

3

Phylogenetic methods (Distance)

> Estimation of branch lengths: 3 taxa

$d_{\mathrm{AB}}, \boldsymbol{d}_{\mathrm{AC}}, \boldsymbol{d}_{\mathrm{BC}}$: distances between sequences A, B, and C $a, b, c:$ branch lengths

$$
\left\{\begin{array}{l}
d_{\mathrm{AB}}=a+b \\
d_{\mathrm{AC}}=a+c \\
d_{\mathrm{BC}}=b+c
\end{array} \quad \begin{array}{l}
a=\left(d_{\mathrm{AB}}+d_{\mathrm{AC}}-d_{\mathrm{BC}}\right) / 2 \\
b=\left(d_{\mathrm{AB}}+d_{\mathrm{BC}}-d_{\mathrm{AC}}\right) / 2 \\
c=\left(d_{\mathrm{AC}}+d_{\mathrm{BC}}-d_{\mathrm{AB}}\right) / 2
\end{array}\right.
$$

TODAY'S TOPICS

Phylogenetic reconstruction

- Distance methods (FM, ME, NJ)
- Character-based methods (maximum parsimony)
$>$ Assignment 10

2

Phylogenetic methods (Distance)

Fitch-Margoliash method (weighted least-square)
(Fitch and Margoliash, 1967)

- Initial tree: constructed by clustering 2 OTUs with shortest distances
\rightarrow similar to UPGMA
- No constant rate assumption (additive trees)
- Reconstructs unrooted trees
- Alternative trees are tested to identify the best tree based on the smallest percent standard deviation (PSD):
$P S D=\sqrt{\frac{2 \sum_{i j}\left\{\left(D_{i j}-E_{i j}\right) / D_{i j}\right\}^{2}}{n(n-1)}} \times 100$
n : number of taxa in the tree
$D_{i j}$: observed distances between i and j

4

Phylogenetic methods (Distance)

$>$ Estimation of branch lengths: more than 3 taxa

\[

\]

(Fitch and Margoliash, 1967)

- Choose two taxa (e.g., with the smallest distance) $\rightarrow A$ and B

Phylogenetic methods (Distance)

Estimation of branch lengths: more than 3 taxa

- Choose two taxa (e.g., with the smallest distance)
- Remaining taxa are combined into a single composite taxon \rightarrow X

7

Phylogenetic methods (Distance)

Estimation of branch lengths: more than 3 taxa
(Fitch and Margoliash, 1967)

$d_{\mathrm{AX}}=\left(d_{\mathrm{AC}}+d_{\mathrm{AD}}\right) / 2$
$d_{\mathrm{BX}}=\left(d_{\mathrm{BC}}+d_{\mathrm{BD}}\right) / 2$

\[

\]

$\rightarrow a$ and b can be calculated as before

9

Phylogenetic methods (Distance)

$>$ Estimation of branch lengths: more than 3 taxa

- The two taxa A and B are combined into a single composite taxon $\rightarrow Y$
- Recalculate the distances between Y and other taxa (as in UPGMA method)

\[

\]

Phylogenetic methods (Distance)
$>$ Estimation of branch lengths: more than 3 taxa
(Fitch and Margoliash, 1967)

Recalculate the distance matrix (as shown in UPGMA)

8

Phylogenetic methods (Distance)
$>$ Estimation of branch lengths: more than 3 taxa

$$
\left\{\begin{array}{ll|l|l|l|}
\boldsymbol{d}_{\mathrm{AB}}=a+b \\
\boldsymbol{d}_{\mathrm{AX}}=\boldsymbol{a}+\boldsymbol{x} \\
\boldsymbol{d}_{\mathrm{BX}}=\boldsymbol{b}+\boldsymbol{x} & \boldsymbol{a}=\left(\boldsymbol{d}_{\mathrm{AB}}+\boldsymbol{d}_{\mathrm{AX}}-\boldsymbol{d}_{\mathrm{BX}}\right) / \mathbf{2} \\
\boldsymbol{b}=\left(\boldsymbol{d}_{\mathrm{AB}}+\boldsymbol{d}_{\mathrm{BX}}-\boldsymbol{d}_{\mathrm{AX}}\right) / 2 \\
\hline
\end{array} \begin{array}{|l|l|l|}
\hline \mathrm{A} & \mathrm{~d}_{\mathrm{AB}} & \mathrm{~d}_{\mathrm{AX}} \\
\hline \mathrm{~B} & & \mathrm{~d}_{\mathrm{BX}} \\
\hline
\end{array}\right.
$$

Phylogenetic methods (Distance)

$>$ Estimation of branch lengths: more than 3 taxa

$d_{\mathrm{YC}}=\left(d_{\mathrm{AC}}+d_{\mathrm{BC}}\right) / 2$
$d_{\mathrm{YD}}=\left(d_{\mathrm{AD}}+d_{\mathrm{BD}}\right) / 2$
$\rightarrow c$ and d can be calculated as before

	C	D
\mathbf{Y}	d_{YC}	d_{YD}
\mathbf{C}		d_{CD}

12

Phylogenetic methods (Distance)

Estimation of branch lengths: more than 3 taxa
(Fitch and Margoliash, 1967)

- If no other unresolved taxon remains,
$\rightarrow z$ (internal branch length) can be calculated:
e.g., $z=d_{\mathrm{AC}}-a-\mathrm{c}$
- If there are still more taxa,
\rightarrow choose two (e.g., closest) taxa and repeat the above procedure

13

Phylogenetic methods

$>$ Data types and tree-building methods

15

Phylogenetic methods (Distance)

> Minimum evolution (ME)

- The tree that minimizes the tree length is regarded as the best estimate of the phylogeny
\rightarrow Tree length $=$ Sum of the branch lengths
$s=\sum_{i=1}^{2 n-3} e_{i}$
n : number of taxa in the tree e_{i} : length of the branch i (There are $\mathbf{2 n - 3}$ branches in an unrooted tree of n taxa)
- reconstructs additive distance trees
- reconstructs unrooted trees

Phylogenetic methods (Distance)

Minimum evolution (ME)

- The tree that minimizes the tree length is regarded as the best estimate of the phylogeny \rightarrow Tree length $=$ Sum of the branch lengths $s=\sum_{i=1}^{2 n} e_{i}$
n : number of taxa in the tree, e_{i}. length of the branch i (There are $2 n-3$ branches in an unrooted tree of n taxa)

3 branches

5 branches

7 branches

16

Phylogenetic methods (Distance)

Neighbor joining (NJ)

Saito and Nei (1987) and correction by Studier and Keppler (1988)

- Clustering method (fast computation)
- A good heuristic method for estimating the minimum evolution tree
\rightarrow No guarantee to find the ME tree
\rightarrow In practice, the NJ tree is often the same or very similar to the ME tree
- No assumption for the constant evolutionary rate \rightarrow Evolutionary rate can vary among lineages
- reconstructs unrooted trees

Phylogenetic methods (Distance)

Neighbor joining (NJ)

3) Take 2 OTUs (a and b) as a pair (neighbors) and calculate the tree length $\left(S_{a b}\right)$ from this topology
4) Find the OTU pair that makes the shortest $S_{a b}$

Neighbors: OTU1 and OTU2 Put all other OTUs in one cluster

B105477/877 L22-21
21

Phylogenetic methods (Distance)

Neighbor joining (NJ)

Example: a distance matrix for 5 OTUs

1) Start with a star phylogeny
2) S_{0} : the sum of all branch lengths
$S_{\mathrm{o}}=\sum_{i=1}^{m} L_{i X}=\sum_{i<j}^{m} d_{i j} /(m-1)$

$L_{i x}$: branch length between OTU i and node X $d_{i j}$: distance between OTUs i and j m : number of OTUs
$S_{0}=\left(d_{12}+d_{13}+d_{14}+d_{15}+d_{23}+d_{24}+d_{25}+d_{34}+d_{35}+d_{45}\right) / 4$
$=(.53+.99+.80+1.02+.93+.65+.82+.73+.81+.94) / 4$
$=2.055$

For 3 OTUs: $d_{12}+d_{13}+d_{23}=(a+b)+(a+c)+(b+c)=2(a+b+c)=2 S_{0}$ $S_{0}=($ Sum of 3 distances)/(3-1)

Phylogenetic methods (Distance)

$>$ Neighbor joining (NJ)
3') Calculate the sum of all branch length $\left(S_{a b}\right)$ when OTUs a and b are neighbors.

22

Phylogenetic methods (Distance)
 Neighbor joining (NJ)

3') Calculate the sum of all branch length $\left(S_{a b}\right)$ for all OTU pairs
$S_{12}=L_{1 x}+L_{2 x}+L_{x r}+\sum_{i=3}^{m} L_{i r}$

$+\sum_{3=1}^{m} d_{i j} /(m-3)$
$=\sum_{i=3}^{m}\left(d_{1 i}+d_{2 i}\right) / 2(m-2)+d_{12} / 2+\sum_{3 s i<j}^{m} d_{i j} /(m-2)$
$S_{12}=\left(d_{13}+d_{14}+d_{15}+d_{23}+d_{24}+d_{25}\right) / 6+d_{12} / 2+\left(d_{34}+d_{35}+d_{45}\right) / 3$
$=(.99+1.02+.82+.80+.93+.73) / 6+.53 / 2+(.65+.81+.94) / 3$
$1.95<S_{0}=2.055$

24

Phylogenetic methods (Distance)

$>$ Neighbor joining (NJ)

3) Sum of all branch lengths $\left(S_{a b}\right)$ is calculated for all pairs of OTUs
4) Find the shortest $S_{a b}$
5) Create a new node (A) that connects OTUs a and b.
6) Branch lengths are calculated using Fitch-Margoliash method.

S_{34} is the shortest:
$(a=3, b=4, m=5)$

25

Phylogenetic methods (Distance)

Neighbor joining (NJ)

3-7) Repeat the steps:

- For each OTU pair (neighbors), calculate $S_{a b}$,
- Find the smallest $S_{a b}$, and
- Calculate the next distance matrix. ... (SS12 is the shortest: OXUs 1 and 2 are the next neigh

8) Continue until all OTUs are clustered. For the last 3 OTUs (see Lecture 21, slide 43) $L_{\mathrm{AZ}}=\left(d_{\mathrm{AS}}+d_{\mathrm{AB}}-d_{\mathrm{BE}}\right) / 2=0.193$ $L_{\mathrm{BZ}}=\left(d_{\mathrm{BA}}+d_{\mathrm{B} 5}-d_{\mathrm{A} 5}\right) / 2=0.153$ $L 5 \mathrm{Z}=\left(d_{5 \mathrm{~A}}+d_{5 \mathrm{~B}}-d_{\mathrm{AB}}\right) / 2=0.358$ (or $d_{5 A-L A Z}$ or $d_{5 B-L b z)}$

27

Phylogenetic methods (Distance)

$((A: 1, B: 4): 1, C: 2,((D: 3, E: 2): 1, F: 5): 1)$; (((c(A:2, C:2):1, B:3):0.75, ((D:2.5,E:2.5):1.25):0.65, F:4.4):

Assuming constant molecular clock
BIOS 477/877 L22-29

Phylogenetic methods (Distance)

Neighbor joining (NJ)

7) The new distance matrix is calculated using the combined OTU A (for a and b).
Distance between the new OTU A and the remaining OTUs $k(1 \leq k \leq m$ where $k \neq a$ and $k \neq b)$:
$d_{\mathrm{A} k}=\left(d_{a k}+d_{b k}-d_{a b}\right) / 2$
For $a=3, b=4$, and $m=5$,
 $k=1,2$, and 5
$d_{\mathrm{A} 1}=\left(d_{31}+d_{41}-d_{34}\right) / 2=(0.99+1.02-0.65) / 2=0.68$
$d_{\mathrm{A} 2}=\left(d_{32}+d_{42}-d_{34}\right) / 2=(0.80+0.93-0.65) / 2=0.54$
$d_{\mathrm{A} 5}=\left(d_{35}+d_{45}-d_{34}\right) / 2=(0.81+0.94-0.65) / 2=0.55$

26

28

Phylogenetic methods (Character-based)	
Maximum Parsimony (MP) - Chooses the tree(s) that require(s) the fewest evolutionary changes = the shortest tree(s) - Data: individual sites - For each site (column), reconstruct the evolution of that site based on a given tree topology and with fewest possible evolutionary changes - Tree length = Sum of the minimum numbers of character changes over all sites	
$L(\tau)=\sum_{i=1}^{N} l_{i}$	τ : tree topology $N:$ number of sites (characters) l_{i} : tree length for a single site i (amount of character change)

31

33

32

34

40

42

44

Phylogenetic methods (Character-based)
> Maximum Parsimony (MP)

Find the tree length from each possible tree topology

41

43

Phylogenetic methods (Character-based)

$>$ Homoplasy

- Sharing of identical character states that cannot be explained by inheritance from the common ancestor of a group of taxa
- Caused by
\rightarrow parallel or back substitutions
- Homoplasy obscures the actual number of evolutionary events
- Fewer homoplasy is better

Back substitutions

BIOS477/877 L22-45

Phylogenetic methods (Character-based)

Maximum Parsimony (MP)

Not based on an explicit model of evolution
\rightarrow What do we do if substitution patterns are biased? (e.g., saturation in transitional substitutions)

- Cost matrix (or weight matrix or step matrix)
\rightarrow When counting the number of changes, use different weighting depending on the reliability of character change information
Transversion weighting
- Ts could be saturated and may not reflect the correct evolutionary relationships (less phylogenetic information) \rightarrow down-weight Ts
- Phylogenetic information from Tv is more reliable \rightarrow up-weight Tv (more information from Tv is used)

BIOS477/877 L22-46
46

Phylogenetic methods (Character-based)

Maximum Parsimony (MP)

- Cost matrix (or weight matrix or step matrix)

	\mathbf{A}	\mathbf{T}	\mathbf{C}	G
\mathbf{A}	1	0	0	0
\mathbf{T}	0	1	0	0
C	0	0	1	0
G	0	0	0	1

Identity substitution matrix used for alignment

To maximize the identity

Phylogenetic methods (Character-based)

Maximum Parsimony (MP)

- Generalized parsimony (weighted parsimony)

$C_{x y}=0$ for $x=y$
$C_{x y}=1$ for transition
$C_{x y}=w$ for transversion
$C_{x y}$: the cost associated with the
change from state x to y

Transversions are weighted
more than transitions
$L=1+w$
BIOS477/877 L22-50

Phylogenetic methods (Character-based)
> Maximum Parsimony (MP)

- Generalized parsimony (weighted parsimony)

51

52

54

56

Phylogenetic methods (Character-based)
Maximum Parsimony (MP): simple, not weighted

53

55

57

