

multiple s	sequence	e angri	ment, all (e quality of the sequence, the degree of misannotation, and ambiguities							
	multiple sequence alignment, all affect identification of positive select												
Table 1													
					Functi		equencing						
Coverag	e (P 56 : p	positively	/ selected g	enes)		~Many a	re based on err						
Higher quality \rightarrow Coverage $\geq 3 \times$				Coverage <3× + Lower quality									
	Total	PSG	% PSG	Total	PSG	% PSG	$P(\chi^2)$						
Human	N/A	N/A	N/A	N/A	N/A	N/A	N/A						
Chimp	1,144	9	0.8	1,836	74	4.0	9.6×10^{-8}						
Macaque	896	32	3.6	2,084	488	23.4	8.1×10^{-46}						
wiacaque		77	3.1	487	37	7.6	1.3×10^{-6}						
	2,493	//					a a 4 a - 38						
Mouse Rat	2,493 1,841	93	5.1	1,139	217	19.1	3.2×10^{-38}						
Mouse			5.1 13.5	1,139 1,412	217 481	19.1 34.1	1.7×10^{-49}						
Mouse Rat	1,841	93											

<u>Next time ...</u> → Pairwise sequence comparison by dotplot • Dottet JS <u>https://dottet.vital-it.ch</u>

- Dotlet (old Java version) <u>https://myhits.isb-sib.ch/cgi-bin/dotl</u>et
- [For security reasons, old Java programs are not available within UNL network]
- DotMatcher (A program in EMBOSS)
 <u>http://emboss.bioinformatics.nl/cgi-bin/emboss/dotmatcher</u>
 (see course Web for other EMBOSS links)
- JDotter: Java Dot Plot Alignments
 http://pgrc.ipk-gatersleben.de/idotter/
- YASS: Visualization of local pairwise alignments
 https://bioinfo.univ-lille.fr/yass/index.php

BIOS477/877 L5 - 46

See the Course website for more programs

46

