

1

Substitution matrices based on empirical data

PAM matrices

- Dayhoff, Schwartz, and Orcutt (1978)

BLOSUM matrices

- Henikoff and Henikoff (1992)

Also see Eddy (2004) Nature Biotechnology 22: 1035-36

3

PAM matrices

- Numbers of accepted point mutations: $f(a, b)$ are counted based on phylogenies
\rightarrow Assumption: substitutions are equally likely in each direction (e.g., $G \rightarrow A=A \rightarrow G$)

BIOS477/877 L9-5

PAM matrices (Dayhoff et al. 1978)

Accepted point mutations (point accepted mutations, percent accepted mutations)
\rightarrow accepted by selection: no (or very weak) deleterious effect, maintaining the function
$>$ Based on 1,572 changes in 71 groups of closely related proteins (34 protein families)
\rightarrow at least 85\% identical
\rightarrow no ambiguity in alignments, no gap
\rightarrow most likely observed substitutions do not affect protein functions (accepted by selection, close to neutral)
\rightarrow successive (multiple) substitutions at one site are minimal (no hidden substitution)

4

PAM matrices

- Numbers of accepted point mutations: $f(a, b)$ are counted based on phylogenies
\rightarrow Assumption: substitutions are equally likely in each direction (e.g., $G \rightarrow A=A \rightarrow G$)

> Using the maximum parsimony principle, ancestral sequences can be inferred

PAM matrices

- Numbers of accepted point mutations: $f(a, b)$ are counted based on phylogenies
\rightarrow Assumption: substitutions are equally likely in each direction (e.g., $G \rightarrow A=A \rightarrow G$)

Using the maximum parsimony principle, ancestral sequences can be inferred

PAM matrices

- Numbers of accepted point mutations: $f(a, b)$ are counted based on phylogenies
\rightarrow Assumption: substitutions are equally likely in each direction (e.g., $G \rightarrow A=A \rightarrow G$)

BIOS477/877 L9-9
9

PAM matrices

- Relative mutability: $\boldsymbol{m}(\boldsymbol{a})$

Probability that the amino acid a will change in a given small evolutionary interval

PAM matrices

- Numbers of accepted point mutations: $\boldsymbol{f (a , b)}$ are counted based on phylogenies
\rightarrow Assumption: substitutions are equally likely in each direction (e.g., $\mathrm{G} \rightarrow \mathrm{A}=\mathrm{A} \rightarrow \mathrm{G}$)

Substitutions can be identified along the phylogeny

8

10

12

PAM matrices

- Mutation probability
$M(a, b)=\lambda m(b) \times f(a, b) / \sum_{a} f(a, b)$, where $a \neq b$ $\boldsymbol{m}(b)$: relative mutability of amino acid b
$f(a, b)$: frequency of accepted point mutations between amino acids a and b
$\sum_{f} f(a, b)$: number of times the amino acid b is substituted by any other amino acid λ : proportionality constant (normalization factor)
\rightarrow The probability of the amino acid b being replaced by the amino acid a after a given evolutionary time
$M(b, b)=1-\lambda m(b)$
unchange probability (the diagonal elements)
BIOS477/877 L9-13
13

15

PAM matrices

- Relatedness odds score

$R(a, b)=M(a, b) / f(a) \longleftarrow$
$M(a, b)=\lambda m(b) \times f(a, b) / \sum_{f} f(a, b)$
the probability that amino acid b will change to a in a related sequence in a given interval
$f(a)$: the chance of a random occurrence of amino acid a
[frequency of occurrence of amino acid a]
$=$ (number of occurrences of the residue a) / (total number of residues)
$\boldsymbol{R}(\boldsymbol{a}, \boldsymbol{b})=\boldsymbol{M}(\boldsymbol{a}, \boldsymbol{b}) / \boldsymbol{f}(\boldsymbol{a})=\left\{\boldsymbol{\lambda} \boldsymbol{m}(\boldsymbol{b}) \mathbf{x} \boldsymbol{f}(\boldsymbol{a}, \boldsymbol{b}) / \sum a f(\boldsymbol{a}, \boldsymbol{b})\right\} / \boldsymbol{f}(\boldsymbol{a}) \quad m(b)=\sum_{a} \quad / f(b)$

$R(b, a)=M(b, a) / f(b)=\left\{\lambda m(a) \times f(b, a) / \sum b f(b, a)\right\} / f(b)$
$=\lambda f(b, a) /\{f(b) \times f(a)\}=R(a, b)$
$R(a, b)=R(b, a) \rightarrow$ Relatedness odds score matrix is symmetrical BIOS477/877 L9 - 17

PAM matrices

- Relatedness odds score
$R(a, b)=M(a, b) / f(a) \longleftarrow$ $M(a, b)=\lambda m(b) \times f(a, b) / \sum_{f} f(a, b)$
the probability that amino acid b will change to a in a related sequence in a given interval
$f(a)$: the chance of a random occurrence of amino acid a
[frequency of occurrence of amino acid a]
= (number of occurrences of the residue a) / (total number of residues)
- $S(a, b)=10 \log _{10}\{M(a, b) / f(a)\} \leftarrow$ Log odds score

If $R(a, b)=M(a, b) / f(a)>1$ or $S(a, b)>0$
\rightarrow substitutions happen more often than by chance
BIOS477/877 L9-18

PAM matrices

19

PAM matrices

PAM1 matrix

\rightarrow normalized (using λ) to represent an amount of evolution producing an average of one mutation per hundred amino acids [Evolutionary interval of PAM1]
$100 \times \sum_{b}\{f(b) M(b, b)\}=99$ where $M(b, b)=1-\lambda m(b)$ within 100 amino acids 99 are unchanged (or only 1 changed)
\mathbf{M}_{1} : PAM1 mutation probability matrix
\rightarrow shows the probability of $A A_{j}$ replaced by $A A_{i}$ after the evolutionary interval of PAM1 (when one mutation per 100 aa is found)
\mathbf{M}_{n} : mutation probabilty matrix for PAM n
$\mathbf{M}_{n}=\left(\mathbf{M}_{1}\right)^{n}$ (e.g., PAM250 or $\left.\mathbf{M}_{250}=\mathbf{M}_{1}{ }^{250}\right)$

21

PAM matrices updated

JTT matrices
by Jones, Taylor, and Thornton (1992)
$\rightarrow 59,190$ accepted point mutations for 16,300 proteins

Gonnet matrices

by Gonnet, Cohen, Benner (1992)
\rightarrow Based on exhaustive pairwise alignment from the protein database ($\sim 8,344,353$ amino acids).

PAM matrices

PAM1 matrix $\quad M(a, b)=\lambda m(b) x f(a, b) / \Sigma_{f} f(a, b)$
\rightarrow normalized (using λ) to represent an amount of evolution producing an average of one mutation per hundred amino acids [Evolutionary interval of PAM1]
$100 \times \sum_{\mathrm{b}}\{f(b) M(b, b)\}=99$ where $M(b, b)=1-\lambda m(b)$ within 100 amino acids 99 are unchanged (or only 1 changed)
$\mathbf{M}_{1}:$ PAM1 mutation probability matrix
\rightarrow shows the probability of $A A_{j}$ replaced by $A A_{i}$ after the evolutionary interval of PAM1 (when one mutation per 100 aa is found)
e.g., M_{250} : Probability matrix after evolutionary interval of PAM250 (after 250 changes are produced in 100 aa)

20

22

BLOSUM matrices (Henikoff and Henikoff 1992)

Blocks substitution matrix
\rightarrow Based on ~2,000 conserved amino acid patterns (or ungapped blocks), representing more than 500 families.
\rightarrow Based on local, multiple alignment of all commonly-occurring motifs (blocks) in the protein sequence database.

- The Blocks Database (no longer available, but used to generate BLOSUM matrices)

25

27

29

BLOSUM matrices

26

28

BLOSUM matrices

BLOSUM matrices

- Observed amino acid pairs: ${ }_{6} \mathrm{CC}, 4 \mathrm{CA}$ (from 30

Seq1 MCL Seq 2 GCV Seq3 TCV Seq4 MAL

- Observed frequency of pairs in the alignment: ${ }^{\text {Seq5 тCI }}$

$$
q_{\mathrm{CC}}=6 / 30=0.2, q_{\mathrm{CA}}=4 / 30=0.133 \begin{aligned}
& \begin{array}{l}
\text { (There are 20 } \\
\text { Othe pairs, too }
\end{array}
\end{aligned}
$$

- Observed frequency of each amino acid in the alignment:

$$
\begin{aligned}
& p_{i}=q_{i i}+\sum_{i \neq j} q_{i j} / 2 \\
& \rightarrow p_{\mathrm{C}}=0.2+0.133 / 2=0.267 \text { and } p_{\mathrm{A}}=0.13 / 2=0.067
\end{aligned}
$$

- Expected frequencies of amino acid pairs:

$$
\begin{aligned}
& e_{i i}=p_{i} p_{i}=p_{i}^{2} \text { and } e_{i j}=p_{i} p_{j}+p_{j} p_{i}=2 p_{i} p_{j} \\
& \rightarrow e_{\mathrm{CC}}=0.267^{2}=0.071 \\
& \quad e_{\mathrm{AA}}=0.067^{2}=0.004 \\
& \quad e_{\mathrm{CA}}=2 \times 0.267 \times 0.067=0.036
\end{aligned}
$$

31

BLOSUM matrices

- Observed and Expected frequencies of amino acid pairs are cumulatively Seq1 MCL Seq2 GCV Seq3 TCV Seq4 MAL Seq5 TCI counted from all columns of the BLOCKs
- Log odds scores are calculated for each amino acid pairs:

$$
S_{i j}=2 \log _{2}\left(q_{i j} / e_{i j}\right)
$$

From the example:

$$
\begin{aligned}
& q_{\mathrm{CC}}=0.2, e_{\mathrm{CC}}=0.071 \rightarrow S_{\mathrm{CC}}=2 \log _{2}(0.2 / 0.071)=2.99 \\
& q_{\mathrm{CA}}=0.133, e_{\mathrm{AC}}=0.036 \rightarrow S_{\mathrm{CA}}=2 \log _{2}(0.133 / 0.036)=3.77
\end{aligned}
$$

BLOSUM matrices

BLOSUMn: n represents the similarity threshold (e.g., BLOSUM62, BLOSUM45, BLOSUM80)
\rightarrow for any n, the corresponding BLOSUM matrix is generated mainly comparing sequences that are less than $n \%$ identical
e.g., BLOSUM62: Sequences with $\geq 62 \%$ identity are clustered and treated as a single sequence for counting.
$\rightarrow 3$ sequences in one cluster are counted as $1 / 3$ each, instead of 1 each for counting.
$>$ All BLOSUM matrices are based on observed alignments; they are not extrapolated from comparisons of closely related proteins

BLOSUM matrices

- Observed and Expected frequencies of amino acid pairs are cumulatively

Seq1 MCL Seq2 GCV Seq3 TCV Seq4 MAL Seq5 TCI counted from all columns of the BLOCKs

- Log odds scores are calculated for each amino acid pairs:

$$
S_{i j}=\log \left(q_{i j} / e_{i j}\right)
$$

In bit units: $S_{i j}=\log _{2}\left(q_{i j} / e_{i j}\right)$ Usually in half-bit units: $S_{i j}=2 \log _{2}\left(q_{i j} / e_{i j}\right)$ *bit = binary digit (0 or 1)

34

BLOSUM and PAM matrices

$>$ PAM matrices: based on mutational model of evolution \rightarrow a transition probability matrix for a Markov process Transition matrix \rightarrow any \mathbf{M}_{n} matrix can be extrapolated based on PAM1 (\mathbf{M}_{1}) matrix (e.g., $\mathbf{M}_{250}=\mathbf{M}_{1}{ }^{250}$) \qquad
$A A_{1}$
\rightarrow assume more distant $A A_{3} \longrightarrow$
\rightarrow designed to track the evolutionary origins of proteins
$>$ BLOSUM matrices: not based on explicit evolutionary model
\rightarrow based on local similarity
\rightarrow derived from all changes observed in the conserved blocks regardless of the overall degree of similarity
\rightarrow generated based on different similarity levels (BLOSUM50, BLOSUM62, etc.)
\rightarrow all BLOSUM matrices are generated based on observed data
\rightarrow designed to find conserved domains

Log Odds Matrix

- PAM matrix

$S(i, j)=10 \log _{10}\{M(i, j) / f(i)\}$
$M(i, j)$: Mutation probability from AA_{j} to AA_{i}
$f(i)$: Frequency of AA_{i}
(number of $\mathrm{AA}_{i} /$ total number of residues);
Probability to find $\mathrm{AA}_{\boldsymbol{i}}$ by chance

- BLOSUM matrix
$S(i, j)=2 \log _{2}\left(q_{i j} / e_{i j}\right)$
$q_{i j}$: Observed frequency of $\mathrm{AA}_{i}, \mathrm{AA}_{j}$ pairs
$\boldsymbol{e}_{i j}$: Expected frequencies of $\mathbf{A A}_{i}, \mathbf{A A}_{j}$ pairs

39

38

Log Odds Matrix

\[

\]

$>$ Log odds (Lod) score: BLOSUM matrix
$S\left(i_{j}\right)=2 \log _{2}\left(q_{i j} / e_{i j}\right)$
$\left\{A A_{i} \rightarrow A A_{j}\right.$
$q_{i j}$: Observed frequency of $\left(\mathrm{AA}_{i}, A A_{j}\right)$ pairs $\left\{\begin{array}{|c|}\end{array} \rightarrow A A_{i}\right.$
$e_{i j}$: Expected frequencies of $\left(\mathrm{AA}_{i}, \mathrm{AA}_{j}\right)$ pairs
$e_{i i}=p_{i} p_{i}=p_{i}^{2}$ and $\left.e_{i j}=p_{i} p_{j}+p_{j} p_{i}=2 p_{i} p_{i}\right)$
p_{i} : Observed frequency of AA_{i} in the pairs

$$
p_{i}=q_{i i}+\Sigma_{i \neq j} q_{i j} / 2
$$

\rightarrow BLOSUM matrix is symmetrical: $S(i, j)=S(j, i)$

BIOS477/877 L9-40
40

42

43

Log Odds Matrix

	AA_{1}	AA_{2}	
AA_{1}	$\mathrm{~S}_{11}$	$\mathrm{~S}_{21}$	
AA_{2}	$\mathrm{~S}_{12}$	$\mathrm{~S}_{22}$	

Log odds (Lod) score: general also called \log odds ratio or log likelihood ratio
$S(i, j)=1 / \lambda \log _{2}\left(q_{j} / / p_{j}\right)$ [in bit unit]
$S(i, j)=1 / \lambda \log _{\mathrm{e}}\left(q_{j} / p_{i} p_{j}\right)$ [in nat unit]
Log likelihood ratio $=\log \left\{\frac{\text { Likelihood of } \mathrm{H}_{1}}{\text { Likelihood of } \mathrm{H}_{0}}\right\}$
$=\log \left\{\operatorname{Prob}\left(\right.\right.$ an event $\left.\left.\mid \mathrm{H}_{1}\right)\right\}-\log \left\{\operatorname{Prob}\left(\right.\right.$ an event $\left.\left.\mid \mathrm{H}_{0}\right)\right\}$
I- $<\boldsymbol{\operatorname { l o g } (L R)}<+]$
H_{1} : Hypothesis to be tested, H_{0} : Null hypothesis

Log Odds Matrix

$>$ Log odds (Lod) score: general also called \log odds ratio or log likelihood ratio
$S\left(i_{j}\right)=1 / \lambda \log _{2}\left(\mathrm{q}_{i j} / p_{i} p_{j}\right)$ [in bit unit]
$S(i, j)=1 / \lambda \log _{\mathrm{e}}\left(q_{i j} / p_{i} p_{j}\right)$ [in nat unit]
Likelihood ratio $(\mathrm{LR})=\frac{\text { Likelihood of } \mathbf{H}_{1}}{\text { Likelihood of } \mathbf{H}_{0}}$

$$
[0<\mathrm{LR}<+ \text { inf }]
$$

$$
=\frac{\operatorname{Prob}\left(\text { an event } \mid H_{1}\right)}{\operatorname{Prob}\left(\text { an event } \mid \mathrm{H}_{0}\right)}
$$

H_{1} : Hypothesis to be tested, H_{0} : Null hypothesis

44

Log Odds Score and Target Frequencies

$$
\begin{aligned}
& S(i, j)=1 / \lambda \log _{\mathrm{e}}\left(q_{i j} / p_{i} p_{j}\right) \\
& \quad\left[\text { or } S(i, j)=1 / \lambda \log _{2}\left(q_{i j} / p_{i} p_{j}\right)\right. \text { for BLOSUM] }
\end{aligned}
$$

$\lambda S(i, j)=\log _{\mathrm{e}}\left(q_{i j} / p_{i} p_{j}\right)$
$\boldsymbol{e}^{\lambda S(i, j)}=q_{i j} / p_{i} p_{j}$

λ can be estimated (matrix specific)
BIOS477/877 L9-46
46

