Global vs. local alignments

Global alignment (Semi-global alignment)

\[s(a, b) = \begin{cases} 2 & \text{if } a = b, \\ 0 & \text{if } |a - b| = 1, \\ -2 & \text{otherwise} \end{cases} \]

Local alignment

Match/Mismatch scores

- Gap penalty

Indel Evolution and Gap Penalty

- A gap of length \(k \neq k \) gaps of length 1

\[\text{TTC} \quad \text{ACG} \]

\[\text{ATTCCG} \]

\[\text{deletion} \]

\[\text{deletion} \]

\[\text{deletion} \]

\[\text{ACG} \]

Which is more likely?

Which is biologically easier?

- Single insertion/deletion event

- Multiple insertion/deletion events

Indel Evolution and Gap Penalty

- Indel mutations are often strongly deleterious
- Indel events are rare (less common than point mutations)
- Multi-residue indels are not uncommon (e.g., hotspot, repetitive DNA)

Unequal crossover

- Replication slippage

From Human Molecular Genetics 2 (available in NCBI Bookshelf)

Indel Evolution and Gap Penalty

- Indel mutations are often strongly deleterious
- Indel events are rare (less common than point mutations)
- Multi-residue indels are not uncommon
- Fewest number of unlikely events → most likely evolutionary hypothesis

Maximum parsimony

- AATCTATA 2 indels
- AATCTATA 1 indel (more likely than 2 indel events)
Indel Evolution and Gap Penalty

- Fewer, but longer, indel event is more likely than too many small indels

During alignments

Gap Penalty Functions

- **Linear (length-proportional) gap penalty:**
 \[w(x) = gx \]

 - \(g \): gap penalty
 - \(x \): length of a gap

- **Affine gap penalty:**
 \[w(x) = \begin{cases}
 g_o + g_e (x - 1) & \text{when } x > 0 \\
 0 & \text{when } x = 0
 \end{cases} \]

 - \(g_o \): gap opening penalty
 - \(g_e \): gap extension penalty (usually \(g_o > g_e \))
 - \(x \): length of a gap

Simple Alignments

- **Varied length & gaps considered**

 - Alignment Score =
 \[\begin{align*}
 & \text{(match score)} \times \text{(the number of matched pairs)} + \\
 & \text{(mismatch score)} \times \text{(the number of mismatched pairs)} + \\
 & \sum \left(\text{(gap opening penalty)} \times \text{(gap length - 1)} \right)
 \end{align*} \]

 - If match score = 1, mismatch score = 0, gap penalty = -1
 - If using linear gap penalty.

 - Example:
 - \(\text{AACTATA} \)
 - \(\text{AA-GATA} \)
 - \(\text{AAG-AT-A} \)

 - Alignment Score = 2

 - Example:
 - \(\text{AACTATA} \)
 - \(\text{AA-GATA} \)
 - \(\text{AAG-AT-A} \)

 - Alignment Score = 3

 - Example:
 - \(\text{AACTATA} \)
 - \(\text{AA--GATA} \)
 - \(\text{AAG-AT-A} \)

 - Alignment Score = 1

- **Varied length & gaps considered**

 - Alignment Score =
 \[\begin{align*}
 & \text{(match score)} \times \text{(the number of matched pairs)} + \\
 & \text{(mismatch score)} \times \text{(the number of mismatched pairs)} + \\
 & \sum \left(\text{(gap opening penalty)} \times \text{(gap length - 1)} \right)
 \end{align*} \]

 - If match score = 1, mismatch score = 0, gap penalty = -1
 - If using affine gap penalty.

 - Example:
 - \(\text{AACTATA} \)
 - \(\text{AA-GATA} \)
 - \(\text{AAG-AT-A} \)

 - Alignment Score = 2

 - Example:
 - \(\text{AACTATA} \)
 - \(\text{AA--GATA} \)
 - \(\text{AAG-AT-A} \)

 - Alignment Score = -1
Empirical Indel Distribution: DNA

Based on the comparisons of 78 processed pseudogenes against their functional homologues in the human genome.

Deletions are more frequent than insertions.

Empirical Indel Distribution: DNA

Based on the comparisons of 23 noncoding region sequences between Drosophila simulans and D. sechellia.

This distribution was later used in MCALIGN:

Empirical Indel Distribution: Protein

Based on the comparisons of 4,952 protein pairs from human, mouse, and rat.

Sequences were aligned by a dynamic programming method.

Empirical Indel Distribution: Protein

Based on the comparisons of 1,310 orthologous families from 22 fungal species.

Loop regions have more indels compared to the regions with secondary structures.

Gap Penalty Function (more realistic)

- Empirical indel size distributions (both for DNA and proteins) can be described by a power law:
 \[f_k = C k^{-b} \]
 \[k: \text{indel size}, \ b: \text{the power parameter} \]

- Corresponding gap penalty function
 \[w = a + b \ln(k) \]
 \[a: \text{gap opening penalty} \]
 \[b: \text{gap extension penalty} \]

- Gap extension penalty is proportional to the logarithm of gap length \(k \) (logarithmic gap penalty system)

- Increases more slowly with gap length than in the affine gap penalty system (long gaps easier)

\((\text{e.g., Cartwright 2009, MBE 26:473 and the cited refs}) \)

Number of substitutions (aa)

Indel rates/lengths are affected by different alignment methods!
Scoring (Substitution) Matrix: DNA

- **DNA Identity Matrix**
 - Match score = 1
 - Mismatch score = 0
 - Match/mismatch scores can be expressed in a matrix format

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\[S = \sum (s(i, j) + w(x)) \]

- \(s(i, j) \): the similarity score between nucleotides \(i \) and \(j \)
- \(w(x) \): gap penalty

Transition/Transversion Matrix

- Match score = 1
- Mismatch score:
 - transition = 1 (more allowed → smaller penalty)
 - transversion = -5 (fewer allowed → larger penalty)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>C</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>T</td>
<td>?</td>
<td>1</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>C</td>
<td>?</td>
<td>?</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>G</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>1</td>
</tr>
</tbody>
</table>

DNA Substitution Types

- **Pyrimidines**: T, C, A, G
- **Purines**: A, T

- **Transition substitutions**: between pyrimidines, between purines
- **Transversion substitutions**: between pyrimidines and purines

- **Transition**
- **Transversion**

Amino acid substitution matrices

- **Identity matrix**
- **Genetic code matrix**
- **Matrices based on AA properties**
- **Matrices based on empirical data**
 - Dayhoff matrices (PAM120 *etc.*)
 - BLOSUM matrices (BLOSUM62 *etc.*)
 - Gonnet matrices (Gonnet 250 *etc.*)
 - JTT matrices
 - and more ...

Amino acid substitution matrices

- Matrices based on various amino acid properties (hydrophobicity, charge, electronegativity, size, etc.)
 - Biologically meaningful matrix can be obtained by combining all of these matrices (including genetic code matrix). Not easy!
- Matrices based on empirical data
 - Alignments show the results of experiments done by the Nature
 - Capture the relative substitutability of amino acid pairs in the context of evolution
 - The model of protein evolution

Substitution matrices based on empirical data

- PAM matrices
 - Dayhoff, Schwartz, and Orcutt (1978)
- BLOSUM matrices
 - Henikoff and Henikoff (1992)

Margaret O. Dayhoff (1925-1983)

- Founder of the field of Bioinformatics
- The first woman in the field
- Collection of all known protein sequences
- 1st Atlas contained 65 proteins
- Developed into PIR (Protein Information Resource), a brain-child of Dayhoff
- Dayhoff developed a single letter code for the amino acids

Blue-sensitive opsin proteins

- Aliphatic
- Non-polar
- Tiny
- Small
- Polar
- Charged
- Aromatic
- Proline
- Positive
- Negative

E

D

Amino acid substitution matrices

Identity matrix
Genetic code matrix
Matrices based on AA properties
Matrices based on empirical data
- Dayhoff matrices (PAM120 etc.)
- BLOSUM matrices (BLOSUM62 etc.)
- Gonnet matrices (Gonnet 250 etc.)
- JTT matrices
- and more …

PAM matrices (Dayhoff et al. 1978)

- **Accepted point mutations** (point accepted mutations, percent accepted mutations)
 - **accepted by selection**: no (or very weak) deleterious effect, maintaining the function
- **Based on 1,572 changes in 71 groups of closely related proteins** (34 protein families)
 - at least 85% identical
 - no ambiguity in alignments, no gap
 - most likely observed substitutions do not affect protein functions (accepted by selection, close to neutral)
 - successive (multiple) substitutions at one site are minimal (no hidden substitution)