TODAY’S TOPICS

➤ Phylogenetic reconstruction
- Distance methods (NJ)
- Character-based methods (maximum parsimony, maximum likelihood)

Phylogenetic methods

➤ Data types and tree-building methods

<table>
<thead>
<tr>
<th>Distances</th>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPGMA</td>
<td>Neighbor joining</td>
</tr>
<tr>
<td>Neighbor joining</td>
<td>Approximates minimum evolution tree</td>
</tr>
<tr>
<td>Minimum evolution</td>
<td>Maximum parsimony</td>
</tr>
<tr>
<td>Fitch-Margoliash</td>
<td>Maximum likelihood</td>
</tr>
</tbody>
</table>

Examine all possible topologies based on a certain criterion

Phylogenetic methods (Distance)

➤ Neighbor joining (NJ)

Saitou and Nei (1987) and correction by Studier and Keppler (1988)

- Clustering method (fast computation)
- A good heuristic method for estimating the minimum evolution tree
 ➜ No guarantee to find the ME tree
 ➜ In practice, the NJ tree is often the same or very similar to the ME tree
- No assumption for the constant evolutionary rate
 ➜ Evolutionary rate can vary among lineages
- reconstructs unrooted trees

Phylogenetic methods (Distance)

Example: a distance matrix for 5 OTUs

1) Start with a star phylogeny
2) Si: the sum of all branch lengths

$S_i = \sum_{j \neq i} d_{ij} / (m - 1)$

E_{jk}: branch length between OTU i and node j

For 3 OTUs: $d_{12} = 1.53, d_{13} = 1.99, d_{14} = 1.02, d_{15} = 1.65, d_{23} = 1.52, d_{24} = 2.73, d_{25} = 1.54$

$S_{12} = 1.53 + 1.99 + 1.02 + 1.65 + 1.52 + 2.73 + 1.54 = 12.055$

Find the shortest S_{ab}

Phylogenetic methods (Distance)

3) Take 2 OTUs (a and b) as a pair (neighbors) and calculate the tree length (S_{ab}) from this topology
4) Find the OTU pair that makes the shortest S_{ab}

ME tree: has the topology with the shortest tree length

$S = \sum S_i$

Phylogenetic reconstruction

Phylogenetic methods

Clustering

Optimality criterion

Clustering methods (Bayesian inference)

Phylogenetic methods (Distance)

Neighbor joining (NJ)

3) Calculate the sum of all branch length (S_{ab}) when OTUs a and b are neighbors.

- If OTUs 1 and 2 are the neighbors:
 \[
 S_{12} = L_{1X} + L_{2X} + L_{XY} = \sum_{i=1}^{n} L_{iX} + \sum_{j=1}^{m} L_{jY} + L_{XY}
 \]

- Calculate the sum of all branch lengths (L_{XY}):
 \[
 L_{XY} = \sum_{i=1}^{n} d_{ai} + \sum_{j=1}^{m} d_{bj} - (m-2)(L_{XX} + L_{YY} - 2L_{XY})
 \]

- Calculate the sum of all distances that include L_{XY}:
 \[
 \sum_{i=1}^{n} (d_{ai} + d_{bj}) = d_{ab} + d_{ba} + \sum_{i=1}^{n} d_{ai} + \sum_{j=1}^{m} d_{bj}
 \]

- Calculate the sum of all irrelevant branch lengths:
 \[
 \sum_{i=1}^{n} d_{ai} = \sum_{j=1}^{m} d_{bj}
 \]

- Find the shortest S_{ab}:
 \[
 S_{ab} = \min(S_{12}, S_{21})
 \]

- Create a new node (A) that connects OTUs a and b.

- Branch lengths are calculated using Fitch-Margoliash method.

- Continue until all OTUs are clustered.

A new distance matrix for 4 OTUs (m=4):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1.2</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>1.2</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.9</td>
<td>0.8</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Neighbor Joining (NJ) tree

Phylogenetic methods (Distance)

Neighbor joining (NJ)

3) Sum of all branch lengths (S_{ab}) is calculated for all pairs of OTUs.

4) Find the shortest S_{ab}.

5) Create a new node (A) that connects OTUs a and b.

6) Branch lengths are calculated using Fitch-Margoliash method.

7) The new distance matrix is calculated using the combined OTU A (for a and b).

Distance between the new OTU A and the remaining OTUs k (1≤k≠m where k≠a and k≠b):

- For m=3, b=4, and m=5:
 \[
 d_{ik} = (d_{ik} + d_{ak} - d_{ab}) / 2
 \]

8) Continue until all OTUs are clustered.

For the last 3 OTUs (see Lecture 21, slide 43):

- L_{XY} calculated:
 \[
 L_{XY} = \sum_{i=1}^{n} d_{ai} + \sum_{j=1}^{m} d_{bj} - (m-2)(L_{XX} + L_{YY} - 2L_{XY})
 \]

- New distance matrix for 4 OTUs (m=4):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1.2</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>1.2</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.9</td>
<td>0.8</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Phylogenetic methods (Distance)

UPGMA

1.
2.
3.
4.
5.

NJ

1.
2.
3.
4.
5.

Phylogenetic methods (Distance)

UPGMA

1.
2.
3.
4.
5.

NJ

1.
2.
3.
4.
5.

Phylogenetic methods

- **Data types and tree-building methods**
 - **Distances**
 - Clustering: UPGMA, Neighbor joining
 - Optimality criterion: Minimum evolution, Maximum parsimony, Maximum likelihood
 - **Characters**

Phylogenetic methods (Character-based)

- **Maximum Parsimony (MP)**
 - Choose the tree(s) that require(s) the fewest evolutionary changes = the shortest tree(s)
 - Data: individual sites
 - For each site (column), reconstruct the evolution of that site based on a given tree topology and with fewest possible evolutionary changes
 - Tree length = Sum of the minimum numbers of character changes over all sites

\[L(t) = \sum_{i=1}^{N} l_i \]

- \(t \): tree topology
- \(N \): number of sites (characters)
- \(l_i \): tree length for a single site \(i \)
 - (amount of character change)

Phylogenetic methods (Character-based)

- **Maximum Parsimony (MP)**

Phylogenetic methods (Character-based)

- **Maximum Parsimony (MP)**

Phylogenetic methods (Character-based)

- **Maximum Parsimony (MP)**

<table>
<thead>
<tr>
<th>Sites</th>
<th>OTUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ATATT
2 ATCGT
3 GCAGT
4 GCCGT</td>
<td>1
2
3
4</td>
</tr>
</tbody>
</table>

Most parsimonious!

1 change

Tree length: \(L = 1 + 1 + 2 + 1 + 0 = 5 \)

Tree I is the MP tree!

Find the tree length from each possible tree topology.
Phylogenetic methods (Character-based)

- **Terminologies for character evolution**
 - Homologous:
 - Phylogenetically informative sites
 - Phylogenetically uninformative sites
 - Homoplasy:
 - Independently acquired similarity
 - Not homologous

- **Maximum Parsimony (MP)**
 - Not based on an explicit model of evolution
 - What do we do if substitution patterns are biased?
 - (e.g., saturation in transitional substitutions)
 - Cost matrix (or weight matrix or step matrix)
 - When counting the number of changes, use different weighting depending on the reliability of character change information
 - Transversion weighting
 - Ts could be saturated and may not reflect the correct evolutionary relationships (less phylogenetic information)
 - Down-weight Ts
 - Phylogenetic information from Tv is more reliable
 - Up-weight Tv

- **Identity substitution matrix used for alignment**
 - To minimize the changes
 - To maximize the identity

- **Cost matrix**
 - A 0 1 1
 - T 0 0 1
 - C 1 0 0
 - G 1 0 0

- **Formulas**
 - \(L(\tau) = \sum_{i} l_{i} \)
 - \(l_{i} = \sum_{a=0}^{2n-3} C_{x,y} \)
 - \(C_{xy} \) is the cost associated with the change from state \(x \) to \(y \)
 - The states assigned to the nodes at either end of the branch are assigned to the nodes at either end of the branch.

- **Example**
 - ACGT
 - ACGT
Phylogenetic methods (Character-based)

- Maximum Parsimony (MP)
 - Simple parsimony
 - \(C_{xy} = 0 \) for \(x = y \)
 - \(C_{xy} = 1 \) for \(x \neq y \)

- Generalized parsimony (weighted parsimony)
 - \(C_{xy} = 0 \) for \(x = y \)
 - \(C_{xy} = 1 \) for transition
 - \(C_{xy} = w \) for transversion

\[\sum_{i=1}^{w} l_i \]

.Tree:

- MP tree!

- Transversions are weighted more than transitions

Tree length:

\[L = 1 + w \]

Sites:

- \(l_1 \) changes
- \(l_2 \) changes
- \(l_3 \) changes
- \(l_4 \) changes

\[L(T) = L + \sum_{i=1}^{w} l_i \]

Tree length:

\[L = 1 + 1 + 8 + 4 + 0 = 14 \]
Phylogenetic methods (Character-based)

- Maximum Parsimony (MP): weighted

<table>
<thead>
<tr>
<th>Tree</th>
<th>Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: (L2a,3,b)</td>
<td>1 1 1 2 4 6</td>
</tr>
<tr>
<td>2: (L3a,2,b)</td>
<td>2 2 4 4 0</td>
</tr>
<tr>
<td>3: (L4a,2,b)</td>
<td>2 2 2 4 4</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

- Maximum Parsimony (MP): examples

Maximum Parsimony (MP) is a method for inferring evolutionary relationships among species. It aims to find the tree with the fewest changes, making it a weighted method. The formula for Maximum Parsimony is

\[L_T = \sum_{i=1}^{w} c_i \]

where \(L_T \) is the total length of the tree, and \(c_i \) is the cost of compiling the species from the species (data) at the ith site.

Phylogenetic methods (Character-based)

- Maximum Likelihood (ML)
 - Chooses the tree that makes the observed data the most probable evolutionary outcome
 - Likelihood = Conditional probability of obtaining the observed sequences given a hypothesis (substitution model and tree)

\[L(\mathbf{\tau}, \mathbf{\theta}) = \text{Prob(Data} | \mathbf{\tau}, \mathbf{\theta}) = \text{Prob(Alied sequences} | \text{tree, model of evolution}) \]

- Minimum evolution
- Fitch-Margoliash
- Maximum parsimony
- Maximum likelihood

Phylogenetic methods (Character-based)

- Maximum Likelihood (ML)

\[L(\mathbf{\tau}, \mathbf{\theta}) = \text{Prob(Data} | \mathbf{\tau}, \mathbf{\theta}) \]

Find the topology that gives the maximum \(L(\mathbf{\tau}, \mathbf{\theta}) \), and simultaneously estimate all required parameters.

To compute the likelihood of a given tree, \(\mathbf{\tau} \): the topology and the maximum likelihood estimates for the tree’s branch lengths \(\{d_1, d_2, \ldots\} \) need to be found

\[\mathbf{\theta} \]: the best values for the parameters for the evolutionary model need to be found, too.

- Clustering
 - UPGMA
 - Neighbor joining
- Optimality criterion
- Minimum evolution
- Fitch-Margoliash
- Maximum parsimony
- Maximum likelihood

Phylogenetic methods

Data types and tree-building methods

<table>
<thead>
<tr>
<th>Data types</th>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distances</td>
<td>Clustering</td>
</tr>
<tr>
<td></td>
<td>UPGMA</td>
</tr>
<tr>
<td></td>
<td>Neighbor joining</td>
</tr>
<tr>
<td>Optimality criterion</td>
<td>Minimum evolution</td>
</tr>
<tr>
<td></td>
<td>Fitch-Margoliash</td>
</tr>
<tr>
<td></td>
<td>Maximum parsimony</td>
</tr>
<tr>
<td></td>
<td>Maximum likelihood</td>
</tr>
</tbody>
</table>

Examining all possible topologies based on a certain criterion.
Phylogenetic methods (Character-based)

- **Maximum Likelihood (ML)**

 - To compute the likelihood of a given tree, L(\(\pi, \theta\) = Prob(Data | \(\pi, \theta\))
 - \(\pi\): the maximum likelihood estimates for the tree’s branch lengths \(\{a, b, ...\}\) need to be found
 - \(\theta\): the best values for the parameters for the evolutionary model need to be found, too
 - \([JC\ model\]: single evolutionary rate)
 - \([JCAM\ model\]: transition/transversion ratio (TS/TV)
 - base composition, gamma shape parameter (\(\alpha\))
 - Number of the parameters depends on the model

Phylogenetic methods: pros and cons

- **Criticisms to distance methods**
 - Depend on distance estimation method
 - Summarizing a set of sequences by a pairwise distance matrix loses information

- **Criticisms to maximum parsimony methods**
 - “Long branch attraction” problem
 - If the internal branch is short relative to the terminal branches, the MP tree is likely to be incorrect
 - No multiple hit correction

- **Criticisms to maximum likelihood methods**
 - Require an explicit model of evolution
 - Which model to use?
Phylogenetic methods

- Clustering vs. search methods
 - Clustering methods (UPGMA, Neighbor-joining)
 - Do not search all possible topologies
 - Very fast
 - Produce only one tree
 - Search methods
 - Use optimality criterion (minimum evolution, maximum parsimony, maximum likelihood)
 - Exhaustive search for all possible topologies is not possible for a large number of taxa
 - A heuristic search algorithm needs to be used

How can we search trees?

Phylogenetic methods: tree searching

- Number of possible tree topologies

<table>
<thead>
<tr>
<th>Number of OTUs</th>
<th>Number of rooted trees</th>
<th>Number of unrooted trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>105</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>954</td>
<td>105</td>
</tr>
<tr>
<td>8</td>
<td>135,135</td>
<td>135,135</td>
</tr>
<tr>
<td>9</td>
<td>2,027,025</td>
<td>2,027,025</td>
</tr>
<tr>
<td>10</td>
<td>34,459,425</td>
<td>34,459,425</td>
</tr>
</tbody>
</table>

Impossible to examine all of the possible trees!

Tree-searching methods (unrooted)

- Exhaustive search
 - Possible only for a few taxa (11 or fewer)
 - Number of possible unrooted tree:
 \[B(i) = \prod_{l=1}^{i/2} (2l - 5) \]

 \(B(7) = 1 \times 3 \times 5 \times 7 = 945 \)
 \(B(10) = B(7) \times 11 \times 13 \times 15 > 2 \times 10^6 \)
 \(B(20) > 2 \times 10^{10} \)
 - An algorithm is required to guarantee generation of all possible trees
Tree-searching methods (unrooted)

- **Exhaustive search**

 If there are 2 taxa

 Only one topology possible

 There is only one place to add the third taxon

 If there are 3 taxa

 There are three places to add the fourth taxon

 Three topologies are possible

- **Exhaustive search for 5-taxon trees**

 If there are 4 taxa

 There are five places to add the fifth taxon

 Five topologies are possible

- **Exhaustive search**

 Searches all possible trees

 Guarantees to find the optimal trees

 Impractical for many taxa

Each of the possible topologies (3 x 5 = 15 trees for 5-taxon tree) will be evaluated to identify optimal trees (ME, MP, or ML trees)