

1

3

5

TODAY'S TOPICS

Molecular Evolution - part 2

- Assignment 2

The Neutral Theory of Molecular Evolution

$>$ Kimura, M. (1968) Evolutionary rate at the molecular level. Nature 217: 624-626
$>$ King, J. L. \& Jukes, T. H. (1969) Non-Darwinian evolution: random fixation of selectively neutral mutations. Science 164: 788-798.
\rightarrow The majority of molecular changes in evolution are due to the random fixation of neutral or nearly

4

6

7

9

11

8

10

12

13

15

17

Functional Constraints and Substitution Rates
 $\therefore=\square=\square$
$==\mathrm{D}$

Total nucleotide sites compared $=294$
(100 codons, 2 aligned with gaps, 98 codons $\times 3$ positions $=294 \mathrm{bp}$)
Total nucleotide substitutions $=36$ Nucleotide substitutions per site: 36/294=0.12

14

16

18

19

21

23

Functional Constraints and Substitution Rates
$>$ Nucleotide substitutions in the coding region

- $\sim 70 \%$ of all possible nucleotide changes at the 3rd codon position do not change amino acids.
\rightarrow Selective constraint is weaker.
\rightarrow More substitutions.
- All nucleotide changes at the 2nd codon position and $\sim 96 \%$ at the 1st codon position change amino acids.
\rightarrow Selective constraint is stronger.
\rightarrow Fewer substitutions.

Functional Constraints and Substitution Rates

$>$ Nucleotide substitutions

- Synonymous (silent) substitutions: Nucleotide substitutions that do not change amino acids
(The majority of nucleotide changes at the 3rd codon position and a few at the 1st codon position)
- Nonsynonymous (replacement) substitutions: Nucleotide substitutions that change amino acids (All nucleotide changes at the 2nd codon position and the majority at the 1st codon position)

24

25

27

29

26

28

Functional Constraints and Substitution Rates

$>$ If all mutations are neutral,
the rate of substitutions is equal to the rate of mutations $K=u$ (independent of population size)

$>$ If some mutations are under functional constraints, $K=u=u_{\mathrm{T}} f_{0} \quad$| deleterious | |
| :---: | :---: |
| $1-f_{0}$ | f_{0} | u_{T} : total mutation rate, f_{0} : fraction of neutral mutations

e.g., f_{0} (exon) $<f_{0}$ (intron)
$f_{0}(2 n d$ codon position $)<f_{0}(3$ rd codon position)
f_{0} (Nonsynonymous sites) $<f_{0}$ (Synonymous sites) $f_{0}\left(\mathrm{~b} / \mathrm{w}\right.$ dissimilar AAs) $<f_{0}(\mathrm{~b} / \mathrm{w}$ similar AAs)

30

31

33

35

Functional Constraints and Substitution Rates

32

34

36

37

39

Identifying Functional Constraints

[exon region]

Nucleotide sites compared $=93$
Nucleotide substitutions $=6$ Nucleotide substitutions per site: 6/93=0.065

[intron region]
Nucleotide sites compared $=67$ Nucleotide substitutions $=38$ Nucleotide substitutions per site:

$38 / 67=0.57$ | Nucleotide |
| :---: |
| $38 / 67=0.57$ |

38

40

42

Functional Constraints and Substitution Rates

$>$ Inverse correlations between the rate of substitutions and the degree of functional constraints

- Functional constraints vary among different gene/protein regions among genes/proteins
\rightarrow Substitution rates can be used to assess (or predict) functional constraints or functional importance
e.g., exon or intron?
correct coding frame?
functionary important protein region?
functional gene or pseudogene?

