

Table 1 Inferred	Perce	ntage	of PSG	's as a	E	on of S	
Fable 1 Inferred	Perce	ntage	of PSG		E	on of S	
nierred	Perce	ntage	OF PSG				-
Inferred Percentage of PSGs as a Function of Sequencing Coverage (RSG positively relacted caree)							
Coverage (100 positively selected genes) Alluny di e bused on e							
Higher qua	her quality→Coverage ≥3×			Coverage <3× + Lower quality			
	Total	PSG	% PSG	Total	PSG	% PSG	$P(\chi^2)$
Human	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chimp	1,144	9	0.8	1,836	74	4.0	9.6×10^{-8}
		20	26	2.084	488	23.4	8.1×10^{-46}
Macaque	896	32	5.0	=,501			
Macaque Mouse	896 2,493	32 77	3.1	487	37	7.6	1.3×10^{-6}
Macaque Mouse Rat	896 2,493 1,841	32 77 93	3.1 5.1	487 1,139	37 217	7.6 19.1	1.3×10^{-6} 3.2×10^{-38}
Macaque Mouse Rat Dog	896 2,493 1,841 1,568	32 77 93 212	3.1 5.1 13.5	487 1,139 1,412	37 217 481	7.6 19.1 34.1	$\begin{array}{c} 1.3 \times 10^{-6} \\ 3.2 \times 10^{-38} \\ 1.7 \times 10^{-49} \end{array}$
Macaque Mouse Rat Dog Cow	896 2,493 1,841 1,568 1,086	32 77 93 212 54	3.1 5.1 13.5 5.0	487 1,139 1,412 1,894	37 217 481 249	7.6 19.1 34.1 13.1	$\begin{array}{c} 1.3 \times 10^{-6} \\ 3.2 \times 10^{-38} \\ 1.7 \times 10^{-49} \\ 4.8 \times 10^{-14} \end{array}$

<u>Next time ...</u> → Pairwise sequence comparison by dotplot • Dottet JS <u>https://dottet.vital-it.ch</u>

- Dotlet (old Java version) <u>https://myhits.isb-sib.ch/cgi-bin/dotl</u>et
- [For security reasons, old Java programs are not available within UNL network]
- DotMatcher (A program in EMBOSS)
 <u>http://emboss.bioinformatics.nl/cgi-bin/emboss/dotmatcher</u>
 (see course Web for other EMBOSS links)
- JDotter: Java Dot Plot Alignments
 http://pgrc.ipk-gatersleben.de/idotter/
- YASS: Visualization of local pairwise alignments
 https://bioinfo.univ-lille.fr/yass/index.php

BIOS477/877 L5 - 46

See the Course website for more programs

46

