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1. INTRODUCTION

Rapid progress in multiple genome projects continues to feed databases in the world
a large volume of sequence data. In this 'post-genomic' era, more efficient and reliable
sequence annotation, especially functional annotation of protein sequences, is crucial.
Although experimental confirmation is ultimately required, computational annotation of
protein sequences has been routinely done, and it is incorporated into major protein
databases (e.g., SWISS-PROT: http://www.expasy.org/sprot/, PIR-PSD:
http://pir.georgetown.edu/pirwww/search/textpsd.shtml). Due to a rapidly growing
number of new sequences, increasingly more database entries contain only computational
annotations.

In this paper, we first discuss the disadvantage commonly found in various existing
protein classification methods. Next we introduce a set of new methods that can classify
protein family sharing very weak similarity. Finally, we describe an algorithm that
combines strengths from various protein classification methods to obtain an optimum
power for protein classifications.

1.1. Protein Classification Methods

In order to improve the power of computational annotations, various methods have
been developed. Computational annotation (or classification) methods rely on finding
similarity between a query (new protein) sequence and protein sequences in databases
with known (preferably experimentally confirmed) functions. The most popularly used
method is the Basic Local Alignment Search Tool (BLAST) by Altschule ef al. (1990). It
searches databases for sequences with local similarity to the query. When more distant
similarity is sought, pattern or profile, rather than the sequence itself, is used for the
database search. Table 1 lists some methods frequently used for protein annotation and
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protein family classification.

Table 1. Protein classification tools

Tool Description Reference

BLAST Local sequence similarity search tools (blastn, blastp,  Altschule ez al. (1990)
etc.)

PRINTS/SPRINT Protein fingerprint database (searched by Attwood et al. (2002)
FingerPRINTScan)

PROSITE Database for biologically significant sites, patterns and Falquet et al. (2002)
profiles

Pfam Multiple alignment and profile HMM database Bateman et al. (2002)
(searched by HMMER)

PSI-BLAST Position specific iterative BLAST using position Altschul et al. (1997)
specific scoring matrix

SMART Domain architecture research tool (profile HMM Letunic et al. (2002)
database)

Except BLAST (including PSI-BLAST), all of the search tools listed above have
their own pattern, profile, or motif database. These patterns/profiles are generated from
alignments of known protein sequences. Since functionary more important regions (e.g.,
catalytic domains, binding-domains) are considered to be under stronger selective
constraints, multiple alignments from proteins with known functions are expected to
contain conserved regions related to those functions. When distantly related sequences
are compared, only functionally crucial sites, rather than a large region, could be
conserved. Furthermore, some amino acids could be substituted with others (usually with
other bio-chemically similar amino acids) as long as the protein function is maintained.
Pattern and profile search methods allow such flexibility and more sensitive to weakly
conserved sequences than simple similarity search methods. Even when regular BLAST
search fails to identify any significantly similar sequence to the query from the database,
frequently pattern/profile search methods can detect a signature pattern/profile related to
a known function.

1.2. Pros and Cons for the Current Protein Classification Tools

Due to the differences in their underlying techniques and also in their focuses (e.g.,
family coverage), each method (and database) has different strengths and weaknesses. In
order to take maximum advantage from these various information sources, usually it is
necessary to conduct multiple pattern/profile searches. Integrated databases, e.g.,
InterPro (http://www.ebi.ac.uk/interpro/) and MetaFam (http://metafam.ahc.umn.edu/),
were developed to facilitate such tedious procedures.

One of the problems inherited in all of these pattern/profile search methods and
databases is that their patterns are in general derived from relatively short regions. It is
particularly the case in the PROSITE patterns. PROSITE patterns are expressed in
regular expressions as shown in Figure 1. If the query is only a partial sequence (e.g.,
EST), and if it does not contain the region where the pattern was derived, this method
fails to identify the query correctly.
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PROSITE: PS00237
[GSTALIVMFYWC]-[GSTANCPDE]-{EDPKRH}-x(2)-[ LIVMNQGA]-x(2)- [LIVMFT]-
[GSTANC]-[LIVMFYWSTAC]-[DENH]-R-[FYWCSH]-x(2)- [LIVM]

e

[OPRD_HUMAN]

Figure 1. An example entry from the PROSITE pattern database. This is one of the pattern entries for G-
protein coupled receptors (PS00237). A G-protein couple receptor sequence (a human opioid receptor entry
from SWISS-PROT: OPRD _HUMAN) is shown under the PROSITE pattern entry. Each dot represents one
amino acid. Seven cylinders in the middle indicate predicted seven transmembrane regions. The circled area
on the sequence corresponds to the PROSITE regular expression pattern entry spanning 17 amino acids.

PRINTS: SHTIARECEPTR
7 Motifs - derived from loop or N-terminal regions
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Figure 2. An example protein fingerprint from the PRINTS database. This is "5-hydroxytryptamine 1A
receptor signature" (SHTIARECEPTR). This PRINTS entry includes seven motifs or "fingerprints." The
alignment below (including four 5-hydroxytryptamine 1A receptor sequences) shows the locations of these
seven fingerprints (the boxes 1 — 7).

PRINTS uses also very short conserved motifs. But it tries to overcome this problem
by identifying multiple motifs covering a larger region than a single motif. Figure 2 in
the previous page shows one example PRINTS entry that includes seven fingerprint
motifs.
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Profiles (used in PROSITE/Profile and PSI-BLAST) express the flexibility in amino
acid substitutions for each position in a series of scoring matrices, "Position Specific
Scoring Matrix" (PSSM). The profile hidden Markov model (profile HMM) is a
probabilistic model of sequences and used in Pfam and SMART. Profiles and profile
HMMs cover the entire region of alignments, much longer than regions covered by
PROSITE/pattern or PRINTS. Figure 3 below shows an example profile HMM from a
Pfam entry.

PFAM: 7tm_1
Alignment & HMM - .
0 ;
1
OAJ1_HUMAN/52-300 GNIIIVTIIRIDLHLH.... - ! 02) 3)
OL15_MOUSE/41-290 GNLTIILLSRLDARLH. ... ‘ -
OLF6_RAT/44-293 GNLAI ISLVGAHRCLQ. . .. \ /
OLFl_CHICK/41-290 THNLGLIALISVDLHLQ. — 8 -v-*"/,
GU27_RAT/22-271 GNLLITLAVSSNSHLH.
RTA_RAT/61-291 GNGLVLWFFGFSIKRT. -
OPSB_HUMAN/51-303 LNAMVLVATLRYKKLR. ...
OPS3_DROME/75-338 GNGLVIWVFSAAKSLR. ...
OPSD_LOLFO/51-315 GNGVVIYLFTKTKSLQ....
OPS1_DROME/67-329 GNGVVIYIFATTKSLR....
... & < n E F & H I E L - ...
- »-—>i m—>d i->m i-»i d—>m d—>d b—o>m e
-2z * 6044
1 -195 4035 5610 526 4424 -3986 4961 418 3635 4811
-  -149 500 33 43 381 oo 106 626 210 466 720 27
- -4 -11190 12232 894 -1115 701 1378 1022 9098
2 9136 -7934 -8630 9018 9364 -7881 -8476 10511 -9373 9854 9800
- —149 —500 233 43 —381 399 106 —626. 210 —466. —720
- -4 11190 12232 894 -1115 701 1378 -9120 9095
3 102 Tey D886 D20l 312 1260 3962 1455 4847 1083 2069 4730
- -149 —a00 33 43 —381 399 106 —626 210 —466 —72Z0 21
- -4 -11190 -12232 894 -1115 =701 -1378 -9120 -9093
4 ..

Figure 3. An example entry from Pfam. A part of a G-protein coupled receptor entry (7tm_1) is shown in the
box. Two circled numbers correspond to the "emission probability" for a glycine at the first amino acid position
and an alanine at the second position, respectively. Note that the amino acids "G" and "N" are the majority at
the first and second positions in the alignment above, respectively, and the "emission probabilities" for these
two amino acids are the largest at each site. The diagram above is the transition structure of the HMM model
used in HMMER (the HMM program package used in Pfam).

Another inherent problem in these methods is that they rely on multiple alignments
for generating the patterns and profiles. However, making multiple alignments
themselves becomes problematic when extremely distant similarity is on the issue.
Furthermore, diagnostic patterns and profiles cannot be easily identified from such
multiple alignment including extremely diverged sequences.

Yet another problem shared by existing classification methods is that the patterns,
motifs, and profiles need to be identified from already known protein sequences. Since
subsequently found proteins are classified based on these patterns/profiles, possible initial
sampling bias will be reinforced.

1.3. G-protein Coupled Receptor Super Family
One good example representing the case of extreme diversity is the G-protein

coupled receptor (GPCR) super family. Many medically and pharmacologically
important proteins are included in this family: e.g., acetylcholine receptors, dopamine
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receptors, and opioid receptors. Therefore, classifying this protein family and finding
new members of this family is one of the most important topics in medical genomics.

G-protein Coupled Receptor

e (>
»
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-/'

Figure 4. A model of G-protein coupled receptors. The seven transmembrane regions are shown in cylinders
with numbers 1 - 7.

The GPCR protein family is one of the most diverse protein families. The family is
classified into five major classes (A-E) as well as other minor classes and putative and
"orphan" groups. The members of this family share one structural feature, seven-
transmembrane regions as shown in Figure 4. Beyond this structural similarity, the
members, especially those in different classes share very low sequence similarity. The
seven transmembrane regions contribute to the low sequence similarity because many of
the hydrophobic amino acids within the region are interchangeable as long as they are
hydrophobic and do not disrupt the structural conformation. On the other hand, the loop
regions between the transmembrane regions can be varied in length. Therefore,
transmembrane and loop regions contribute to the low sequence similarity in different
ways. The low sequence similarity and heterogeneity created by repeated transmembrane
and loop regions creates the most difficult situation in generating multiple alignments,
and no reliable multiple alignment can be generated from the entire super family. The
GPCR protein family presents one of the most challenging properties for protein
classification methods. There is no single pattern or profile representing the entire GPCR
family. And even if the query is predicted to belong to the GPCR super family, extreme
divergence among families sometimes prevents further classification. In such cases, the
query sequences are called "orphan" GPCRs. For example, the current GPCRDB
("Information system for G protein-coupled receptors (GPCRs)":
http://www.gpcr.org/7tm/) contains about 4,650 GPCR entries, and more than 300 entries
are designated as "orphans" or "putative/unclassified" GPCRs.

At varied degrees, such situations are shared with many other transmembrane
proteins. We can expect that when we develop methods that can successfully classify
this particular protein family, such methods can be applied easily for many other protein
families. We therefore use the GPCR protein family in our study to evaluate
performance of various classification methods.
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2. DISCRIMINANT ANALYSIS

In Kim et al. (2000), we described a new method of protein classification that relies
on neither multiple alignments nor pattern/profile database search. The new method uses
a set of variables extracted from each protein sequence, and classifies them by using a
"nonparametric" linear discriminant analysis. It is a linear discriminant analysis
optimized with nonparametric "runs" criterion, instead of relying on parametric equations
commonly used. This was because we wanted to avoid assuming any unreasonable
statistical distribution. In this paper, we include other parametric and nonparametric
discriminant analysis methods and compared their performance for the GPCR family
classification.

2.1. Input Variables

Instead of using multiple alignments, a set of variables extracted from each protein
sequence is used in discriminant analyses. We used the same set of variables described in
Kim et al. (2000). They include "amino acid index" and three periodicity statistics based
on hydrophobicity and polarity.

In order to obtain "amino acid indices" from protein sequences, first a linear
discriminant analysis is done based on 19 amino acid frequencies. The linear
discriminant score (we call it "amino acid index") obtained from each protein sequence
can be used as a single variable representing 19 amino acid frequencies. Note that using
"amino acid index" instead of each amino acid frequency separately reduces the
dimensionality from 19 to 1.

Other three variables are:

i) Log of the average periodicity of the GES scale,
ii) Log of the average periodicity of the polarity scale, and
iii) Variance of first derivative of the polarity scale.

Distributions of the GES hydropathy index (Engelman et al., 1986) and polarity along
each protein sequence are examined using sliding window analysis (window size = 16
amino acids). And the "average periodicity" is calculated by counting how many times
the property crosses over a neutral value (-0.5 for the GES and 8.325 for the polarity) and
normalized by protein lengths.

Figure 5 in the next page shows how these four input variables discriminate GPCRs
from non-GPCRs. Note that although the figure shows only two-dimensional variable
spaces, good discriminations between GPCR proteins (shown with "G" in the figure) and
non-GPRCR proteins (shown with "R" in the figure) were observed from any
combination of the four variables.

2.2. Datasets

A training dataset containing 750 of known GPCR sequences (randomly sampled
from GPCRDB) and 1,000 of non-GPCR sequences (randomly sampled from SWISS-
PROT) were prepared. A smaller dataset including 100 each of GPCR and non-GPCR
sequences were also prepared independently as a test dataset.



PROTEIN FAMILY CLASSIFICATION 7

Figure 5. A multi-plot for the four input variables used in discriminant analyses. LD1: "amino acid index", V2,
V3, and V4: hydrophobicity and polarity periodicity statistics. 1,750 proteins in the training dataset (described
below) are plotted. "G" in grey color: GPCRs, "R" in black color: non-GPCR random proteins.

2.3. Discriminant Analysis Methods

In addition to the "nonparametric" linear discriminant analysis (nonparametric LDA)
method described previously (Kim et al., 2000), we included four other parametric and
nonparametric discriminant analysis methods:

i) Linear discriminant analysis (LDA),

ii) Quadratic discriminant analysis (QDA),
iii) Logistic discriminant analysis (LOG), and
iv) K-nearest neighbor method (KNN).

S-Plus statistical package with the MASS library (Venables and Ripley, 2002) was
used except for the nonparametric LDA.

2.4. Performance Comparisons for the GPCR Protein Family Classification

Table 2 lists the results of GPCR classification by various discriminant analyses
compared with other protein classification methods. Discriminant functions were trained
on the training dataset described above, and their classification performance was tested
on both of the training and test datasets. The cross-validation ("leave-one-out" test) were
performed only for the four parametric and nonparametric discriminant analyses.
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Table 2. Performance comparisons for the GPCR classification

Method Against Against Cross-validation
training dataset test dataset
% True + % False+ % True + % False + % True + % False +
LDA 98.7 33 100 1 98.7 3.6
QDA 98.5 3.0 100 0 98.5 3.0
LOG 98.0 2.8 100 0 97.7 2.9
KNN (k =10) 98.7 32 99 0 98.3 3.4
Nonparametric LDA ~ 98.1 3.6 99 0 - -
PROSITE/pattern 93.5 0.1 84 0 - -
PROSITE/profile 98.8 0 94 0 - -
Pfam 98.4 0.3 94 0 - -
PRINTS 99.2 0.3 98 0 - -

NOTE: "%True +": percent true positives, "% False +": percent false positives. For KNN analysis, k
was varied between 5 and 20, but the performance with k=5, 10, and 15 was similar. See Kim ef al.
(2002) for the PROSITE, Pfam, and PRINTS entries used in the analyses.

All of the four parametric and non-parametric methods performed similar to or better
than previously described methods (PROSITE, Pfam, PRINTS, and nonparametric LDA)
with % true positives higher than 98 %. Surprisingly both non-parametric methods, KNN
and nonparametric LDA, did not perform particularly better than parametric discriminant
analysis (DA) methods, although we cannot guarantee any assumption underlying
parametric methods (e.g., normal distribution, consistent covariance matrices). The false
positive rates among DA methods were also very similar to each other, but about 10
times higher than other methods (PROSITE, Pfam, and PRINTS). Classification of the
independently prepared test dataset and the results of cross-validation were consistent
with the classification results on the training dataset itself. As described before,
classification by PROSITE/pattern search showed the lowest performance. It clearly
indicates the limitation of searching short patterns.

On the other hand, all of the DA methods outperformed other methods when tested
on short sequences. Short subsequences (from 50 to 400 amino acids) were randomly
sampled from the test dataset, and classification performance was compared among the
nine methods listed in Table 2. Figure 6 compares % identifications by DA and other
methods. With test sequences with 50 or 75 amino acids in length, we could still obtain
higher than 70 % of positive identification by DA methods. In particular, nonparametric
DA methods (KNN and nonparametric LDA) showed true positive rates higher than 80 %
if sequences were longer than 75 amino acids. On the contrary, Pfam, for example, could
identify fewer than 50 % of GPCR sequences when their length was 50 amino acids.
Both PROSITE/pattern and PRINTS showed the lowest performance especially when
sequences are short (300 amino acids or shorter). These observations were again
consistent with the short patterns or fingerprints these classification methods use.
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Figure 6. Performance comparison among classification methods against short protein sequences.

3. DEVELOPMENT OF A HIERARCHICAL CLASSIFICATION ALGORITHM

Our study showed that each protein classification method has different strength and
weakness. All DA methods we examined (parametric or nonparametric) showed better
performance even when protein sequences are extremely short. On the other hand, in
general, DA methods had much higher false positive rates. We should note that we
simply relied on SWISS-PROT annotations to identify GPCRs in this study. Therefore, it
is possible that there are some miss-identifications. On the other hand, currently used
methods (represented by PROSTIE, Pfam, and PRINTS in this study) have very low false
positive rates. However, they perform best when properties of query and training
datasets are consistent, as shown in their weak performance against partial sequences.
Therefore, these methods are not likely to identify new protein sequences if they are not
closely related to any existing protein family or any existing protein family member.
These methods also rely on the quality of multiple alignments among training sequences.

The ideal protein classification method should have reasonably low false positive
rates but needs to be sufficiently flexible, so new types of proteins can be still identified
or classified. In order to realize such optimal means of protein classification, we are
currently developing an integrated algorithm that compliments weakness of various
methods by combining DA and other methods systematically and effectively.

The flowchart shown in the next page shows a simple example of such hierarchical
algorithm to identify potentially new GPCR sequences. In this hierarchical algorithm,
more "non-specific" DA methods are first used to identify any possible candidate for
GPCR proteins and discriminating them from "least likely to be GPCR" proteins. In the



10 E. N. MORIYAMA AND J. KIM

next step, other more stringent methods (e.g., PROSITE, Pfam, and PRINTS) can be used
to filter out "more likely to be GPCR" data. The remaining dataset could contain both
actual "false positives" and also some new members of the GPCR family. Another level
of DA or other clustering methods could be used to select such possible candidates and to
perform more detailed classification.

Genome Database
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Non-GPCR mw——"= Class A/B/C?

(False positive or new GPCR ?)

Figure 7. A hierarchical protein classification algorithm.

Further examinations of various DA and other multivariate methods are required to
identify which "non-specific" methods should be incorporated in this algorithm. It is also
possible to create another hierarchical level among these "non-specific" methods to lower
the false positive rates.

Our goal is to develop an integrated hierarchical algorithm that can take advantage
from various protein classification methods. This algorithm can be applied for any kind
of protein families, and incorporating DA and other flexible methods, we can apply this
algorithm even for partial or short sequences as found in EST databases. It will be also
useful to identify particular protein coding sequences from short fragments (e.g., exons)
from genomic data.
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