 0.043
CN16 0.009 0.009 0.037 0.018 0.032
CN32 0.007 0.003 0.034 0.031 0.022
RU8 0.031 0.039 0.061 0.014 0.059
RU16 0.026 0.021 0.052 0.025 0.057
RU32 0.027 0.011 0.052 0.040 0.058
RN8 0.018 0.024 0.044 0.009 0.039
RN16 0.012 0.012 0.042 0.015 0.038
RN32 0.009 0.006 0.039 0.027 0.037

average 0.018 0.018 0.045 0.020 0.043

unexpected. In previous studies, MUSCLE and Omega have always been able to

perform better than CLTW2 [26], [21]. PROB has also been shown to outperform

LINSI [20]. As we describe later in Section 8.6, both PROB and OMEGA performed

better on the non-simulated benchmarks datasets than with SimDom

We also found a distinct reversal in the relative performance of LINSI and CLTW2

between groups. For example, in dataset FU8, CLTW2 had a ∆BP of 0.013, while

LINSI had a much larger ∆BP of 0.040 making CLTW2 the better performer. But in

dataset FU32, LINSI had a minimum ∆BP of 0.013 while CLTW2 had a ∆BP of 0.04,

indicating that LINSI was the top performer. This reversal of relative performance
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also occurred between datasets FN8 and FN32, and between RU8 and RU32. These

results show how the relative performance between alignment programs shifts depend-

ing on factors concerning the sequence sets, in this case, the guide-tree topology used

for simulation and the number of sequences to be aligned. This result establishes that

the relative performance does shift.

From this preliminary analysis, two trends are apparent:

Figure 6.2: Change in CSSprogram with the increase number of taxa. ∆CSS is obtained for
each individual alignment program by subtracting CSSprogram for the 8-taxon datasets from
CSSprogram for the 32-taxon datasets.

• Within each topology group (FU, FN, CU CN, RU, or RN), the CSSprogram values

for each program tend to increase with the number of taxa, especially from 8

taxa to 32 taxa. This trend is shown in Figure 6.2. The only two exceptions

are for CLTW2 in the random tree datasets (both ultrametric RU and non-

ultrametric RN datasets). This trend indicates that by increasing the number of

sequences within the same divergence range, regardless of the pairwise distance
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Figure 6.3: Change in CSSprogram between the ultrametric and non-ultrametric tree groups.
∆CSS is obtained for each individual alignment program by subtracting the CSSprogram ob-
tained from the datasets generated using non-ultrametric trees from the CSSprogram obtained
from the corresponding ultrametric dataset.

among the sequences, the accuracy of alignments produced by four out of five

of the programs, can improve. The decrease in accuracy for CLTW2 with the

increase in sequence number has been the noted by those that implemented the

method and has been the motivation for various modification to the program

[18] [81] [108].

• The CSSprogram for each program increases from ultrametric topology (FU, CU, or

RU) to non-ultrametric topology (FN, CN, or RN). Figure 6.3 shows the differ-

ence between the CSSprogram for each program from the ultrametric datasets and

from that of their non-ultrametric counterparts. For instance, the first group of

five bars represent the difference (∆CSS) between the CSSprogram values for each

program obtained in the FU8 dataset and the FN8 dataset (the CSSprogram for

each program obtained from FU8 was subtracted from the CSSprogram for each

program obtained from FN32). This increase is an expected result. As described

in Section 5.4, as simulation based on the ultrametric guide trees generates a
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Figure 6.4: Label frequencies. The Label frequencies across the entire 144,000 SimDom
datasets. The label is the name of the alignment program with the maxCSS for a specific
sequence set. The number of times each alignment program was call as the label is in Table
6.4. the label frequencies were obtained across the entire 144,000 SimDom sequences sets,

group of taxa that have a higher average pairwise distance, representing more

divergent sequences and, hence more difficult to correctly align.

While the average accuracy has traditionally been used to judge alignment perfor-

mance [16] [24] [20] [21], in this study, we concentrate on the relative accuracy of each

program for each sequence set. This is to help establish the extent of the performance

difference per alignment program. For this purpose we introduce the term “label”

to be the name of the alignment program that generates the alignment with maxCSS

for a specific sequence set and hence, each sequence set has a label. Figure 6.4 shows

the label frequencies across the entire SimDom database. Consistent to what we dis-

cussed earlier, LINSI and CLTW2 have the two highest label frequencies, followed by

MUSCLE, with PROB and OMEGA showing the two lowest label frequencies.

To determine the extent of the differences in the relative performance of align-

ment programs, we calculated ∆12 and ∆15 (see Section 6.1.4 for definitions of these

measures). Values for ∆12 and ∆15 that are close to 0 indicate that the top two

alignments, when considering ∆12, or all alignments when considering ∆15, have
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Table 6.4: Distribution of label across SimDom. The average (av.), standard deviation (σ),
and maximum (max) of ∆12 and ∆15 are also listed.

label label
program counts frquency CSSprogram av.∆12 σ∆12 max∆12 av.∆15 σ∆15 max∆15
MUSCLE 33562 0.233 0.912 0.012 0.018 0.213 0.065 0.060 0.459
LINSI 48642 0.338 0.903 0.012 0.016 0.187 0.057 0.052 0.431
PROB 13496 0.094 0.802 0.008 0.011 0.137 0.032 0.032 0.356
CLTW2 41860 0.291 0.770 0.032 0.033 0.400 0.082 0.056 0.446
OMEGA 6440 0.045 0.821 0.005 0.007 0.070 0.030 0.028 0.353

comparable accuracy. Table 6.4 shows how the values of the average ∆12 and ∆15

changes with label. We note that both the average and standard deviation for ∆12

for CLTW2 are almost double those of the other labels. Similarily, the average and

standard deviation for ∆15 are higher for CLTW2 than the other labels. It suggests

that when CLTW2 is the label, the alignment performance levels vary widely and

CLTW2 performs much better than others. This result is unexpected considering

that published studies show CLTW2 generally behind LINSI, MUSCLE and PROB

in performance [26][17].

Figure 6.6 shows the frequency distribution of ∆12 for when each program was

the label across the entire SimDom datasets. The ∆12 interval from 0.0 to 0.005

contains the sequence sets where maxCSS and the second-place CSS are very close

indicating that the alignments are comparable in accuracy. For the sequence sets that

fall in this interval, the choice between maxCSS and the second place CSS values is

not critical.

The remaining intervals were selected by roughly doubling the length of each

successive interval. This generated a distribution of roughly equal proportion in the

first three, and taping off in the last three. The height of the bars corresponds to the

portion of the 144,000 sequence sets that fall within each labeled bin. The bin label on

the x-axis is the upper limit of the ∆12 value that fall within that bin. For example,

the far left bin represents those ∆12 values that are between 0.000 and 0.005.
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Figure 6.5: ∆12 and ∆15. The average ∆12 and ∆15 when each alignment program
was the top performer (the label). These averages were calculated from the entire 144,000
SimDom datasets.

For a large proportion of the alignments, roughly 41%, ∆12 is less than 0.005,

which indicates that there is little difference between the label and the program whose

alignment achieved the second highest CSS. Each program has a notable proportion

in this interval, although LINSI and MUSCLE clearly dominate. However, there is

a performance shift as ∆12 increases. When ∆12 is low LINSI has the highest label

frequencies. As ∆12 increases,the label frequency for all programs drop with the

exception of the label frequency of CLTW2, which increases in the 0.01 - 0.02 interval

and becomes the highest when ∆12 is higher than 0.02. This increase in CLW2 as the

label with higher ∆12, contributes to the high σ∆12 for CLTW2 as shown in Table

6.4 .

To produce a finer grained picture of the extent of the performance difference based
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Figure 6.6: Distribution of ∆12 per alignment program. The frequency is based on the
entire 144,000 SimDom sequence sets The numeric value shown for each bin is the upper
limit of the bin. The frequency is based on the entire 144,000 SimDom sequence sets. The
remaining intervals were selected by roughly doubling the length of each successive interval.
This generated a distribution of roughly equal proportion in the first three, and taping off
in the last three. The height of the bars corresponds to the portion of the 144,000 sequence
sets that fall within each labeled bin. The bin label on the x-axis is the upper limit of
the ∆12 value that fall within that bin. For example, the far left bin represents those ∆12
values that are between 0.000 and 0.005.

on the characteristics of the dataset of sequences, we examined the label frequency

against the value of ∆12, for each of the 144 subgroups in SimDom (Figures 6.7, 6.8,

6.9). This is to identify any pattern that is associated with large ∆12 values. A

large difference in the accuracy level between the top performing and other alignment

programs corresponds to a large ∆12 value and would signal a sequence set where

the selection of alignment program is critical. In Figures 6.7, 6.8, 6.9, the further to

the right the maker falls, the larger the ∆12 value is, indicating sequence sets that

cause a large amount of disagreement among alignment programs. The higher on the
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plot the marker falls, the more frequently the corresponding program had the best

accuracy and consequently, outperformed the others.

Several trends are apparent from these plots:

• Most of the average ∆12 values for the labels for the 0.5 branch factor datasets

(indicated by the circle) in the 2X factor dataset were much less than 0.01, while

for the 4X factor datasets, some programs showed the average ∆12 higher than

0.01. This is an expected result as sequence sets of the 0.5 branch factor datasets

have a lower range in divergence due to the low branch factor and as such have

lower pairwise distances. For sequence sets of low pairwise distance, alignment

programs have higher levels of agreement and as such both ∆12 values and ∆15

values can be relatively low, making the choice of alignment programs for these

sequence sets less critical.

• For the majority of the 8-taxa datasets, when branch factors were larger than

1.0, CLTW2 showed high label frequency with the average ∆12 over 0.01. As

the taxon number increases, the label frequency for CLTW2 decreased.

• With the exception of the clustered-ultrametric (CU) dataset, LINSI was gen-

erally the most frequent label for the 32-taxa datasets, with the average ∆12 at

0.01 or more. As the number of taxa decreased, the frequency of LINSI to be

the label decreased, especially in the 4X linker datasets.

• When MUSCLE was the label, it was associated with an average ∆12 over 0.1

on the majority of the plots

• There was no dataset where Omega had ∆12 over 0.01 or a label frequency over

0.10.
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• Probalign showed a stronger accuracy in the dataset with 4x linker factor, FU

topology, 16 taxa, than any other datasets. It is not immediately obvious why

this is the case.

There are broad trends in the accuracy of one alignment program over the other,

depending on such characteristics as number of taxa in the sequence set, the guide

tree topology used the sequence simulation, and the branch and linker factors. Be-

cause these are broad but weak trends, we consider these characteristics to be weak

indicators of the shift in relative performance.

In the following sections we will look at various metrics for alignments. We look

for trends in the values of specific metrics that will indicate which alignment program

produces the most optimal alignment for each sequences set. We will compare the

label frequencies and ∆12 with the values of the following metrics:

• Average pairwise protein identity

• Information score

• Number of domains

6.4 Protein identity and alignment performance

In the previous section we noted that roughly 41% of the labels have a ∆12 of less

than 0.005. With these sequence sets, the choice of an alignment program is less

critical. However, as ∆12 increases, the importance of selecting the best alignment

increases. Therefore, our next aim is to be able to identify the set of sequences that

have alignments with high ∆12, as well as be able to identify from the set of five

programs which would create the most accurate alignment (with the highest CSS).
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(a) Symbol for branch factors: ( © - 0.5 ) ( � - 1.0 ) ( 4 - 1.5 ) ( ♦ - 2.0 )

(b) Symbol for branch factors: ( © - 0.5 ) ( � - 1.0 ) ( 4 - 1.5 ) ( ♦ - 2.0 )

Figure 6.7: Relationship between ∆12 and the label frequency for the “Full” guide-tree
datasets. Each dataset (a: FU8, FU16, and FU32; b: FN8, FN16, and FN32) is divided
into two groups based on linker factors (2X and 4X). Plots in each panel are shown using
different colors for the five alignment programs and different symbols for four branch factors
(0.5, 1.0, 1.5, and 2.0).
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(a) Symbol for branch factors: ( © - 0.5 ) ( � - 1.0 ) ( 4 - 1.5 ) ( ♦ - 2.0 )

(b) Symbol for branch factors: ( © - 0.5 ) ( � - 1.0 ) ( 4 - 1.5 ) ( ♦ - 2.0 )

Figure 6.8: Relationship between ∆12 and the label frequency for the “Clustered” guide-
tree datasets. Each dataset (a: CU8, CU16, and CU32; b: CN8, CN16, and CN32) is
divided into two groups based on linker factors (2X and 4X). Plots in each panel are shown
using different colors for the five alignment programs and different symbols for four branch
factors (0.5, 1.0, 1.5, and 2.0).
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(a) Symbol for branch factors: ( © - 0.5 ) ( � - 1.0 ) ( 4 - 1.5 ) ( ♦ - 2.0 )

(b) Symbol for branch factors: ( © - 0.5 ) ( � - 1.0 ) ( 4 - 1.5 ) ( ♦ - 2.0 )

Figure 6.9: Relationship between ∆12 and the label frequency for the “Random” guide-
tree datasets. Each dataset (a: RU8, RU16, and RU32; b: RN8, RN16, and RN32) is
divided into two groups based on linker factors (2X and 4X). Plots in each panel are shown
using different colors for the five alignment programs and different symbols for four branch
factors (0.5, 1.0, 1.5, and 2.0).
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In this section we examine the average pairwise protein identity (described in Section

3.1.1) for its potential to be used as an indicator of alignments associated with high

∆12 values and more accurate alignments.

To perform this analysis, we divided the reference alignment sets into seven bins

based on protein identities values, so that there is roughly an equal proportion of

alignments in each bin. We then calculated the average ∆12 for each bin for each

program when it was the . In Figure 6.10, the label frequency of each alignment

program is plotted against the average ∆12, with a separate plot for each protein

identity bin. For all programs, protein identity is negatively correlated to the average

∆12 (shown in the summary plot at the bottom right of Figure 6.10). This correlation

shows that with decreasing protein identity, the importance of the selection of the

most accurate alignment program also increases.

In previous studies [109][105][107], the decrease in average protein identity has

been associated with an increase in disagreement between alignment programs indi-

cating higher alignment difficulty. The range of protein identity between 10% and 30%

has also been described as the twilight zone where the individual alignment programs

are known to have a high level of disagreement [107]. In Figure 6.10, as expected, the

average ∆12 for sequence sets whose average protein identity are within the twilight

zone range (between 10% and 30%), are larger than for those with higher identities.

This shows that protein identity is a good indicator both for where there is a large

∆12 and for which of the five programs would be the better one to be used. It is also

noteworthy that for highly divergent protein sequences (<25% identity), CLWT2 un-

expectedly performed better than other programs with noticeably larger ∆12 LINSI

was the best performer when protein sequences were more conserved (>25% identity).

It should also be noted that even when LINSI performed the best more frequently,

when CLWT2 generated good alignments,the ∆12 values were notably higher. Only
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when protein sequences were highly conserved as indicated by average protein iden-

tities greater than 60%, did PROB produce the most accurate alignments. However,

∆12 for these alignments were so small (0.0075), at this level of sequence identity

that program selection is less critical.
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Figure 6.10: Average protein identity distribution. Relationship between the label fre-
quency and ∆12 for different pairwise protein identity. The range of % pairwise protein
identity for each bin (and the number of datasets included) is shown at the top of each
panel. The lower right plot shows the average ∆12 for each protein identity interval.
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6.5 Distribution of the label by information scores

In this section, we examine the relationship between the label frequency of each align-

ment program and the information score of the reference MSA. This is to determine if

the information score can help determine which alignment program will produce the

most accurate alignment. As discussed in Section 3.1.2, the information score for an

alignment can be used as an indication of the level of conservation in the alignment.

The higher the information score, the more conserved the alignment and consequently

the more closely the individual alignment program will agree.

We divided the reference alignment sets into seven bins based on the information

scores and calculated the average label frequency and ∆12 for each bin. The results

of our calculation are show in Figure 6.11. We again observe negative correlations

between the average information scores and ∆12 (the bottom right panel of Figure

6.11). This is expected because the average information score should be higher when

more conserved protein sequences are aligned, and as shown in Figure 6.10, ∆12

values were negatively correlated with the pairwise sequence identity. However, the

correlation was not as strong for information scores as for average protein sequence

identity.

The average label frequency for each program remained largely constant regardless

of the information scores. LINSI was most frequently the top performing method.

However, when the average information scores were between 2.3 and 2.5, CLTW2 per-

formed roughly even with or slightly better than LINSI. Similar to what we observed

with pairwise sequence identity, when CLTW2 was the label, the ∆12 associated with

it was substantial, indicating a sequence set where the choice of alignment is criti-

cal. However, the observation that all other programs generally maintained the same

relative order regardless of the range of the average information score indicates that
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this metric is a weak indicator of the label (most optimal alignment).
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Figure 6.11: Relationship between the label frequency and ∆12 for different information
scores. The range of information scores for each bin (and the number of datasets included)
is shown at the top of each panel. The lower right plot shows the average ∆12 for each
information score interval.
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6.6 Domain number number and alignment accuracy

As described in Section 5.5, the SimProt database has 144 simulation groups, each

of which has 1000 sequence sets based on a varying number (between 1 and 5) of

domains (see Table 5.2). In this section, we examine the relationships between the

number of domains in the sequence set and the various metrics (discussed in Section

3.1) to establish if the number of domains can be used as an indicator to determine

which program will produce the most accurate alignment (closest to the optimal).

Alignments with the same number of domains are referred to as domain number

groups. Figure 6.12 shows the average alignment length for each program as the label

within each domain number group, divided for each topology dataset. As expected,

the average length of the reference alignments increases as the number of domains

increases. There is only a slight variation in alignment lengths between labels within

any of the domain number groups, indicating that the accuracy of the alignment pro-

grams is not much affected by the length of the reference alignment. This insensitivity

of the accuracy of the alignment process to the resulting alignment length has been

noted in other studies [58] [106][79].

In Figure 6.13, the average protein identity was compared among domain number

groups as well as programs chosen as the label. Within each topology dataset average

protein identity varied among the program chosen as the label. However, except for

Omega in the single-domain group (especially for ultrametric datasets), the variation

pattern among the program was consistent regardless of the number of domains. In

Figure 6.14, , the average CSS was compared among domain number groups. The

variation pattern among the program was again largely consistent regardless of the

domain numbers.

When the average ∆12 was examined across different domain numbers (Figures
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6.15 and 6.16, negative relationships were observed for three programs, CLTW2,

LINSI and MUSCLE; ∆12 decreased with more domain numbers. This corresponds

to a decrease in the label frequency for MUSCLE but an increase for LINSI. CLTW2

did not exhibit any noticeable pattern of change in the label frequency associated with

domain numbers. PROB had very little uctuation in either the average ∆12 or label

frequency across different numbers of domains. OMEGA showed a slight raise in the

5-domain group but the other groups showed little change. It should be noted that

while domain number caused uctuations in label frequency distribution, it did not

affect the overall relative performance (ranking). This is to say that the ranking of

programs by proportion of the label remains constant with changing domain number.

Over all, choice of the label appeared insensitive to domain number. While there

was a small relative change in CSS with change in domain number, the ranking of

the individual programs based on the label frequency remained unchanged. There

was also small variations in protein identity with a change in domain number. These

results suggest that the number of domains is a weak indicator of which alignment

program will produce the most accurate alignment.
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Figure 6.12: Association of alignment length and domain numbers with program perfor-

mance. The average alignment length (number of amino acids) is based on the reference

alignment when the corresponding alignment program was the label (the top performer) for

the sequence set. The results are shown for each simulation guide-tree dataset.
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Figure 6.13: Association of protein identity and domain numbers with program perfor-

mance. The average pairwise protein identity was calculated for the dataset where the

corresponding alignment program was the label (the top performer). The results are shown

for each simulation guide-tree dataset.
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Figure 6.14: : Association of the average CSS and domain numbers with program perfor-

mance. The average CSS was calculated from the label (top performing) alignment for each

alignment program. The results are shown for each simulation guide-tree dataset.
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Figure 6.15: Association of ∆12 and label frequency with domain numbers and alignment

performance. The results are shown for each simulation that used the ultrametric guide-tree

datasets (FU, CU and RU).
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Figure 6.16: Association of ∆12 and label frequency with domain numbers and alignment

performance. The results are shown for each simulation non-ultrametric guide-tree datasets

(FN, CN and RN).
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6.7 Summary of the evaluation study

In this chapter, we evaluated the relative performance of five alignment programs

using CSS as the metric for accuracy. We defined various measures to better quantify

any performance difference. We showed that there is a performance difference between

the five alignment programs used in this study, and that this difference shifts depends

on the sequence sets being used. By shifts we mean that the program that outperforms

the others changes depending on different sequence sets. By examining the metric ∆12

on various groupings of data sets, we were able to establish the extent of this relative

performance difference, if any, based on sequence set characteristics such as number of

sequences, number of domains and topology of guide tree used in the simulation. We

also were able to determine the effect of sequence divergence, as measured by average

pairwise protein identity of the reference alignment, and sequence conservation as

measured by the column-wise information score, on the relative performance the

alignment program. We summarize our findings as follows:

1. We determined that no program consistently out performed another on all se-

quences sets of SimDom, and that the extent of this difference in performance

varies (Figure 6.1).

2. We confirmed that the relative performance (in terms of CSS) of alignment

programs shifts when aligning different datasets of sequences (Tables 6.1 and

6.2).

3. Using the metric ∆12 we found that the extent of the shift in relative perfor-

mance changes with programs (Table 6.3 and Figure 6.5).

4. We defined BEST (the maximum alignment quality possible), and CSSprogram

(the average alignment quality for each specific program), and ∆BP(p). We
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defined ∆BP(p) (the difference between Best and CSSprogram ). This allowed

us to determine the range of improvement in quality available (the minimum

and maximum values of ∆BP(p)). For the different datasets we evaluated, the

maximum ∆BP(p) value ranged from 1.0% to 6.1% (Table 6.2)

5. We determined that the number of taxa, guide tree topology, branch factor and

linker factor were, at best, weak indicators of a shift in relative performance

between programs.

6. The average protein identity showed a negative correlation with ∆12 and as

such is a good indicator of both ∆12 and which program would perform better.

7. We determined that the information score showed a weak negative correlation

with ∆12. However,the ranking of the programs based on their label frequencies

did not change, making information score a weak indicator of the label (most

accurate program). weak (at best) indicator of label (most accurate alignment).

8. The analysis of the average maxCSS values for the sequence sets with the same

number of domains showed that domain number is, at best, a weak indicator of

relative performance.

With the extent of the performance shift determined and the maximum improve-

ment in alignment quality established, we now have the means of evaluating any

selection algorithm we develop. With the analysis of sequence sets and alignment

characteristics, we have the information on what would constitute good attributes for

the input vector to be used to train a classifier that selects the “closest to optimal”

alignment. In the next chapter, development of such a classifier is discussed.
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Chapter 7

Development of the machine learning algorithm for selecting

the “closest to optimal” alignment

As described in Chapter 1, there are many bioinformatics studies that start with

an MSA of the sequences that are under investigation. To achieve better quality in

downstream studies, it is therefore critical to start with quality MSAs. However, as

described in previous studies [106][105][79][21][20] and also as found in our evaluation

discussed in Chapter 6, no single alignment program consistently outperforms all

other programs across a wide range of alignment tests. Even in the situation where

the sequence sets are grouped by their characteristics, such as sequence divergence

(as measured by pairwise protein identity), number of domains, etc., no individual

program consistently outperformed the other.

This performance difference indicates that each program has a specific type of

sequence set on which they produce better alignments than other programs. Our

approach is to harness this difference in performance to use each alignment program

where it will produce the best alignment. Our hypothesis is that, by selecting the best

alignment from a group produced by a suite of alignment programs, we can increase

the average accuracy over the whole set of alignments.

In the following section of this chapter, we discuss the past attempts at using mul-

tiple MSA programs to achieve the best alignment for a set of sequences. We then
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outline the conceptual points in the development of the “SeLecting an Alignment

Program” or SLAP, the algorithm for the selection of the alignment “Closest to

Optimal”. We follow this with a discussion of machine learning in general and the

implementation of the multilayer perceptron in specific. The chapter concludes with

a description of the process we used to configure the data model used with our al-

gorithm. We show the testing procedure and results of our algorithm in the next

chapter.

7.1 Discussion of previous studies

In the recent past, two projects have attempted to use more than one alignment

program to obtain an alignment with higher quality. These were AQUA [75] and

AlexSys [76], both of which are discussed in detail in Sections 3.5.1 and 3.5.2. We

believe that the limited success of both of these efforts can be attributed to the

following:

• Limited selection : AQUA limited the group of alignments from which to

choose to two base alignments created by MAFFT [77] and MUSCLE [16] and

two additional alignments created by the refinement program RASCAL [69],

operating on each of the two base alignments. This allowed for a selection

of four different alignments in total. However, their results showed that the

two refined alignments produced by RASCAL scored constantly lower than the

two original alignments produced by MAFFT and MUSCLE. The exception was

only when the sequences aligned were from closely related protein families. This

effectively reduced the choice to the two base alignments. Although their results

were not clearly presented, the choice of programs appeared to be too small to
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have sufficient differences in relative performance affecting the possibility of

improving alignments.

• Method of selecting the alignment : Both projects employed methods that

were insufficient to consistently discern the alignment with the best quality.

AQUA used the magnitude of the NorMD scoring system to determine the

best quality alignment. NorMD is a characterizing metric that uses a scoring

matrix, such as BLOSUM62, to score the alignments without consulting a ref-

erence alignment. Because the objective function of NorMD is to maximize the

alignment score, it tends to score the alignment of non-homologous positions

favorably, potentially resulting in higher scores for over-aligned alignment than

for a correct alignment. This type of metric can swing the selection of the best

alignment to an over-aligned, and thus less optimal alignment. AlexSys used two

approaches: a manually constructed decision tree and a polling approach using

a series of binary classifiers. In both cases, the input data was based strictly on

the characteristics of the sequence set. As we have shown in Chapter 6, there is

a large variation in the performance between alignment programs even within

sequence sets grouped by characteristics. Because of this phenomenon, the pre-

dictive power of a scheme based solely on sequence set characteristics would be

weak. The best results reported AlexSys for this project showed only a 0.004

increase in average accuracy score above the best performing single alignment

program, MAFFT.

• Focus of the goal for the project . AlexSys, the one project of the two

reviewed that used a machine learning approach that had the goal of achieving

a “high quality” alignment, but not necessarily the highest. Furthermore, they

combined the goal of high quality with that of fast runtime. They stated that
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their suite of programs all created high quality alignments, and as such, when

lack of discernment in their process of selection ended in ties between multiple

alignment programs, they broke the ties by selecting the program with the

fastest run time. Therefore, it is not surprising that the improvement achieved

by AlexSys was minimum.

7.2 The approach used to develop SLAP

The goal of our algorithm is to select the best alignment available from a group of

MSAs produced using a suite of alignment programs. The conceptual points of this

development effort are as follows:

• Premise : Our approach is based on the demonstrated phenomena that dif-

ferent programs perform better than others on different sets of sequences (see

Figure 6.1). This approach advocates using the best program from a suite of

high preforming programs for each set of sequences as opposed to selecting an

alignment program based on efficiency, as done in AlexSys or limiting the choice

to just a few alignment programs, as was done in AQUA. In this manner we

harness the ability of the individual alignment programs to outperform the oth-

ers on a specific sequence set to achieve an improved average alignment quality

over the whole dataset.

• Method of selection : We propose to use an artificial neural network as the

learning algorithm to generate a multi-class classifier to select the alignment

closest to the optimal. Artificial neural networks have been successfully used in

solving machine learning problems such as image recognition [110] and hand-

writing transcription [111], both problems of which have been studied and ana-

lyzed since the early 1990s. Our project is the first attempt in using a multi-class
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classifier on the problem of selecting the best multiple sequence alignment. As

discussed in the introduction of this chapter, although AlexSys [76] used a series

of binary decision trees, its objective was not necessarily to identify the best

alignment, but rather, the most efficient program.

• Configuration of the data model : The goal of this algorithm is to select

the best alignment from a group of alignments created by specific programs.

To achieve this goal it is essential to include characteristics of the individual

alignments in the attributes. This is in addition to the sequence set characteris-

tics. As discussed before, we believe the lack of this alignment information with

AlexSys was one reason why the system failed to show sufficient improvement

in alignment quality.

• Alignment quality score : We based our evaluation of quality on the Cline

shift score (CSS). CSS rewards correct alignment and penalizes incorrect align-

ment including both under-alignment and over-alignment (Section 3.2.3). This

is the advantage over SPS and CS, the two most frequently used metrics used for

alignment program accuracy. As described in Section 3.2.2, SPS, for example,

is completely insensitive to over-alignment and can cause false quality measures

with an alignment containing sections of frequent but independent gaps.

• Use of a reference dataset of sufficient scope and size : We use a sim-

ulated data set, specifically from the SimDom database, to develop and test

our proposed algorithm. SimDom contains sequences modeled after protein se-

quences that contain one or more domains (see Section 5.4). More importantly,

it provides sequence sets that have no ambiguity in their alignments. This en-

sures that any scoring system applied to the generated alignments will have an

absolute standard against which to be compared. In contrast, non-simulated
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benchmark datasets (e.g., BaliBASE) have no true reference alignments. More-

over, they often contain limited segments of each sequence. In SimDom, the true

alignments are present for the entire length of the sequences. This is especially

critical when the sequence sets are highly divergent (protein identity < 25%).

Using a simulated reference database such as SimDom, we know all sequences

are truely homologous and the reference alignment gives the true evolutionary

relationship. Using SimDom will also ensure that there are sufficient training

and testing data for our learning algorithm.

• Identification of the relative performance shift and its indicators :

Prior to the design of the data model to be used in training the multi-class

classifier, as discussed in Chapter 6, we conducted a detailed performance eval-

uation of all five alignment programs using the SimDom benchmark datasets.

We confirmed that there was a shift in performance among the five alignment

programs to the extent that no single alignment program consistently outper-

formed all others. This study allowed us to identify those characteristics of both

sequence sets and resulting alignments that can be used as the indicators for

which alignment program created the best alignment.

• Quantification of the maximum possible improvement : As described

in Chapter 6, we developed a system of measures that allow us to better quantify

the relative difference in performance between the alignment programs. Using

these measures, we established the maximum possible improvement in align-

ment quality within any group of sequence sets. These measures identify both

the potential of improving the average alignment quality and the goal of our

algorithm. Using these measures, we established the existence of large perfor-

mance variation among MSAs and demonstrated the need for a metric system
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that will allow the strength of each alignment program to be used in selecting

the best alignment. Unlike AQUA and AlexSys, which simply used the aver-

age scores, we leveraged the availability of the maximum quality alignment by

tracking the improvement made by our algorithm and showing the increase in

average alignment quality as compared to using just a single alignment program.

We provide the results from the sign test to demonstrate that the improvement

gained when using our algorithm is the closest to the maximum quality than

any when using any single alignment program.

• Configuration of a library of attributes : To provide our classifier with

a wide choice of attributes, for each sequence set, we compiled a library of

attributes representing both sequence set characteristics and alignment char-

acteristics. When optimizing the data model for our algorithm we selected a

custom set from this library. This allowed for an efficient reconfiguration of

input instances during the design process of the data model. It can also be used

to fine-tune the performance of our algorithm on smaller, more isolated regions

of the instance space of our problem.

7.3 Overview of machine learning methods

In this section we will discuss some of the principles of machine learning in general

and the artificial neural network in particular.

7.3.1 Background of machine learning

A machine learning algorithm is able to learn from experience. The concept of a

program learning is succinctly described in the textbook on the subject authored by

T. Mitchell, “A computer program is said to learn from experience E with respect to
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some class of tasks T and performance measure P, if its performance at tasks in T,

as measured by P, improves with experience E” [112].

The task T can be any of the many applications that need to process data. A

few of the categories of these tasks are as follows:

• Classification, where the program is asked to specify which of k categories an

input belongs to. An example would be a program that is asked to distinguish

between photos of cats and dogs.

• Transcription, where the program is asked to take as input an unstructured

representation of data, such as a scanned handwritten letter, and transcribe it

into discrete, textual form.

• Translation, where the program is asked to take as input a sequence of sym-

bols in one language and must convert it to a sequence of symbols in another

language. This is most often used with natural languages, such as translating

Chinese pictograms to written English.

• voice recognition, where the program is asked to take as input audio data and

convert it to a textual form.

The Experience E is the dataset that the program deals with. This dataset is

a collection of examples (data points), each of which contains features or attributes

of quantitative or qualitative significance. These datapoints are the instances the

program performs its task on. Usually, an instance is represented as a vector x ∈ Rn

where each xi is a specific attribute describing the particular instance. The perfor-

mance measure P is specific to T. The traditional P for classification tasks is the

accuracy of the program, which is determined by the number of correct predictions
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the program makes. Thus, machine learning seeks to maximize P, which is an opti-

mization problem. However, what makes machine learning more than an optimization

problem is that it not only attempts to minimize the error on the training data when

fitting the training data to a curve, but it attempts to minimize error for new data

that it has not seen yet. In other words, the algorithm “learns” from the old data to

better process the new.

In this study, the task T that the program is to learn is one of classification.

The classification function can be formalized as f : Rn → {MUSCLE, LINSI, PROB,

CLTW2, OMEGA} where the names represent the various alignment programs. Tra-

ditionally, for classification problems, P is the accuracy of the model, defined as the

proportion of examples for which the model predicts the correct output. However, due

to the nature of our problem the accuracy did not adequately reflect the quality of the

outcome of the training. In Section 8.4, we will introduce a novel performance mea-

sure that more closely tracks the desired outcome of the combined learning algorithm

and problem model of the classifier.

We used a supervised learning algorithm in this study, where each instance upon

which the algorithm is trained has an associated label indicating the correct classifi-

cation for the instance. The term supervised learning comes from the analogy that

the label serves as an “instructor” who supervises the learning system in what to do.

7.3.2 Multi-layer perceptron

The learning algorithm we used in this study is the multi-layer perceptron (MLP),

which is a feed-forward type of artificial neural network (ANN). They are called

feed-forward because the input data enters the ANN as x and is processed by the

computations that make up the function, f . When all calculations are complete,

the ANN outputs a prediction. There is no feedback connection where the output
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for each instance is fed-back to the processing function. The design of ANNs was

inspired by the densely interconnected network of the brain and are well-suited to

problems with specific conditions or characteristics [112]. The following is a list

of these characteristics along with an explanation of how the underlying learning

problem of our application satisfies them.

• Instances are represented by many attribute-value pairs. The input

data for our problem would need to capture the characteristics of both the set

of protein sequences and the five alignments generated by the programs in our

study in sufficient detail to allow the learning algorithm to correctly predict the

most accurate alignment.

• Output may be discrete-valued, real-valued or a vector of discrete

or real values. In our problem, the output is one of five discrete labels, which

correspond to the names of the individual alignment programs.

• Training data may contain errors. Training data error does not occur

when using the SimDom database since we have the true reference alignments

on which to base the labels. However, when using a non-simulated sequence

database as a source of training data, true alignments are not known and hence

there is a greater chance of errors.

• Long training times are acceptable. The anticipated use of this classifier

is to train it for a specific dataset and then use it to classify multiple input

instances. Frequent retraining during any single study is not anticipated and

as such an initial longer training time is not an impediment to the use of the

ANN.
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Figure 7.1: Single perceptron unit. An associated threshold (a step function in green) or
sigmoid function (blue curve) unit as well as the output unit are also shown.

• Fast evaluation of target function. Once our classifier is trained, evalu-

ation for each input sequence set is rapid for processing large batch jobs which

would in turn be used in additional downstream processing.

• Target function does not need to be human readable. As we explain in

the next section, the function for an ANN is implemented as multi-connected

nodes with weighted edges. In our application of the ANN, it is not necessary for

the weights on the node connections to be obviously connected to any specific

trait thus rendering it human readable or understandable.

The multi-layer perceptron is based on the unit called a perceptron, which is

illustrated in Figure 7.1. The perceptron unit can be viewed as a hyperplane decision

surface in the n-dimensional instance space, where n is the number of values in the

input vector, and can be used to represent a linear decision surface. Its task is to take

the input vector and return either 1 or -1. To obtain a more discerning, nonlinear

decision surface, the multiple perceptron units can be connected to form a hierarchical

structure. The number of output units is increased to the number of labels and an

additional layer of units, referred to as the hidden layer, is inserted between the input



165

and the output units. Each layer of units is fully connected with the layer to the left

of it, resulting in the two layers being fully connected to the hidden layer, and the

hidden layer being fully connected with the output layer for this single hidden layer

example. An arrangement of this type is referred to as a multiple layer perceptron.

A diagram of this hierarchical structure is shown in Figure 7.2. For simplicity, the

edge weight labels in the diagram are shown for only the weights on the connections

between the input units and the hidden units. The weights on the connections between

the hidden layer and the output nodes are present but not shown in this figure. The

weights for all connections are determined by applying the gradient descent algorithm,

and using a sigmoid unit on each perceptron unit in place of the step function to make

it differentiable. This requires multiple iterations through the training data, where

the weights on all connections are adjusted each time an incorrect prediction is made

for an instance of the training data. Each adjustment incorporates a learning factor

which determines the rate at which the weight is adjusted, and a momentum factor,

which determines the portion of the previous adjustment that is added to the current

adjustment.

For this study we used the source codes from the Weka workbench [113] in con-

junction with our custom front-end program to train and test the MLP. All testing

in this study was done using a 10-fold cross-validation strategy, which is described in

Section 7.4.

7.3.3 Other machine-learning algorithms tested

Prior to the decision to use the MLP for our application, we performed preliminary

testing of different learning algorithms using their implementation provided in the

Weka workbench [113]. A preliminary dataset used for the training consisted of 300

simulated sequence sets created by indel-seq-gen [88]. 10-fold cross-validation was



166

Figure 7.2: Multi-layer perceptron. A node layout with n input nodes, one layer of 3
hidden nodes and 3 output nodes are shown.

performed to test each of the algorithms. The classifier accuracies were fairly low

for all algorithms, ranging from 25 to 42%. However, while the training time was

higher for the MLP by as much as a factor of 10 (approximately 5 minutes for the

MLP as compared to around 30 seconds or less for the other algorithms), its resulting

average accuracy was noticeably higher than any of the others. As such, we decided

to concentrate our effort on using the MLP for our application. The configuration

we used for the MLP was a single hidden layer containing 24 nodes, where the node

number was obtained as (attributes + classes)/2 for 44 attributes and 5 classes. We

used the default values for the learning rate, 0.3, and the momentum, 0.2. Trials were

run to evaluate the effect of adjusting both the learning rate and momentum but no

significant gain was made. The alternative algorithms we included in this screening

were as follows:

• J48: the Weka implementation of the C4.5 decision tree [114], which builds a

tree based on the information entropy. Each split of the tree is determined by
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the attribute with the highest normalized information gain.

• Random forest [115]: an ensemble learning algorithm that creates multiple de-

cision trees and outputs the mean of the classification of these trees.

• AdaBoost [116]: a boosting algorithm that uses a “weak learner” such as a

decision stump and through multiple iterations promotes those input instances

that are mislabeled.

• Kstar: an algorithm where the class of a test instance is based upon the class

of those training instances similar to it, as determined by a similarity function

based on an entropy-based distance.

• SMO [117]: an algorithm which solves the quadratic programming problem

used to train a support vector machines (SVM). SVM is a classifier that defines

a hyperplane for classification based on maximizing the margin between the

instances of each label.

7.4 Cross-validation

Cross-validation is a common training and testing strategy for machine learning al-

gorithms. It is a method of testing the ability of the learning algorithm to generalize,

which is to predict the correct label on an instance vector not seen during the training

of the classifier. For example, a 10-fold cross-validation strategy involves randomly

dividing the available set of input instances into ten evenly sized subsets. The result-

ing division is referred to as a partitioning of the input instances with each subset of

the partition referred to as a fold, thus the name 10-fold for this example. Each fold

of the partition is then used, in turn, as testing data, with the other nine folds used as

the training data for the classifier to be tested. This allows all available instances to
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be used as a test case. To increase the number of training and testing runs, multiple

partitions can be created and used in training and testing.

In this study, we defined seven datasets from the SimDom benchmark database:

ALL, FU, FN, CU, CN, RN, and RU. The dataset ALL contains instances for all

144,000 sequence sets in SimDom. Each of the datasets FU, FN, CU, CN, RN and

RU contains instances for 24,000 sequence sets. To perform 10-fold cross-validation

analysis, each of the seven datasets was randomly partitioned into 10 subsets without

replacement. Nine of the ten subsets were used for training and the remaining one

subset was used for testing. This process was repeated ten times generating in total

100 training/testing runs for each dataset. The average and standard deviation of

the prediction accuracy were calculated for each dataset from these 100 trials.

7.5 Description of the “closest to optimal” alignment problem

In this section we will describe our underlying machine learning problem which in-

volves determining the best quality alignment. We measure the accuracy of an align-

ment by CSS when compared to the “true” or “reference” alignment. As described

in Section 3.2.3, CSS is the number of correctly aligned pairs combined with a shift

penalty for misalignment and under/over alignment. Alignment problems involve se-

quence sets that vary in the degree of pairwise divergence (evolutionary distance).

When sequences within a set are closely related, there is a high degree of agreement

or consistency between the alignments generated by any of the alignment programs.

In such cases, the choice of the best or better alignment for that set is less critical.

However, as the divergence between the sequences increases, there tends to be more

differences (or inconsistencies) between various alignments making the choice of which

alignment to use more critical.
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In previous evaluation studies (e.g., [16][24][20][21]) as well as in our own study

described in Chapter 6, regardless of the metric used, average alignment accuracies

were usually reported. However, while a program may achieve the highest average

score, another alignment program(s) could generate a more accurate alignment de-

pending on the sequences. In fact, in the evaluation performed in Chapter 6 (see

Figure 6.1), we found that no single alignment program among the five examined

consistently produced the most accurate alignment.

When making the choice of which alignment program to use for a group of se-

quences, it is more important to be able to choose the alignment program that per-

forms best on that particular set of sequences as opposed to the program that performs

the best on average across any sequence sets. We therefore developed an algorithm

that assists the user in determining which alignment from the group of alignments

is the closest to the optimal. This algorithm is called ”SeLecting an Alignment

Program” (SLAP). It consists of training a multi-class classifier to predict which of

the five alignments generated by the five alignment programs is closest to the optimal.

In the next section, the details of the data model used in the SLAP algorithm are

described.

7.6 Data model for the “closest to optimal” problem

In this section we will discuss how the results of the evaluation study done for the five

alignment programs reported in Chapter 6 were used to generate a list of candidate

attributes for the input vector, the selection process by which the attributes were

chosen and combined to form an input vector that most accurately predicted the

label.

In our discussion of the data model, we divide the attributes of the instance vector
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into two groups: those associated with sequence sets and those based on alignments.

The sequence-set based attributes are those that describe a group of sequences as

they compare to one another, independent of an alignment. The alignment-based

attributes are a set of values that define the property of a specific alignment (e.g.,

lengths, number of gaps). We used both the forward selection and backward elim-

ination algorithms to determine which combination of attributes most accurately

predicted the correct label of our problem when used with the Weka workbench im-

plementation of the MLP. The detailed discussion of our development effort is divided

as follows:

• Description of the input data structure.

• A discussion of the candidates for the sequence-set based attributes along with

their selection.

• A discussion of the candidates for the alignment-based attributes.

• How we determined the best combination of attributes for an input instance

vector.

7.6.1 Structure of the input data

Each instance is the ordered set of attributes associated with a single sequence set

and reference alignment. By ordered, we mean that the attributes are listed in the

same order for each instance. The label assigned to each instance is the name of the

program that generated the alignment with the highest CSS for the sequence set. The

five programs we used in this study are described in Section 2.5 (their abbreviations

used are listed in Table 1). The frequency of the assigned labels for SimDom (for

each guide-tree topology group) is shown in Table 7.1.
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7.6.2 Sequence-set associated attributes

We will now discuss the numeric values that we believe capture different aspects of

a sequence set to be used as candidate attributes for our data model. We will then

perform an attribute selection procedure to determine which attributes generate the

classifier with the best accuracy.

The relative performance of the alignment programs can be affected by several

aspects of the sequences to be aligned. As described in Chapter 6, the number

of sequences, the amount of divergence between the sequences, as well as how the

sequences relate to each other (represented by the guide-tree topology used in the

simulation) all affected the relative performance of the five programs we tested. The

number of sequences can easily be incorporated as an integer attribute.

To capture the sequence divergence without the use of an alignment will require

multiple attributes. One aspect of sequence divergence is the variation in sequence

length with the sequence set. The higher the indel rate and/or the longer the time

of evolutionary (evolution distance), the greater will be the variation in lengths of

the sequences. To capture the detail of the variation of the sequence length, we

will included the average, standard deviation, maximum, and minimum lengths of

sequences in our list of candidate attributes. We also included the minimum number

of gap positions needed to bring all sequences to the same length and the ratio of

maximum sequence length to minimum sequence length.

Another aspect of the divergence of a sequence set is the variation in the sequence

property within the set. This aspect of divergence can be captured numerically as

the frequency of each of 20 amino acids in each individual sequence, obtaining the

average and the standard deviation within the set. This attribute set consists of the 20

average and standard deviation of amino acid frequencies, resulting in an additional
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Table 7.1: Frequency of the labels for each guide-tree topology group.The data is shown by
topology group: FU, FN, CU, CN, RU, RN. The alignment having the highest CSS value
is designated as the label for each sequence set.

frequency of label
group # sets MUSCLE LINSI PROB CLTW2 OMEGA
FU 24000 0.206 0.332 0.127 0.277 0.058
FN 24000 0.229 0.365 0.092 0.271 0.043
CU 24000 0.185 0.235 0.110 0.436 0.035
CN 24000 0.258 0.363 0.095 0.225 0.059
RU 24000 0.220 0.345 0.093 0.306 0.036
RN 24000 0.288 0.364 0.082 0.229 0.037

40 candidate attributes.

These attributes along with their designated single-letter codes are as follows:

• number of sequences (A)

• maximum sequence length (B)

• minimum sequence length (D)

• average sequence length (C)

• standard deviation of sequence length (Z)

• ratio of maximum sequence length to minimum sequence length (F)

• percent of sequences under the average length (G)

• minimum percent of positions needed as gaps (E)

• average amino acid frequencies (20 values) (Q)

• standard deviations of amino acid frequencies (20 values) (S)
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In total, these 48 attributes (designated with 10 codes) make up the candidate

sequence-set based attributes of the multi-class problem. We noted that some of

these attributes are highly correlated. We therefore performed the attribute selection

process to remove redundant attributes or those that do not contribute significantly

to the performance of the classifier. It would be also desirable if we could devise a

model based solely on sequence-set based attributes because it would the computation

needed to generate the alignment-based attributes (described in the next section).

We used the forward selection algorithm employing a ten-fold cross-validation test

on the full SimDom dataset, to determine which of the attributes should be included

in our input instance (Algorithm 4). The results showed that the best combination

of sequence attributes was the subset AFS, which contains 22 attributes

• number of sequences (A)

• ratio of maximum sequence length to minimum sequence length (F)

• standard deviations for amino acid frequencies (20 values) (S)

The best accuracy for this sequence related attributes was 42.8%, which is rather

low, indicating that the sequence-based attributes by themselves are not sufficient to

separate the five classes.

7.6.3 Alignment-based attributes

The alignment-based attributes are those that capture the shape, conservation, and

divergence of the alignments generated from each program. The first set of attributes

is an estimate of the number of conserved areas are identified using column-wise

information scores. We divide the alignment into segments and scan them looking for

those that have average column-wise information scores higher than a given threshold.
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Data: List of attributes
Result: Combination of attributes with highest accuracy
forall Attribute codes do

Create a instances with single attribute and label
Perform a single ten-fold cross-validation run
Record attribute and accuracy in list sorted on accuracy

end
Initialize combo 1 with attribute on the top of sorted list forall Attribute codes
do

Add next attribute in list to combo
Create a instances with all attribute in combo 1 and label
Perform a single ten-fold cross-validation run
if Accuracy does not decrease then

Keep attribute in combo 1
end
else

Remove attribute and add it to retry list
end

end
Initialize combo 2 with 2nd highest attribute on first sorted list forall
Attribute codes in retry list do

Add next attribute in retry list to combo 2
Create an instance with all attributes in combo 2 and label
Perform a single ten-fold cross-validation run
if Accuracy does not decrease then

Keep attribute in combo 2
end
else

Remove attribute
end

end
forall Attribute codes combo 1 do

Add next attribute in combo 1 to combo 2
Create instances with all attributes in combo 2 and label
Perform a single ten-fold cross-validation run
if Accuracy does not decrease then

Keep attribute in combo 2
end
else

Remove attribute
end

end
Return the combo (between combo 1 and comb0 2) with the highest accuracy

Algorithm 4: Forward selection of sequence-set attributes using 10-fold cross-validation.
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The standard deviation of the column-wise information scores is also examined to

identify possible transition regions from a domain to a linker (or vice versa) segment.

Algorithm 5 summarizes this protocol. We set the length of the segments and the

thresholds based on trial runs using the reference alignments of SimDom, where the

exact number of domains is known.

Data: MSA, information score threshold,columns per segment
Result: Calculated estimated number of conserved areas
forall columns in the MSA do

Calculate the information score, Ii
end
Break alignment in segments of N columns
forall segment in the MSA do

Find the average and standard deviation of Ii in segment
Assign designation
if average column-wise information score is greater then threshold then

designation ← C (for ‘Conserved’)
end
else

designation ← N (for ‘Not conserved’)
end

end
initialize area list with current area ← C designation of first segment
for all other segments in the MSA do

if segment area designation equal designation of current area then
add segment to current area.

end
else

if standard deviation for previous segment is higher than threshold then
start new area and give it the designation of current segment.

end
else

add segment to current area.
end

end

end
number of conserved areas ← number of areas with C designation

Algorithm 5: Estimation of the number of conserved segments within an MSA.
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The result of Algorithm 5 applied to the alignment generated by each of the five

alignment methods yielded a value (integer), adding 5 attributes to the model. The

designated code for these attributes is CON.

The next set of attributes deals with the column-wise characteristics for each

individual alignment. These are divided into two groups, gap characteristics and

conservation characteristics:

• Gap characteristics (GP):

– % columns with no gaps

– % columns with 50% or less gaps (excluding columns with no gaps)

– % columns with more than 50% gaps (excluding those occupied by a single

non-gap residue)

– % columns with only one non-gap position (only one sequence with an

amino acid in the column).

– % gaps in the alignment, which is given as (the total number of gaps in

the alignment)/[(the number of sequences in the alignment) * (number of

columns in the alignment)]

• Conservation characteristics (CN),

– % columns that are completely conserved and no gaps

– % columns with only two types of amino acids and no gaps

– % columns with three types of amino acids and no gaps

Each of the 5 alignments will contain these 8 attributes, adding 40 attributes to

the model.
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The next group of attributes consists of two metrics used to capture the overall

divergence of the alignment. They are the average pairwise protein identity (PRO)

(Section 3.1.1) and the Information score (INF) (Section 3.1.2). This contributes two

attributes for each of five alignments, adding ten attributes to the model.

The next set of attributes consist of the pair-wise computation of CSS, each of

the five alignments against the other, adding 10 attributes.

The final set of attributes captures the finer-grained column-wise composition in

each alignment. For 20 amino acids and 1 gap character the number of all possible

unordered triplets is 1771 . By unordered we mean that, for example, ACF is treated

as the same as CAF and FAC. This results in 8855 3-mer frequency values for all five

alignments. To reduce the number of attributes, we used the following two approaches

(only one set of them is included in the final set of attributes as described in Section

7.6.4).

The first approach (RAT) is to combine these 3-mer frequencies into seven gener-

alized frequencies for each alignment. This would create a set of seven attributes for

each of the five alignments, resulting in 35 attributes representing all five alignments.

These generalized frequencies consist of 3-mers that are as follows:

• all gaps (occurs when three or more sequences have a gap)

• 2 gaps with any one amino acid

• 1 gap with 2 of the same of any amino acid

• 1 gap with any 2 different amino acids

• any 3 different amino acids

• any 2 same amino acids with one different
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• any 3 of the same amino acids

The second approach (PM) uses principal component analysis and uses a smaller

number of the principal components that recapture a specified amount of variance

are used as the fewer number of converted attributes. To re-capture 90 percent of the

variance of the original attributes, for example, as many as 544 principal components

were needed, which resulted in more than 2500 attributes. This large number of

attributes will greatly increase the amount of time needed to train the model. As

such, it will have to show a marked improvement in prediction to justify the increase

computational expense.

7.6.4 The full set of candidate attributes

The full set of candidate attributes (and the number of values) is as follows:

• number of taxa in the sequence set (1)

• percent of sequences over average (1)

• standard deviation of amino acid frequencies in the sequence set (20)

• number of conserved areas from each alignment (5)

• 8 gap and conservation characteristics from each alignment (40)

• information score from each alignment (5)

• average pairwise protein identity from each alignment (5)

• pair-wise CSS comparisons (10)

• 7 generalized column-wise 3-mer frequencies from each alignment (35), or
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• up to 544 principle components from 3-mer frequencies from each alignment

(over 2500)

We performed a search of the attribute space to find the subset that predicted the

label most accurately. To reduce the complexity of this search, the attributes were

added and removed in groups as listed above. We used both the forward selection and

a hybrid multiple backward elimination with no bias added toward smaller attribute

sets employing a ten-fold cross-validation test on the full SimDom dataset. The

algorithm for a hybrid multiple backward elimination is given below in Algorithm

6. The results of the full attribute selection trial using the multi-start backward

algorithm yielded the same combination as the forward selection algorithm for the

full set of attributes. The final set of the attributes (and the number of values)

consisted of:

• number of taxa in the sequence set (1)

• average protein identity (5)

• pairwise CSS from five alignments (10)

• generalized 3-mer frequencies from each alignment (35)

The final average accuracy using both one sequence-based attribute and 50 alignment-

based attributes was 0.621 for a single ten-fold cross-validation run. This represents

an increase of roughly 0.200 in accuracy over using just the sequence attributes (0.428,

Section 7.6.2). There was also a significant reduction in the number of attributes from

the full set of attributes, which eliminated a large amount of the calculation that the

discarded attributes would require. This is especially true for the principal component

transformation, which consisted of 450 attributes and required 8.5 hours per ten-fold
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Data: Full set of attributes
Result: Selection of the alignment-based attributes using ten-fold

cross-validation
Form instances from all attributes
Perform a ten-fold cross-validation recording score.
Initialize combination list, adding first combination of all attributes along with
score.

Initialize empty reject list
while combination list not empty do

remove next combination from list
foreach group of attributes in combination do

Remove a single attribute
Form instances from all attributes
Perform a ten-fold cross-validation recording score.
if accuracy goes up then

Add reduced combination to combination list if not already on list
end
else

Add to reject list
end

end

end
Last combination off of combination list

Algorithm 6: Generation of a list of attributes that will train the most accurate clas-

sifier.

partition using the full SimDom database, as opposed to 38 minutes required for the

35-value generalized 3-mer frequencies. Use of the principle component attributes

did not increase the accuracy and in some cases, there was a decrease in accuracy.

Therefore, this set of attributes could be eliminated. It should be noted that we did

not perform an exhaustive search of the attribute space, but more of a multi-start

greedy approach. However, since the gain and loss of accuracy fell within a range of

4.5% with an overall increase of 1.5%, there is only a small likelihood that additional

search will yield much difference in accuracy.
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Chapter 8

Performance analysis of SLAP

In this chapter we will discuss the performance of SLAP to select the “closest to

optimal” alignment. We outline the testing procedure and evaluate both the accu-

racy of the classifier and the resulting improvement in average alignment quality as

measured by CSS. We then analyze the training/testing data to ascertain the reason

for the results we obtain and the implication to the underlying goal: selecting the

one alignment closest to the optimal out of the five. We also define a new metric,

SLAP RAT, which gives a better measure of the performance of SLAP in relation

to the machine learning problem.

8.1 Procedure for testing SLAP

We tested the performance of SLAP in its ability to select the closest to the opti-

mal alignment, using seven datasets from the simulated protein sequence benchmark

database, SimDom. The seven test datasets are defined as follows:

• ALL - contains all 144,000 the sequence sets of the SimDom database

• FU - contains all 24,000 the sequence sets simulated with the FU guide trees.

• FN - contains all 24,000 the sequence sets simulated with the FN guide trees.

• CU - contains all 24,000 the sequence sets simulated with the CU guide trees.
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• FU - contains all 24,000 the sequence sets simulated with the CN guide trees.

• CN - contains all 24,000 the sequence sets simulated with the RU guide trees.

• RU - contains all 24,000 the sequence sets simulated with the RN guide trees.

The dataset ALL covers a larger area of the instance space for the machine learning

problem than the guide-tree specific datasets. Each of the smaller datasets covers a

smaller portion of the total instance space. Our evaluation procedure consists of

performing a 10-fold cross-validation test on ten unique partitioning of the dataset,

resulting in 100 individual training/testing runs (see Section 7.4 for the details). We

perform the same testing procedure on each of the seven test datasets and quantify

the performance using the classifier accuracy metric, which is given as:

Accuracy =
correct labels

all labels
. (8.1)

The resulting accuracies of SLAP on the seven test datasets are given in Table

8.1. The accuracies range from 0.524 for CN to 0.658 for CU, with the largest dataset

ALL having an accuracy of 0.614. The first two observations are: 1) the accuracies

seem to be low and 2) there is a large variation in the accuracies for the different test

datasets.

Table 8.1: Accuracies of SLAP on the seven test dataset using 10-fold cross-validation
analysis. SD: standard deviation.

ALL FU FN CU CN RU RN

accuracy 0.614 0.637 0.633 0.658 0.524 0.626 0.564
(SD) (0.004) (0.012) (0.008) (0.012) (0.011) (0.006) (0.011)
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When we evaluate the accuracy of SLAP we must take into account that the

SLAP classifier is a five-class classifier. Thus we consider the following two trivial

classifiers: 1) the five-class classifier that simply selects a label at random and 2)

the classifier that labels all test cases with the label of the class with the highest

frequency in the dataset ALL. The first trivial classifier will achieve an accuracy of

approximately 0.20. The second trivial classifier would achieve an accuracy of 0.338

which is the label frequency for LINSI, the highest for the dataset ALL (see Table

6.4). Compared to these values, the accuracies obtained by SLAP shown in Table

8.1 are much higher, indicating that we are achieving positive learning (learning in

the direction we need) in selecting the “closest to optimal” alignment.

8.2 Improvement in average alignment quality

In this section, we evaluate the extent to which SLAP achieved the goal of the un-

derlying machine learning problem, which is to improve the quality of the alignments

obtained over using a single program on all sequences sets of the dataset.

We used CSS to determine the label for each instance in the test datasets. As

described in Section 3.2.3, CSS is a measure of alignment accuracy where the higher

the CSS, the higher the quality of the alignment is. We assign the program that

created the alignment with maxCSS as the label for that sequence set. If SLAP had

achieved 100% accuracy, the alignment with maxCSS for each sequence set would

have been selected, resulting in the maximum average CSS for the dataset. In order

to evaluate the improvement gained using SLAP compared to the maximum average

CSS for each individual alignment program on each test dataset, we need to calculate

the following quantities for the comparison:

• the maximum average CSS possible quality for each test group
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• the average CSS using SLAP for each test group

• the average CSS using a single alignment program for each test group, for each

alignment program

8.2.1 Calculating the maximum possible quality

We define BEST to be the average of all maxCSS using all five programs for each test

dataset (see Section 6.2.4). BEST can be used to represent the maximum average

CSS possible for a given group of sequence sets using a given group of alignment

programs. In Table 8.2, the value for BEST for each test dataset is shown. A sizable

difference in the BEST values can be seen from dataset to dataset. For example,

between the datasets CN and RU, there is a difference of 0.155 in BEST values. This

is pointed out to emphasize the variation present in this machine learning problem.

8.2.2 Calculating the average quality achieved by SLAP

The average quality obtained using SLAP CSSSLAP is calculated by averaging the

CSS from all the alignments predicted by SLAP. As shown in green in Table 8.2,

CSSSLAP varies by a large amount between the test groups, from as high as 0.938 in

the CN group and down to 0.782 in the RN group.

8.2.3 Calculating the average quality for each alignment program

As described in Section 6.2.4, the average CSS for each alignment program (CSSprogram)

is calculated on each test dataset, which establishes a base for comparing the improve-

ment achieved by SLAP over the use of a single alignment program. As shown in

Table 8.2, the relative performance between the alignment programs shifts between

the test groups (the highest CSSprogram within each test group is shown in blue). For
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Table 8.2: Average CSSs for each test dataset. BEST is the average maxCSS and CSSSLAP

(shown in green) is the average CSS for the alignments predicted by SLAP. The average
CSS for each alignment program on each sequence set is given with the largest value per of
CSSprogram shown in blue.

ALL FU FN CU CN RU RN
BEST 0.853 0.806 0.853 0.811 0.943 0.788 0.919
CSSSLAP 0.848 0.801 0.849 0.806 0.938 0.782 0.915
CSSMUSCLE 0.830 0.776 0.827 0.783 0.931 0.760 0.906
CSSLINSI 0.833 0.782 0.832 0.784 0.930 0.764 0.905
CSSPROB 0.805 0.754 0.801 0.762 0.904 0.733 0.878
CSSCLTW2 0.832 0.779 0.829 0.799 0.924 0.762 0.902
CSSOMEGA 0.808 0.760 0.805 0.760 0.911 0.730 0.881

example, in the CU group, CLTW2 has the highest CSS, which is larger by 0.015

than the next highest program, LINSI. However, in other groups, LINSI often shows

the highest CSS value but only slightly ahead of the second best program.

8.2.4 Comparing the quality of alignments generated by SLAP with

those generated by each single alignment program

Table 8.2., shows clearly that in all cases, CSSSLAP is higher (closer to BEST) than

any of CSSMUSCLE, CSSLINSI, CSSPROB, CSSCLTW2 or CSSOMEGA. Regardless of which

alignment program achieved the highest CSS value, CSSSLAP was smaller, indicating

a gain in average quality. The difference between BEST and CSSSLAP (∆BP(SLAP))

across all groups are noticeably smaller than the differences obtained with any of the

single programs by factors ranging from 2.4 to 11 (Table 8.3 and Figure 8.1)

The difference between CSSSLAP and each CSSp, defined as ∆SP(p), where p is the

alignment program name, is shown in Table 8.4. ∆SP(p) ranges from between 0.007 to

0.052 across all datasets. Again, the program that achieves the lowest ∆SP(p) changes

with the dataset used. Table 5.2 shows the results of direct comparisons of CSS values

of the alignments obtained by SLAP and each program. Alignments chosen by SLAP
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had clearly and significantly more often larger CSS values compared to those obtained

by each individual program (p < 10−15 for all comparisons by the one-tailed sign test).

It should be noted that when comparing against a program p, if the maximum CSS

is given by this program and SLAP correctly chose the alignment generated by this

program, ∆SP(p) becomes 0. Therefore, both ∆SP(p)=0 and ∆SP(p)>0 should be

counted as “success”. However, in the implementation of the sign test we used, “ties”

(∆SP(p)=0 ) are not counted as “success”. Even with such “unfair” comparisons,

SLAP performed highly significantly better than any single program for all datasets.

These results showed that in spite of the relatively low accuracy of the prediction

by the SLAP classifier (Table 8.1), clearly a significant improvement in average CSS

was achieved based on the CSS values using SLAP over using individual programs.

Table 8.3: The difference between BEST and average CSS values using SLAP and five
alignment programs. ∆BP(SLAP) is shown in green. The smallest difference (∆BP(p))
when using a single program is shown in blue.

ALL FU FN CU CN RU RN
∆BP(SLAP ) 0.005 0.005 0.004 0.005 0.005 0.006 0.004
∆BP(MUSCLE) 0.023 0.030 0.025 0.028 0.013 0.028 0.013
∆BP(LINSI) 0.021 0.024 0.021 0.027 0.014 0.024 0.014
∆BP(PROB) 0.048 0.052 0.052 0.049 0.040 0.055 0.042
∆BP(CLTW2) 0.021 0.027 0.024 0.012 0.019 0.026 0.017
∆BP(OMEGA) 0.046 0.047 0.047 0.051 0.032 0.058 0.038

Table 8.4: ∆SP(p) values for seven test datasets. The smallest ∆SP(p) is shown in blue
while the largest ∆SP(p) is shown in green.

ALL FU FN CU CN RU RN
∆SP(MUSCLE) 0.018 0.025 0.021 0.024 0.007 0.022 0.009
∆SP(LINSI) 0.016 0.019 0.017 0.022 0.008 0.018 0.010
∆SP(PROB) 0.043 0.047 0.048 0.045 0.034 0.049 0.038
∆SP(CLTW2) 0.016 0.022 0.020 0.008 0.014 0.020 0.013
∆SP(OMEGA) 0.041 0.041 0.043 0.046 0.027 0.052 0.034
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sheet statics

Table 8.5: Pairwise comparisons of maxCSS(id) and CSS(id, p). CSS values are compared
between the alignment chosen by SLAP and the one generated by each of the five programs.
“equal”, “SLAP”, and “program” show the numbers of times of CSS(id, SLAP) = CSS(id,
p), CSS(id, SLAP) > CSS(id, p), and CSS(id, SLAP) < CSS(id, p), respectively. The
one-tailed sign test was performed using the SIGN.test function from the R library, “Basics
Statistics and Data Analysis” (BSDA). For all comparisons, p < 10−15 .

ALL equal SLAP program
MUSCLE 32,201 88,254 23,545
LINSI 65,182 60,419 18,399
CLTW2 46,589 83,144 14,267
PROB 10,922 119,740 13,338
OMEGA 3,387 127,280 13,333
FU equal SLAP program
MUSCLE 3,958 16,508 3,534
LINSI 10,088 11,216 2,696
PROB 2,428 19,215 2,357
CLTW2 7,049 14,710 2,241
OMEGA 1,152 20,883 1,965
FN equal SLAP program
MUSCLE 4,033 15,865 4,102
LINSI 12,432 9,308 2,260
PROB 1,861 20,033 2,106
CLTW2 6,476 15,219 2,305
OMEGA 527 21,508 1,965
CU equal SLAP program
MUSCLE 3,923 16,699 3,378
LINSI 7,605 13,554 2,841
PROB 1,058 20,821 2,121
CLTW2 11,510 10,109 2,381
OMEGA 483 21,824 1,693
CN equal SLAP program
MUSCLE 4,698 13,042 6,260
LINSI 14,680 6,139 3,181
PROB 2,165 19,227 2,608
CLTW2 7,317 14,035 2,648
OMEGA 1,210 19,420 3,370
RU equal SLAP program
MUSCLE 3,168 16,381 4,451
LINSI 10,604 10,473 2,923
PROB 1,809 20,051 2,140
CLTW2 9,023 13,010 1,967
OMEGA 377 21,854 1,769
RN equal SLAP program
MUSCLE 9,133 10,856 4,011
LINSI 10,524 8,781 4,695
PROB 1,771 19,977 2,252
CLTW2 6,070 15,109 2,821
OMEGA 854 20,864 2,282
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Figure 8.1: Difference in CSS values between BEST and CSSSLAP as well as between
the average CSS obtained by each program for each test group.
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8.3 Effect of ∆12 on SLAP accuracy

In this section, we will discuss a probable cause for the low accuracy of the multi-

class classifier used in SLAP , or more specifically, why the correct label is not more

frequently predicted. Because we are using a simulated benchmark dataset, there is

no ambiguity in the assignment of each label for each sequence set. However, there

is a large variation in the CSS score on which the label is based. This variation is

seen in Table 6.1, in both the range of CSS from sequence set to sequence set and in

the variation in the CSS values between the five alignments generated from the same

sequence set. This large variation is the nature of the multiple sequence alignment

problem and represents the main challenge in determining optimality in the resulting

alignments.

As we also presented in Section 6.3, for many sequence sets, differences in CSS

values (e.g., ∆12) between the alignment programs are very small. Such small differ-

ences in CSS values can contribute to the low accuracy of the classifier. This means

that in quite a few cases, the classifier is attempting to “split very fine hairs”. To

quantify this difference, we examine the variables ∆12, ∆23, ∆34, and ∆45 (defined

in Section 6.2.4). Table 8.6 shows the average values of these ∆ variables for each test

dataset. Note that the standard deviation for these ∆ variables is very large. In fact,

they are of the same magnitude or larger than that of the average scores, indicating

that there is often no difference in CSS values between the ranks.

As an initial evaluation of the effect that ∆12 might have on the accuracy of the

classifier used in SLAP, we separated the test datasets into two disjoint subsets, in-

stances that were correctly classified and instances that were not. We then calculated

the average ∆12 for each of the two subsets for each dataset. As shown in Table 8.7,

the average ∆12 for correctly predicted instances is almost twice that of the average
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Table 8.6: Comparison of average ∆ variables for each test dataset. SD: standard deviation
of each variable; max.: the maximum value.

ALL FU FN CU CN RU RN

∆12 0.017 0.020 0.018 0.020 0.012 0.021 0.012
SD 0.024 0.026 0.027 0.024 0.020 0.025 0.020
max. 0.400 0.400 0.327 0.285 0.228 0.270 0.230

∆23 0.014 0.016 0.015 0.014 0.011 0.017 0.012
SD 0.020 0.022 0.021 0.016 0.019 0.021 0.018
max. 0.340 0.280 0.238 0.179 0.209 0.255 0.340

∆34 0.016 0.016 0.017 0.016 0.012 0.020 0.013
SD 0.023 0.022 0.025 0.021 0.020 0.026 0.021
max. 0.333 0.269 0.333 0.190 0.261 0.295 0.258

∆45 0.015 0.018 0.017 0.014 0.013 0.018 0.012
SD 0.019 0.020 0.020 0.016 0.019 0.021 0.016
max. 0.231 0.247 0.229 0.225 0.236 0.332 0.160

∆12 for incorrectly predicted instances for all test datasets. The same observation

can be made of the standard deviation and to a lesser extent for the maximum values.

This strongly suggests that our data model and learning algorithm combination have

more difficulty in correctly predicting a label as ∆12 decreases.

Table 8.7: Average ∆12 when SLAP predictions were correct and incorrect. SD: standard
deviation. max.: the maximum value.

∆12 ALL FU FN CU CN RU RN

average correct 0.022 0.026 0.024 0.025 0.017 0.025 0.016
wrong 0.010 0.012 0.009 0.011 0.008 0.013 0.007

SD correct 0.028 0.030 0.030 0.027 0.023 0.028 0.024
wrong 0.014 0.015 0.014 0.013 0.015 0.016 0.013

max. correct 0.400 0.400 0.327 0.285 0.228 0.270 0.230
wrong 0.226 0.226 0.181 0.161 0.206 0.180 0.182

To further investigate the effect ∆12 has on accuracy, we divided the test datasets

into four intervals based on their ∆12 values as enumerated in Table 8.8. The average

accuracy for each group was then calculated with the results shown in Table 8.9. The

average accuracy of the classifier increases by a considerable amount in the higher
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Table 8.8: Number of test datasets included in each ∆12 interval group. For each interval
listed, the upper limit is inclusive.

∆12 intervals ALL FU FN CU CN RU RN

> 0.020 40,698 8,056 7,091 7,989 4,514 8,387 4,661
0.01-0.02 23,366 4,247 3,811 4,709 2,736 4,555 3,308
0.005 - 0.01 19,223 3,361 3,110 3,726 2,597 3,380 3,049
≤ 0.005 60,713 8,336 9,988 7,576 14,153 7,678 12,982

dataset total 144,000 24,000 24,000 24,000 24,000 24,000 24,000

Table 8.9: Accuracy of SLAP for each dataset based on ∆12 interval. The average SLAP
accuracy was calculated from all test instances with 12 values between the intervals listed
where the upper limit is inclusive.

∆12 intervals ALL FU FN CU CN RU RN

> 0.020 0.822 0.830 0.860 0.871 0.721 0.801 0.790
0.01 - 0.020 0.762 0.771 0.803 0.800 0.670 0.741 0.732
0.005 - 0.01 0.649 0.727 0.762 0.748 0.639 0.699 0.694
≤ 0.005 0.507 0.508 0.517 0.494 0.509 0.500 0.491

∆12 intervals. In the lowest interval (∆12 ≤ 0.005), the average accuracy is the lowest

for all datasets. This lowest interval group contains between 32% and 59% of the test

data depending on the dataset. The average accuracy for both of the test datasets

CU and RN drops below 0.50 in this lowest interval (∆12 ≤0.005).

The datasets CN and RN have the largest proportions of test instances that fall

within the lowest bracket ∆12 group (∆12 ≤0.005), specifically 0.580 (14253/24000)

and 0.54 (12,982/24000), respectively. They also have the lowest overall average

accuracy, 0.524 and 0.564, respectively as shown in Table 8.1. On the other hand,

CU, which has the smallest proportion of test instances in the lowest ∆12 group,

0.316 (7576/24000) has the highest overall accuracy, 0.658, among all test datasets.

This shows that the proportion of test instances that have ∆12 ≤ 0.005 influences

the classifier accuracy.
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8.4 Alternative metric for measuring performance

We have shown that the accuracy for SLAP decreases as ∆12 decreases. As ∆12

decreases, the difference in quality between the top two alignments decreases resulting

in the choice between the two becoming less critical. Thus, if ∆12 is sufficiently small,

an incorrect prediction of the second highest CSS would have a negligible effect on

the average quality. Looking at this from the viewpoint of a single sequence set,

the closer the CSS are between the two top alignments, the less critical the choice

between the two alignments is. We believe that this is the main reason that in spite

of the low prediction accuracy (averaging around 0.610), SLAP was able to achieve

a significant improvement in average alignment quality.

To better gauge the performance of SLAP to see how the predictions of SLAP

affect the improvement of the average CSS, we introduce a new set of metrics. They

are referred to collectively as the ratio variables and are defined as:

• SLAP RAT - the ratio of the CSS from the alignments predicted by SLAP and

the maxCSS

• RAT MUSCLE - the ratio of the CSS from the alignment produced by MUSCLE

and the maxCSS

• RAT LINSI - the ratio of the CSS from the alignment produced by LINSI and

the maxCSS

• RAT PROB - the ratio of the CSS from the alignment produced by PROB and

the maxCSS

• RAT CLTW2 - the ratio of the CSS from the alignment produced by CLTW2

and the maxCSS
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• RAT MUSCLE - the ratio of the CSS from the alignment produced by OMEGA

and the maxCSS

These can be formally expressed using the CSS measures defined in Section 8.1:

SLAP RAT(id) =
CSS(id, SLAP )

maxCSS(id)
, (8.2)

RAT MUSCLE(id) =
CSS(id,MUSCLE)

maxCSS(id)
, (8.3)

RAT LINSI(id) =
CSS(id, LINSI)

maxCSS(id)
, (8.4)

RAT PROB(id) =
CSS(id, PROB)

maxCSS(id)
, (8.5)

RAT CLTW2(id) =
CSS(id, CLTW2)

maxCSS(id)
and (8.6)

RAT OMEGA(id) =
CSS(id, OMEGA)

maxCSS(id)
, (8.7)

where id is the identification for the specific sequence for which the ratio variable

is being calculated. It should be evident that when the CSS(id, p) value is equal to

the maxCSS(id), the associated ratio variable will equal 1. Table 8.10 illustrates an

example of these ratio variables. In this example, SLAP predicted LINSI, which had

the second highest CSS and as such, was not the label for the sequence set (OMEGA

was the label). The calculation for SLAP RAT for this sequence set is given by
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Table 8.10: Example of the use of ratio variables using sequence set E32B2L8 1. In this
example SLAP predicts the second highest CSS of the five produced by LINSI, when the
highest CSS was from the alignment produced by OMEGA.

CSS ratio variable difference with label
SLAP 0.63953 0.9994 0.0006
OMEGA 0.63989 1 0
LINSI 0.63953 0.9994 0.0006
PROB 0.60384 0.9437 0.0563
MUSCLE 0.58727 0.9178 0.0822
CLTW2 0.57319 0.8958 0.1042

SLAP RAT =
CSS(E32B2L8 1, LINSI )

maxCSS(E32B2L8 1 )
=

0.6396

0.6399
= 0.9994 (8.8)

In this example, RAT SLAP demonstrates that in spite of the prediction not agreeing

with the label, it still predicted a program that had a CSS within 0.00036 of the

maxCSS.

Table 8.11 summarizes the ratio variables for each test dataset. The ratio vari-

ables for specific programs correspond to the average performance of each alignment

program when it is chosen for all sequence sets in the group. This example also shows

the large difference between the CSS of the alignments in third, fourth and fifth place

and those in the first and second demonstrating the gap in performance between the

first two and the rest of the alignment programs. In spite of the low prediction accu-

racy from the classifier (between 0.58 and 0.64 as shown in Table 8.1), SLAP is again

shown to predict the alignment that is on average within 99.1% of the maximum CSS.

8.5 Summary of the performance of SLAP with simulated datasets

We have evaluated the performance of the classifier used in SLAP by testing it on

seven simulated test datasets taken from SimDom. We have found that the accuracy
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Table 8.11: Ratio variables for all test datasets using SimDom. SLAP RAT is shown in
green font. The highest ratio of the single alignment programs is shown in blue font.

ALL FU FN CU CN RU RN

SLAP RAT 0.994 0.993 0.993 0.994 0.994 0.991 0.995
RAT MUSCLE 0.968 0.955 0.955 0.960 0.986 0.958 0.983
RAT LINSI 0.972 0.964 0.964 0.963 0.984 0.965 0.983
RAT PROB 0.940 0.933 0.933 0.937 0.955 0.928 0.951
RAT CLTW2 0.975 0.967 0.967 0.985 0.979 0.964 0.981
RAT OMEGA 0.942 0.939 0.939 0.935 0.964 0.922 0.955

of this classifier, while being much better than that of random selection (0.20) or that

of simply using the program (LINSI) that produces the label most frequently (0.33),

is still between 0.524 and 0.658. We have also shown that in spite of this low accuracy,

SLAP has achieved a significant improvement in alignment quality as measured by

CSSSLAP .

Furthermore, we have shown that the source of the low accuracy of the classifier

is in part due to the large portion of each dataset having ∆12 values less than 0.005.

By way of the newly defined ratio variables, we show that the alignments obtained

by SLAP capture between 0.991 and 0.994 of the maximum CSS available. This is

the bases for SLAP achieving the large improvement in average alignment quality in

spite of the low classifier accuracy.

In essence, the behavior of SLAP corresponds to the needs of the underlying

problem where we want to select the alignment that is closest to the optimal. When

sequence sets are closely related, the alignments formed by the different alignment

programs are close in accuracy and thus have similar CSS values. In these cases,

the choice between the individual alignment is less critical than when there is a

large difference between CSS values. We have shown that with the test cases where

alignments are close, SLAP has low predictive accuracy.
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However, when the sequence sets to be aligned contain sequences that are more

distantly related, the alignments created by the five alignment programs tend to dis-

agree more as the shift in relative performance is manifested. This represents instances

where the choice between alignments is critical and where the most improvement on

average quality can be made. These are also the instances on which the classifier

has greater accuracy. This trend in the accuracy of SLAP results in a substantial

improvement in average alignment in spite of the low classifier accuracy.

We have also shown by breaking SimDom into different test datasets the there is a

shift in relative performance demonstrated by different alignment programs achieving

the maxCSS. This illustrates the advantage of using SLAP.

8.6 Performance analysis of SLAP using non-simulated data

8.6.1 Non-simulated databases used

In this section, we will discuss the results of using SLAP on non-simulated bench-

mark datasets. The non-simulated benchmark databases we chose are BB3, which

is the most frequently used benchmark database for alignment program evaluation

studies, as well as HOM and OX3 (all three are discussed in Section 3.3). Table 8.12

shows the number of sequence sets we used from each of the datasets, as well as the

frequency of the label for each alignment program.

The distribution of the label again shows the relative performance difference be-

tween the programs. Each dataset has a different alignment program that performed

the best (LINSI, CLTW2 and PROB for BB3, HOM and OX3, respectively). It

should also be noticed that in both BB3 and HOM there are only two programs that

make up the majority of the labels: For the BB3 dataset, LINSI and OMEGA make

up 99.7% of the labels. For the HOM dataset, CLTW2 and OMEGA make up 92.%
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Table 8.12: Frequency of the labels for non-simulated benchmark datasets BB3, HOM and
OX3. The frequency of the labels for each program for each dataset is given in parentheses.

BB3 HOM OX3
count(freq.) count(freq.) count(freq.)

total seq. sets 608 ( 1.000 ) 402 ( 1.000 ) 399 ( 1.000 )
MUSCLE 0 ( 0.000 ) 1 ( 0.002 ) 42 ( 0.105 )
LINSI 379 ( 0.623 ) 1 ( 0.002 ) 31 ( 0.078 )
PROB 2 ( 0.003 ) 27 ( 0.067 ) 198 ( 0.496 )
CLTW2 0 ( 0.000 ) 191 ( 0.475 ) 51 ( 0.128 )
OMEGA 227 ( 0.373 ) 182 ( 0.453 ) 77 ( 0.193 )

of the labels. For the OX3 dataset, roughly 49.6% of the labels have been assigned

to PROB while the remaining labels are distributed among the other four programs.

The ratio of the lowest frequency to highest frequency in each database is 0.0000,

0.0052, and 0.1566 for BB3, HOM and OX3, respectively.

For comparison, SimDom has the label frequencies of 0.338, 0.291, 0.233, 0.094

and 0.04.5 for LINSI, CLTW2, MUSCLE, PROB, and OMEGA, respectively (Table

6.4). This represents a ratio of the lowest frequency to highest of 0.1323. How-

ever, with the total number of alignments being 144,000, the label with the lowest

frequency (OMEGA) still has 6,440 instances, giving the learning algorithm much

more information to train on, rendering it better able to identify the instance where

OMEGA is the label.

We performed analysis using SLAP on ten ten-fold cross-validation tests for

resulting in 100 training and testing runs for each non-simulated dataset. We used

the same metrics we used with the simulated datasets for this analysis.

8.6.2 Accuracy of SLAP prediction on non-simulated datasets

Table 8.13 summarizes the accuracies of the SLAP classifier. The same trend as

described for the simulated datasets are apparent: the accuracy increases as the ∆12
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value increases. In both BB3 and HOM, the accuracies (0.851 and 0.727, respectively)

are much higher than what was achieved with the simulated data. This increase in

classifier accuracy can be explained by the larger average ∆12 for BB3 and HOM,

(0.092 and 0.070, respectively) as opposed to the much smaller ∆12 (0.017) for Sim-

Dom. This resulted from a much lower portion of sequence in both BB3 and HOM

having ∆12 ≤ 0.005 (0.039 and 0.221, respectively). In the SimDom database, 0.421

of the sequence sets have ∆12 ≤ 0.005. Furthermore, the fact that the label distri-

bution in both BB3 and HOM effectively reduces the learning problem with these

datasets to a simpler binary problem could also contribute to the higher accuracy in

BB3 and HOM (Table 8.12). However, in OX3, where 59% of the sequence sets have

∆12 ≤ 0.005 and the average ∆12 is 0.010, SLAP showed a much lower accuracy

(0.450).

Table 8.13: Accuracies of SLAP with the average ∆12 value for non-simulated datasets.
SD: standard deviation.

BB3 HOM OX3

Accuracy 0.851 0.727 0.452
SD ( 0.044 ) ( 0.075 ) ( 0.091 )

∆12 0.092 0.070 0.010
SD ( 0.114 ) ( 0.116 ) ( 0.019 )

proportion of dataset with ∆12 ≤ 0.005 0.039 0.221 0.590

8.6.3 Comparison of the average performance by SLAP against individ-

ual programs

In order to determine the improvement in the average alignment quality achieved

by SLAP over any of the individual alignment programs, we compared BEST and

CSSprogram obtained by SLAPand each of the five alignment programs.
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As shown in Table 8.14, when using BB3, SLAP achieved the average CSS that

was 0.033 higher than the highest performing individual program, OMEGA. SLAP

also had a ∆BP of only 0.007 while OMEGA had a ∆BP of 0.040. It should be

noted with BB3, while LINSI had a higher frequency of the label than OMEGA

(Table8.12), CSSOMEGA was larger than the average CSS values obtained using other

programs including LINSI. This resulted because when OMEGA did achieve maxCSS,

there was a larger difference between CSS(id,OMEGA) and CSS(id,LINSI) than when

LINSI achieved maxCSS.

Table 8.14: Average CSS values for non simulated datasets. ∆BP(p) and ∆SP(p) are
shown in parentheses and square brackets, respectively. CSSSLAP is shown in green and
the largest CSS among those obtained by a single program is shown in blue.

BB3 HOM OX3
CSS (∆BP) [∆SP] CSS (∆BP) [∆SP] CSS (∆BP) [∆SP]

BEST 0.920 0.971 0.902
CSSSLAP 0.913 ( 0.007 ) 0.966 ( 0.005 ) 0.885 ( 0.017 )
CSSMUSCLE 0.682 ( 0.238 ) [ 0.231 ] 0.833 ( 0.138 ) [ 0.133 ] 0.881 ( 0.020 ) [ 0.004 ]
CSSLINSI 0.867 ( 0.053 ) [ 0.046 ] 0.830 ( 0.141 ) [ 0.136 ] 0.873 ( 0.029 ) [ 0.012 ]
CSSPROB 0.724 ( 0.196 ) [ 0.189 ] 0.847 ( 0.124 ) [ 0.119 ] 0.885 ( 0.017 ) [ 0.000 ]
CSSCLTW2 0.654 ( 0.266 ) [ 0.259 ] 0.913 ( 0.058 ) [ 0.053 ] 0.879 ( 0.022 ) [ 0.006 ]
CSSOMEGA 0.880 ( 0.040 ) [ 0.033 ] 0.963 ( 0.008 ) [ 0.003 ] 0.876 ( 0.025 ) [ 0.009 ]

When using HOM, SLAP again achieved a higher average CSS over the closest

single alignment program, OMEGA. However, this was a much smaller improvement

(∆SP = 0.003) CSSOMEGA. ∆BP for SLAP and OMEGA were 0.005 and 0.008,

respectively. The improvement in alignment quality using SLAP with HOM was

not as large as it was when using BB3. This could be attributed to the higher portion

of datasets with ∆12 ≤ 0.005 and therefore the lower average ∆12 value for the

dataset. Although OMEGA was not the program with the highest label frequency

for the HOM dataset it again achieved a higher average CSS than CLTW2, which

was the highest performing alignment program for this dataset (Table 8.12).

Using OX3, the highest performing alignment program was PROB. SLAP achieve
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higher ∆BP value than individual alignment programs, with the exception of PROB,

where SLAP and PROB tied (CSSSLAP = CSSPROB). However, it is notable that

while SLAP did not improve the average CSS, it also did not decrease it. This lower

improvement using SLAP is due to the much lower classifier accuracy (0.451), which

can be linked to the low average ∆12 (0.001) resulting from the higher portion of

sequence sets that have ∆12 ≤ 0.005.

The average CSS values across all datasets show a large shift in relative per-

formance within and between the datasets. The most extreme example is between

LINSI and CLTW2. In BB3, LINSI had the second highest average CSS with a ∆BP

= 0.053, while CLTW2 had the lowest CSS with ∆BP = 0.266. However, in HOM,

LINSI had the lowest average CSS with ∆BP = 0.141, while CLTW2 had the highest

average CSS with ∆BP = 0.008. In OX3, both LINSI and CLWT2 had compara-

ble CSS and ∆BP, although neither achieved the best CSS, which was achieved by

PROB. This once again shows that different alignment programs perform differently

on different sequence sets.

A shift in the relative performance of the alignment programs can most effectively

be seen in Figure 8.2. In BB3, the definite improvement in alignment quality when

using SLAP can be seen in the small difference from BEST. In HOM, there is still

a distinct improvement, although the best single program, OMEGA, is not as far

behind SLAP. In the dataset OX3, the best performing program, PROB, is tied

with SLAP while the difference with other programs is also small. This shift in

relative performance demonstrates the advantage of using SLAP to select the best

alignment.

Table 8.15 shows the results of direct pairwise comparisons of CSS values between

the alignments obtained by SLAP and each of the individual programs. Significantly

more often alignments chosen by SLAP had larger CSS values compared to those
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Figure 8.2: Comparison of the average ∆BP between SLAP and individual programs. See
Table 8.14 for the actual ∆BP values.

obtained by each individual program (p < 10−15) for all comparisons by the one-tailed

sign test) except for the comparison against PROB when used with the OX3 database.

As noted before, the implementation of the sign test we used does not count “ties”

(∆SP(p) = 0) as “success”, and PROB has the largest number of ties especially with

the OX3 datasets. If both ∆SP(p) = 0 and ∆SP(p) = 0 are counted as “success”,

all success rates become comparable including PROB. Note also the small average

∆12 for OX3 (Table 8.13). Because the amount of improvement that is possible using

SLAP is based on the extent of the relative performance difference, when there is

not a large shift in relative performance, indicated by low ∆12, using SLAP will not

result in a large improvement in average CSS.
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Table 8.15: Pairwise comparisons of CSS(id, SLAP) and CSS(id, p) values. CSS values are
compared between the alignment chosen by SLAP and the one generated by each of the five
programs. “equal”, “SLAP”, and “program” show the numbers of times of CSS(id, SLAP)
= CSS(id, p), CSS(id, SLAP) > CSS(id, p), and CSS(id, SLAP) < CSS(id, p), respectively.
“p-value” is based on the one-tailed sign test, which was performed using the SIGN.test
function from the R library BSDA.

BB3 p-value equal success program
MUSCLE 3.331E-16 20 6041 19
LINSI 2.200E-16 3849 1808 423
PROB 3.331E-16 20 6034 26
CLTW2 3.331E-16 20 6041 19
OMEGA 2.200E-16 2251 3367 462

HOM p-value equal success program
MUSCLE 2.200E-16 247 3697 76
LINSI 2.200E-16 182 3779 59
PROB 2.200E-16 383 3558 79
CLTW2 2.200E-16 2032 1484 504
OMEGA 2.200E-16 2215 1345 460

OX3 p-value equal success program
MUSCLE 2.200E-16 1287 1845 858
LINSI 2.200E-16 1035 2085 870
PROB 1.000E+00 2637 603 750
CLTW2 2.200E-16 1173 1887 930
OMEGA 2.200E-16 1499 1469 1022

8.6.4 Ratio variables using SLAP

We next calculated the ratio variables for each benchmark dataset. The results

are shown in Table 8.16. These results mirror the trends in the CSSprogram values,

with the exception that SLAP achieved a higher value for SLAP RAT than that of

RAT PROB when using OX3. This augments the observation that while there was

not an improvement in average CSS, there is also not a decrease in average CSS.



203

Table 8.16: Ratio variables for all non-simulated datasets. SLAP RAT values are shown
in green font. The highest ratio value for the individual alignment programs is shown in
blue font.

BB3 HOM OX3

SLAP RAT 0.991 0.995 0.975
RAT MUSCLE 0.729 0.854 0.970
RAT LINSI 0.939 0.852 0.952
RAT PROB 0.778 0.869 0.972
RAT CLTW2 0.699 0.937 0.971
RAT OMEGA 0.955 0.992 0.959

8.6.5 Summary of the performance of SLAP with non-simulated datasets

SLAP achieved a significant improvement overall single alignment programs when

used with the non-simulated databases BB3 and HOM. The accuracy (0.851 and

0.727, respectively) was higher than those ( 0.61) obtained with the simulated datasets.

The improvement in terms of CSS values ranged from 0.033 to 0.259 in BB3 and be-

tween 0.003 and 0.136 in HOM. In both BB3 and HOM, the average ∆12 (0.092 and

0.070, respectively) was higher than in SimDom, and the proportions of sequence

sets in BB3 and HOM that had ∆12 < 0.005 (3.9% and 22.1%, respectively) were

much less than those with SimDom. These two factors contributed to the highest

classifier accuracy achieved by SLAP. In fact, in BB3, which had a highest average

∆12 and smallest portion of sequence sets with ∆12 < 0.005, SLAP achieved both

the higher classi er accuracy and the highest improvement in average CSS among the

non-simulated datasets tested.

When used with OX3, SLAP achieved only a 0.452 accuracy. However, it showed

significant improvement over four of the alignment programs, and tied with PROB.

OX3 had an average ∆12 of 0.0100, which is significantly lower than SimDom. OX3

also had a much higher proportion of sequence sets with ∆12 < 0.005 (59.1%). The
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results on these three non-simulated databases support the hypothesis that low ∆12

contributes to the low SLAP classifier accuracy.

8.6.6 Discussion

The positive results achieved by SLAP on both the simulated database (SimDom)

and the non-simulated databases (BB3, HOM and OX3) indicate that a significant

improvement in average CSS can be achieved by training a multi-class classifier to

select the alignment closest to the optimal. The extent of improvement that can be

achieved depends on two factors: the accuracy of the SLAP classifier and the amount

of difference in CSS(id, p) for each sequence set. This is important in that if SLAP

had 100% accurate prediction, the amount of improvement for a specific sequence

set is limited by the shift in relative performance between the alignment programs.

For, example, in the case where all alignments agree, there would be no improvement

in CSS whether SLAP predicted the correct label or not. The best combination of

programs to bring together to be used with SLAP , therefore, would be those that

perform well overall, but can strongly outperform other programs on specific types

of sequence sets. For instance, we have observed that while LINSI and MUSCLE

tend to outperform CLTW2 on more closely related sequence sets, CLTW2 strongly

outperforms both LINSI and MUSCLE when the sequences are more divergent.

In light of these two factors: SLAP accuracy and actual performance difference

between programs, the following areas should be investigated further to improve the

performance of SLAP:

• Use different learning algorithm. We feel that the use of deep learning algo-

rithms would help achieve a higher accuracy. The work done with convolution

neural networks (CNN) on the problem of image recognition has achieved high
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levels of success. In the image recognition program, the image is represented

as an array of pixel color values. Since an MSA can very easily be represented

as an array of amino acids, it is possible that comparing two alignments can

make use of the advances in image recognition algorithms. Also, much work has

been done to create deep learning algorithms that make use of more efficient

processing of data arrays using the GPU.

• Use different combinations of alignment program. For this initial work, we

selected a group of five programs based on their previous performance studies

and on their availability. More programs should be investigated for our suite

of alignment programs, either to take the place of one currently being used or

to increase the number of programs used with SLAP . This would allow the

more recent advances made in alignment programs to be incorporated into the

SLAP method.

• Use different quality metric. We used CSS as our measure of accuracy and hence

“quality” between two alignments. There are other metrics that are frequently

used in alignment program evaluation techniques. Therefore, it would be of

interest to examine how employing these metrics would affect the performance

of SLAP.

• Use alternative objective. The objective of SLAP was to select the single

alignment that had the highest CSS for a specific sequence set. However, as we

pointed out, when the difference between the highest and the second highest

program is very small, it is difficult for SLAP to distinguish between them. As

such, a series of different machine learning problems could be designed to assist

in selecting the best MSA. These include:
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– use the ANN to rank the five programs.

– create a binary problem to choose between two alignments for the high-

est quality alignment and use multiple binary classifiers in a tournament

selection process to see which of the group would be the best.

– create a binary problem to answer the question, “is the difference between

the five alignments greater than 0.005.”

The past attempts at a solution to this problem were approached from a bioinfor-

matics point of view, that is, to take the plethora of biologically relevant information

on a group of sequences and to organize it to select the alignment program that will

produce the best alignment. The approach in the development of our solution to this

problem was taken from the computer science point of view. By this, we mean we used

a systematic approach based on an understanding of the computational tools avail-

able and on a full analysis of the problem. An overview of this systematic approach

is as follows:

• From the tools that can be used to classify entities, we identified the process of

machine learning to train a multi-class classifier to be the heart of our solution.

• We addressed the factors needed for a machine learning algorithm to successfully

train a classifier that will select the alignment closest to the optimum: the

amount of training data, scope of training data, discerning attributes in the

data model, and error free labeling.

• We determined that there were no databases that had sufficient data with suf-

ficient scope as well as error-free labeling, on which to test our concept. To

remedy this, using the most advanced protein sequence evolution simulator,

which allowed for the three basic evolution events as well as the ability to model
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domains, we generated a large-scale benchmark database with sufficiently di-

vergent scope.

• Previous studies described only general trends based on the average alignment

accuracy scores, and their results varied significantly. Therefore, we performed

our own performance evaluation and developed a protocol for tracking not only

average alignment quality, but also the performance difference between align-

ment programs, the extent of this performance difference, the maximum possible

average quality, and the maximum improvement achievable from each alignment

program. Using this system, we identified the factors that had a correlation to

the best alignments which included alignment based attributes.

• After we formed an input vector based on the results of our performance evalu-

ation test, we systematically tested the combination of attributes to find those

that resulted in the highest classifier accuracy and eliminated those that did

not.

• Although the resulting classifier accuracy seemed relatively low, when we ana-

lyzed the results in terms of the underlying problem, which is to improve average

alignment quality, we found that the results of our solution were in line with this

objective. We, in fact, achieved 99.1 - 99.5% of the alignment quality available

in spite of the low classifier accuracy.

• With the proof of concept successfully performed on our simulated data, we then

tried our solution on non-simulated benchmark data and achieved as much as

99.1% of the possible quality, increasing the average accuracy by 0.033 (in terms

of CSS).
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Using this systemized approach to the problem of selecting the alignment “closest

to the optimal”, we achieve a high degree of success.

8.6.7 Conclusions

In the development and testing of SLAP we demonstrated the following:

• It is possible to harness the relative performance difference between alignment

programs to improve the alignment quality for a set of data by selecting the

alignment program that created the alignment closest to the optimal.

• In non-simulated datasets where there is a distinct shift in the relative perfor-

mance marked by a high average ∆12, as was the case with BB3 and HOM,

SLAP can achieve an improvement in the average quality of the alignments

selected. However, when there is not a sizable shift in relative performance

resulting in low average ∆12 value, as was the case with OX3, SLAP will not

degrade the alignment quality generated from the highest single program.

• Simulated data, specifically SimDom, created to mimic biologically realistic

protein sequences with one or more functionally constrained areas, can be used

to develop a method for selecting an alignment closest to the optimal. The

advantages of confidence in instance label and the presence of a true alignment

against which to measure the most accurate alignment, as well as the large

number and scope of the sequence sets to be used as training data, allowed

for the best attributes to be selected when designing the data model of the

SLAPclassifier.

• The success SLAP achieved on the non-simulated data sets for BB3 and HOM,

along with the neutral results it achieved on OX3, demonstrate that techniques
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developed using simulated data could be used with success on non-simulated

data.
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Chapter 9

Conclusions

Because the MSA is the basis of so many bioinformatics studies, it needs to reflect

an accurate relation between the sequences it contains. With the increasing use of

and dependency on automated alignment programs, it is important to assess the

accuracy of a resulting alignment to ensure that it is a quality alignment. Many

evaluation studies have been performed to compare the currently available alignment

programs. This is an attempt to determine which program creates the alignments

with the highest average accuracy. However, these studies show only average quality

results and do not emphasize the shift in the performance of the programs on different

sequence sets.

The overall objective of this work is to improve the quality of MSAs. We ap-

proached this on two fronts: 1) developing SuiteMSA, a user-friendly program that

offers multiple alignment viewers to allow the user to visually and quantitively assess

MSAs and 2) by developing SLAP, an algorithm that will select the alignment closest

to the optimal from a group of alignments created from the same sequence set.

9.1 Summary of SuiteMSA development

Assessment of MSAs can be as simple as examining the alignment visually to assess its

shape (gap pattern) or to see how the alignment agrees with any supplemental data
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available on the sequences contained in the alignment, such as secondary structure,

transmembrane predictions, accessibility, etc. We observed the following situation: in

spite of the many programs available that display, allow for editing of and preparing

images of MSAs for publication, there were no user-friendly, visual inspection tools

to assist in the assessment of alignments by either comparing multiple alignments

on a column-by-column basis or by examining a single MSA with the visual display

of functional information such as secondary structure information, transmembrane

prediction, solvent accessibility, etc.

We approached the problem by designing and implementing SuiteMSA as a visual

assessment tool for MSAs that allows for the display of auxiliary data as well as

displaying column-wise values of basic metrics used in the assessment of alignments

such as CS, SPS, CSS and information score on a column-wise basis. SuiteMSA

provides three unique alignment viewers.

• The MSAviewer allows for the viewing, editing, and assessing of a single

alignment assisted by the display of secondary structure or transmembrane pre-

diction data correlated with the sequences in the alignment.

• The MSAcomparator allows for the viewing, comparing and assessing of two

MSAs with a varying amount of detail. Column-wise values, as well as the

alignment averages, for commonly used metrics such as CSS, SPS, CS, and

information score can be calculated and displayed.

• The Pixel plot allows for the viewing, comparing and assessing of multiple

MSAs (2 or more) in a novel format developed specifically for the panoramic

view of long alignments, the number of which is limited only by system resources

such as monitor size and RAM. It allows a visualization of a larger portion of

the alignment to be shown at one time, emphasizing the gap patterns. Color
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schemes related to secondary structure and transmembrane prediction data can

be applied to aid the visual inspection of MSAs.

SuiteMSA gives researchers the utilities, the type of which was not previously

available, to perform visual quality assessment on MSAs. I have received communi-

cations from researchers and professors of bioinformatics for requests of assistance,

additional features and general feedback. These communications reveal that Suit-

eMSA has been used in lectures discussing multiple sequence alignments and the

differences between the alignments created by the various alignment programs. Stu-

dents are also using SuiteMSA in their projects related to bioinformatics. SuitMSA

has been published [6][7].

9.2 Summary of the SLAP “closest to optimal” classifier development

Our thesis is that by choosing the best alignment out of a group of alignments de-

pending on properties of sequences, as opposed to simply using the alignment from

the program with the highest average score across any types of sequences, would allow

us to obtain the most accurate alignment for a variety of sequences sets

Our approach is novel in that it is based on the demonstrated phenomenon that

alignment programs perform better or worse than others depending on the sequence

set. When alignment accuracy is critical, we advocate taking advantage of strengths

of various alignment programs for different alignment problems to provide the most

accurate alignment. The goal is to select the best alignment from a group of align-

ments. This is in contrast to selecting an alignment program based the output of

tie-prone binary classifiers for efficiency as done in AlexSys. Our strategy also has an

advantage over limiting the choice to just two base alignment programs as done in

AQUA.
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9.2.1 Tasks accomplished and concerns addressed

1. Development of the simulated protein sequence database, SimDom. The con-

cerns this addressed are as follow

• Existing non-simulated benchmarks are limited in size. For non-simulated

protein sequences, reference alignments are usually inferred based on the

structural alignments. Due to the small number of proteins whose 3D

structures are available, this limits the number of reference alignments.

The largest non-simulated database, BB3, has only 603 alignments that

contain more than two sequences. In contrast, SimDom currently has

144,000 true reference alignments, which can be easily expanded when

needed.

• Existing non-simulated benchmarks are limited in scope. Because they rely

on the existing protein 3D structures, the scope of protein sequences repre-

sented by non-simulated benchmark databases is limited, and they can not

provide full assessment capability for protein alignment programs. Espe-

cially a very small, if any, number of muti-domain proteins are included in

the non-simulated reference databases. SimDom uses 1750 domain models

in 1000 protein sequence architecture, each of which is simulated using

144 evolutionary scenarios. This provides a much larger scope of evolution

patterns and sequence properties on which to evaluate alignment programs.

• Existing non-simulated benchmarks have no true alignments. Non-simulated

databases contain reference alignments that are educated approximations

based on structural alignments. They are not guaranteed to be true align-

ments. The confidence is even weaker for the sections of the alignment

where no 3D-strutural information is available.
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• Existing simulated databases are limited in biological realism. The simula-

tion program we used, REvolver, uses profile HMMs to capture functional

constraints under evolution in the protein domain regions. REvolver has

been shown to maintain 95% of the domain identity over time [97]. There-

fore, the simulated protein sequences included in SimDom should maintain

biologically realistic protein sequences.

2. Performance evaluation of alignment programs using a protocol that can be

performed using any metric across all datasets.

• The alignment program with the highest average score does not always pro-

duce the highest scoring alignment. We established that a relative perfor-

mance shift occurs between sequence sets. We showed that not only does

no single alignment program outperform all others programs, but no single

alignment program consistently outperform any other program. This de-

gree of performance shift has until now not been noted and forms the basis

of our concept of choosing the best alignment for a selection of alignment

formed by various alignment programs.

• The extent of the shift in performance between alignment programs was not

tracked. We developed a set of metrics that can quantify this shift.

– The value of BEST establishes, quantitatively, the maximum possible

average quality that is available for a specific dataset using a specific

group of alignment programs.

– ∆BP establishes the degree to which improvement can be made over

the use of any single alignment program in our suite.

– ∆12 identifies those sequence set and alignment characteristics that

can serve as indicators of a shift in relative performance
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3. Development of the data model and the SLAP (SeLecting an Alignment

Program) classifier.

• Data model needed attributes that discern the best alignment. Using the re-

sults of the performance analysis of multiple alignment programs described

above, the data model was developed. To maximize the classifier accuracy,

large-scale simulated datasets from SimDom were used. Attributes of this

data model included both sequence set characteristics as well as charac-

teristics from alignments

• SLAPshould generate a higher average score than any single alignment

program. Trained and tested SLAP on the various data sets from the

database SimDom and using the alignment program evaluation protocol,

analyzed the performance of the multi-class classifier which showed, even

with an average accuracy of the multi-class classier SLAP is around 0.61,

there was still an improvement of as much as 0.052 in average CSS.

• Traditional classifier accuracy did not adequately quantify SLAP’s perfor-

mance. We defined a new metric, SLAP RAT that showed that, in spite

of the relatively low prediction accuracy, SLAP achieved 99.1% or higher

of the maximum accuracy possible between all five alignment programs, in

spite of the relatively low prediction accuracy.

• SimDom was developed using simulated data. We trained and tested SLAP

on various non-simulated benchmark databases. For BB3, the most cited

benchmark database for evaluation studies, on which SLAP achieved a

classifier accuracy on average of .851. It resulted in an overall improve-

ment of 0.033 in average CSS, which represents 99.1% of the maximum

CSS. The results SLAP achieved on non-simulated benchmark datasets
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demonstrated that a method developed on a simulated database can be

transferred to non-simulated benchmark datasets with higher levels of suc-

cess than any previous approach.

9.3 List of contributions

The overall objective of this study was to improve the quality of multiple sequence

alignments. Our contributions towards this end are as follows:

• Development of the SLAP classifier. We provided a classifier to help

identify alignment closest to the optimal. It achieved a substantial improvement

in average alignment accuracy for both simulated and non-simulated protein

sequences.

• Development of SuiteMSA. We provided a user-friendly program that con-

tains three novel alignment viewers to assist in the visual assessment of MSA

quality. These three viewers are as follows:

1. MSAviewer. It allows graphical assessments of MSAs using functional

information such as secondary structures and transmembrane prediction

2. MSAcomparator. It allows the detailed comparison between two align-

ments with column-wise alignment quality and conservation scores.

3. Pixel plot. It allows a large-scale visual comparison among multiple MSAs.

It can incorporate functional information such as secondary structures and

transmembrane prediction as color schemes.

• Development of the SimDom database. We created a large-scale simulated

protein alignment benchmark database, SimDom. It specifically designed for
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the evaluation of alignment programs for maximum quality. SimDom has the

following advantages:

1. Availability of true (error free) reference alignments for alignment quality

evaluation

2. Inclusion of a large (1000) protein types incorporating 1750 different do-

main models

3. Inclusion of 144 individual evolutionary scenarios per protein type

4. Inclusion of a total of 144,000 sequence sets with true alignments

5. Possibility to be easily supplemented by additional simulations

• Development and performance of an alignment program evaluation

protocol. We developed an alignment program evaluation protocol that in-

cluded a system of measures to document relative performance differences in

quality between the alignment programs evaluated. Using this protocol we

showed that the shift in relative performance was much larger than indicated

in previous evaluation studies where only the average quality values had been

used. We also revealed trends that have not been seen previously (i.e., CLTW2

can generate much better MSAs from highly divergent sequence sets compared

to other MSA methods).

• Positive impacts for downstream analyses. Successful selection of the

alignment closest to the optimum will allow for better results from downstream

analyses. Therefore, the results described in this dissertation will contribute to

the improvement of various bioinformatics and molecular evolutionary analyses.
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9.4 Future work

This work has several natural extensions. They can be divided into four areas:

• Package SLAP in a user friendly program for use by the bioinformatics com-

munity.

• Explore the use of deep learning [118] to train a classifier of higher capability

to improve the accuracy of selecting the most accurate alignment can be im-

proved. Using a convolution style deep learner with software that make use of

the graphics processing unit, it might be possible to increase the accuracy of

the classifier.

• Augmenting SimDom with additional sequence sets by:

– Adding alignments to the SimDom database to mimic existing non-simulated

benchmarks databases. This is to allow for a variety of evolutionary sce-

narios included in the existing benchmarks. It should give additional ev-

idence of over-training or over-specialization to the benchmark. This will

also demonstrate the validity of training a classifier on simulated data for

testing on non-simulated data.

– Adding alignments to the SimDom database for sequences sets with addi-

tional sequence set characteristics, such as creating subgroups to contain

orphaned or divergent sequences or having long insertions between do-

mains. Such cases are available in BAliBASE.

– Incorporating the simulated data with the actual protein sequences to fill in

the gaps of the instance space. By using a series of binary and multi-class
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classifiers, improve the accuracy of the selection of the alignment closest

to the optimum.

– Adding sequence sets that are not represented in the current SimDom

datasets, such as transmembrane proteins.

– Incorporating new developments in the field, such as including two new

alignment program QuickProbs 2 [119] and PnPProbs [120] as well investi-

gating new methods for scoring the accuracy of an MSA such as LEON BIS

[121], evalmsa [122] and secondary structure prediction accuracy (SSPA)

[123].
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