

1

3

5

TODAY'S TOPICS

- Assignments 1 \& 3 review

Dotplot examples
Pairwise Alignment continues ...

- Semi-global alignment
- Local alignment

Graduate Only Assignment

2

Comparative genomics using dot plot

4

6

7

Alignment including Terminal (End) Gaps

Is ACACTGATCG optimal alignment?

If Match $=1$, Mismatch $=0$ and Gap penalty $=-1$

9

Alignment including Terminal (End) Gaps

```
ACACTGATCG ACACTGATCG
```


BIOS477/877 L7-11

Terminal (End) Gaps

ACACTGATCG ACACTG----

\rightarrow Terminal gaps are required when sequences are incomplete (no biological meaning)
\rightarrow They should not be penalized
\rightarrow Should be treated differently from internal gaps

8

Alignment including Terminal (End) Gaps
ACACTGATCG
ACACTG----

		A	C	A	C	T	G	A	T	C		
	$0 \rightarrow-1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10$											
A	-1	$1 \rightarrow 0 \rightarrow-1 \rightarrow-2 \rightarrow-3 \rightarrow-4 \rightarrow-5-6 \rightarrow-7 \rightarrow-8$										
C	-2	${ }_{i}+2 \rightarrow 1 \rightarrow 0 \rightarrow-1 \rightarrow-2 \rightarrow-3 \rightarrow-4 \rightarrow-5 \rightarrow-6$										
A	-3	1	0	$3 \rightarrow 2 \rightarrow 1 \rightarrow 0 \rightarrow-1 \rightarrow-2 \rightarrow-3 \rightarrow-4$								
C	-4	-2	0	$2{ }_{2}$								
T	-5	-3	-1	$1-3 \quad 5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1>0$								
G	-6	-4	-2	0	2	4						

BIOS477/877 L7-10
10

12

13

Alignment with Free End Gaps

No gap penalty is used in the edge regions

Match $=1$, Mismatch $=0$,
End gap penalty $=0$
BIOS477/877 L7-15
15

Alignment with Free End Gaps

No gap penalty is used in the edge regions

		\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{A}	\mathbf{T}	\mathbf{C}	\mathbf{G}
	0	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0	0	0	0
\mathbf{A}	0										
\mathbf{C}	0										
\mathbf{A}	0										
\mathbf{C}	0										
\mathbf{T}	0										
\mathbf{G}	0										

Match $=1$, Mismatch $=0$,
End gap penalty $=0$, (Internal) gap penalty $=-1$
BIOS477/877 L7-17

Alignment with Free End Gaps
No gap penalty is used in the edge regions

Match $=1$, Mismatch $=0$,
End gap penalty $=0$, (Internal) gap penalty $=-1$

16

Alignment with Free End Gaps

No gap penalty is used in the edge regions

	A	C	A	C	T	G	A	T	C	G
	$0 \rightarrow 0 \rightarrow 0$									
A	$0 \cdot 12$									
C	0									
A	0									
C	0									
T	0									
G	0									

Match $=1$, Mismatch $=0$,

End gap penalty $=0$, (Internal) gap penalty $=-1$
BIOS477/877 L7-18

19

Alignment with Free End Gaps

Is ACACTGATCG
optimal alignment?

		\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{A}	\mathbf{T}	\mathbf{C}	\mathbf{G}
	$0 \rightarrow 0 \rightarrow 0$										
\mathbf{A}	0	$1 \rightarrow 0$	$1 \rightarrow 0$	0	0	1	0	0	0		
\mathbf{C}	0	0	$2 \rightarrow 1$	$2 \rightarrow$	1	0	0	1	1	0	
\mathbf{A}	0	1	1	$3 \rightarrow 2$	$2 \rightarrow$	1	$1 \rightarrow 0$	1	1		
\mathbf{C}	0	0	2	2	$4 \rightarrow 3$	2	1	1	1	1	
\mathbf{T}	0	0	1	2	3	$5 \rightarrow 4 \rightarrow$	3	2	1	1	
\mathbf{G}	0	0	\rightarrow	1	2	4	6	6	6		

Match $=1$, Mismatch $=0$,
End gap penalty $=0$, (Internal) gap penalty $=-1$
21

Alignment with Free End Gaps

Is ACACTGATCG optimal alignment?

Match $=1$, Mismatch $=0$,
End gap penalty $=0$, (Internal) gap penalty $=-1$
BIOS477/877 L7-23

Alignment with Free End Gaps
No gap penalty is used in the edge regions

		A	C	A	C	T	G	A	T	C	G
A	$\begin{aligned} & 0 \rightarrow 0 \\ & 0 \\ & 0 \end{aligned}$										
C	0										
A	0										
C	0										
T	0										
G	0										

Match $=1$, Mismatch $=0$,
End gap penalty $=0$, (Internal) gap penalty $=-1$
20

Alignment with Free End Gaps
Is ACACTGATCG
optimal alignment?

Match $=1$, Mismatch $=0$,
End gap penalty $=0$, (Internal) gap penalty $=-1$
BIOS477/877 L7-22
22

Alignment with Free End Gaps

ACACTGATCG is the optimal alignment!

Match $=1$, Mismatch $=0$,
End gap penalty $=0$, (Internal) gap penalty $=-1$
BIOS477/877 L7-24

25

Global vs. local alignments

Global alignment

Optimizes the alignment over the full length of sequences With free-end gap Semi-global alignment

Local alignment

Finds the best matching subsequence(s) Useful for finding conserved regions B10S477/877 L7-27

27

Local Alignment

(Smith-Waterman Algorithm)

		\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{A}	\mathbf{T}	\mathbf{C}	\mathbf{G}
	0	0	0	0	0	0	0	0	0	0	0
\mathbf{A}	0									A	
\mathbf{C}	0										
\mathbf{A}	0										
\mathbf{C}	0										
\mathbf{T}	0						Fill with	's			
\mathbf{G}	0										

If Match $=1$, Mismatch $=-1$ and Gap penalty $=-2$

Dynamic Programming Algorithm

$>$ Global alignment

- Needleman \& Wunsch (1970)
- Optimizes the alignment (maximizes the alignment score) over the full length of the sequences
$>$ Semi-global alignment
- Global alignment with cost-free end gaps
$>$ Local alignment
- Smith \& Waterman (1981)
- Finds the best matching subsequences

Local Alignment (Smith-Waterman Algorithm)

$>$ Top row and leftmost column \rightarrow fill with 0
$>$ Use negative mismatch score and negative gap penalty
Cell scores cannot be negative
\rightarrow Replace negative scores with 0
Trace-back can be started anywhere
\rightarrow Find the cell(s) with the highest score
Trace-back stops when it reaches 0

28

Local Alignment (Smith-Waterman Algorithm)

		A	C	A		C	T	G	A	T	C	G
	0	0	0	0		0	0	0	0	0	0	0
A	0											
C	0											
A	0											
C	0											
T	0											
G	0											

If Match $=1$, Mismatch $=-1$ and Gap penalty $=-2$
(Smith-Waterman Algorithm)

		A	C	A	C	T	G	A	T	C	G
	0	0	${ }_{1} 0$	0	0	0	0	0	0	0	0
A	0	1-1									
C	0										
A	0	Ce	SC	-	an						
C	0										
T	0										
G	0										

If Match $=1$, Mismatch $=-1$ and Gap penalty $=-2$

31
31

Local Alignment
 (Smith-Waterman Algorithm)

If Match $=1$, Mismatch $=-1$ and Gap penalty $=-2$

33

Local Alignment

 (Smith-Waterman Algorithm)

If Match $=1$, Mismatch $=-1$ and Gap penalty $=-2$

Local Alignment (Smith-Waterman Algorithm)

		A	C	A	C	T	G	A	T	C	G
	0	0	0	0	0	0	0	0	0	0	0
A	0			1^{-2}							
C	0	The negative score is replaced with 0.									
A	0										
C	0										
T	0										
G	0										

If Match $=1$, Mismatch $=-1$ and Gap penalty $=-2$

32

Local Alignment (Smith-Waterman Algorithm)

If Match $=1$, Mismatch $=-1$ and Gap penalty $=-2$

Local Alignment (Smith-Waterman Algorithm)

		\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{A}	\mathbf{T}	\mathbf{C}	\mathbf{G}
	0	0	0	0	0	0	0	0	0	0	0
\mathbf{A}	0	1	0	$1 \rightarrow 0$	0	0	$1 \rightarrow$	0	0	0	
\mathbf{C}	0	0	2	0	$2 \rightarrow$	0	0	0	0	1	0
\mathbf{A}	0	1	0	$3 \rightarrow 1$	$1 \rightarrow$	0	$1 \rightarrow$	0	0	0	
C	0	0	2	1	$4 \rightarrow 2$	0	0	0	1	0	
\mathbf{T}	0	0	0	1	2	$5 \rightarrow 3 \rightarrow 1$	$1 \rightarrow 0$	0			
G	0	0	0	0	0	3	$6 \rightarrow 4 \rightarrow 2 \rightarrow$	0	1		

If Match $=1$, Mismatch $=-1$ and Gap penalty $=-2$
BIOS477/877 L7-36

Local Alignment (Smith-Waterman Algorithm)

If Match $=1$, Mismatch $=-1$ and Gap penalty $=-2$

Local Alignment

(Smith-Waterman Algorithm)

		A	C	A	C	T	G	A	T	C	G
	0	0	0	0	0	0	0	0	0	0	0
A	0	(1)	0	1	0	0	0	1	0	0	0
C	0	0	2	0	${ }^{2}$	0	0	0	0	1	0
A	0	1	0	3	1	1	0	1	0	0	0
C	0	0	2		4	$\rightarrow 2$	0	0	0	1	0
T	0	0	0	${ }_{1}$					1	0	0
G	0	0	0	0	0					0	1

If Match $=1$, Mismatch $=-1$ and Gap penalty $=-2$
Trace back from here \qquad

Local Alignment
 (Smith-Waterman Algorithm)

		\mathbf{A}	\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{T}	\mathbf{G}	\mathbf{A}	\mathbf{T}	\mathbf{C}	\mathbf{G}
	0	0	0	0	0	0	0	0	0	0	0
\mathbf{A}	0	1	0	1	0	0	0	1	0	0	0
C	0	0	2	0	2	0	0	0	0	1	0
A	0	1	0	3	\rightarrow	1	1	0	1	0	0
C	0	0	2	1	$4 \rightarrow 2$	0	0	0	1	0	
T	0	0	0	1	2	5	$3 \rightarrow 1$	1	0	0	
G	0	0	0	0	0	3	6	$4 \rightarrow 2$	0	1	

If Match $=1$, Mismatch $=-1$ and Gap penalty $=-2$
Find the highest score cell(s)
BIOS477/877 L7-38
38

40

Local Alignment (Smith-Waterman Algorithm)

Local Alignment
 (Smith-Waterman Algorithm)

		M	A	C	D	A	M	Optimal local alignment (score: 8)	
	0	0	0	0	0	0	0		
D	0	0	0	0	2	0	0	MACD MACD	
A	0	0	2	0	0			Suboptimal local alignment (score: 6)	
M	0	2	0	1	0	2			
A	0	0	4	2	0	2	4	DAM	MACDA
C	0	0	2	6	4	$\rightarrow 2$	2	DAM	MACD-
D	0	0	0	4		$\rightarrow 6$			
If Match $=2$, Mismatch $=-1$ and Gap penalty $=-2$									

43

Graduate Only Assignment

Report 1: March 11

- Short proposal (2-3 pages)
$>$ Report 2: May 14
- Final report (5-7 pages)

Comparative analysis of bioinformatics methods e.g., Multiple alignment methods:

Clustal W vs. MUSCLE vs. MAFFT
\rightarrow Choose appropriate input datasets (3 or more)

\rightarrow Read the Guidelines!

Undergraduate students can do these assignments for bonus points (both reports need to be submitted)

