

1

3

5

TODAY'S TOPICS

Distance estimation

- Synonymous \& nonsynonymous distances
$>$ Phylogenetic reconstruction
- Introduction (terminologies, rooting, etc.)
- Distance methods (UPGMA, FM, ME)

2

Synonymous/nonsynonymous distance methods

Nei-Gojobori method (Nei and Gojobori, 1986)

- Number of synonymous differences: S_{d}
- Number of nonsynonymous differences: N_{d}
- Proportion of synonymous differences: p_{S}
- Proportion of nonsynonymous differences: p_{N}
$\rightarrow p_{\mathrm{S}}=S_{\mathrm{d}} / S, p_{\mathrm{N}}=N_{\mathrm{d}} / N$
S : Number of synonymous sites
N : Number of nonsynonymous sites
- Jukes-Cantor correction for multiple-hits
$\rightarrow d_{\mathrm{s}}=-3 / 4 \ln \left(1-4 p_{\mathrm{s}} / 3\right)$
$\rightarrow d_{\mathrm{N}}=-3 / 4 \ln \left(1-4 p_{\mathrm{N}} / 3\right)$
K2P or Tajima-Nei i-parameter+base lor or Taima-Nei 1 (1-parameten
freq.) correction is also used in modifified
mersions B10s 477877 L21 - 4

4

Synonymous/nonsynonymous distance methods

$>$ How to count synonymous/nonsynonymous sites

Synonymous sites (S): $0+0+1 / 3=1 / 3$
Nonsynonymous sites (M : $3 / 3+3 / 3+2 / 3=8 / 3$

- Count the number of sites from each codon and sum up for each sequence. Take the average from two sequences.

BIOS477/877 L21-6
6

Synonymous/nonsynonymous distance methods

Nei-Gojobori method (Nei and Gojobori, 1986)

- Number of synonymous differences: S_{d}
- Number of nonsynonymous differences: N_{d}
- Proportion of synonymous differences: p_{s}
- Proportion of nonsynonymous differences: p_{N}
$\rightarrow p_{\mathrm{s}}=S_{\mathrm{d}} / S, p_{\mathrm{N}}=N_{\mathrm{d}} / \boldsymbol{N}$
S : Number of synonymous sites N : Number of nonsynonymous sites
- Jukes-Cantor correction for multiple-hits

$\rightarrow d_{\mathrm{S}}=-3 / 4 \ln \left(1-4 p_{\mathrm{S}} / 3\right)$	K2P or Tajima-Nei (1-parameter+base freq.) correction is also used in
$\rightarrow d_{\mathrm{N}}=-3 / 4 \ln \left(1-4 p_{\mathrm{N}} / 3\right)$	modified versions

$\rightarrow d_{\mathrm{N}}=-3 / 4 \ln \left(1-4 p_{\mathrm{N}} / 3\right)$
modified versions
BIOS477/877 L21-7
7

Available distance method programs

- MEGA X http://www.megasoftware.net/
\rightarrow Includes synonymous \& nonsynonymous distances
- PAML http://abacus.gene.ucl.ac.uk/software/paml.html
\rightarrow Includes Yang and Nielsen (2000) method [yn00]
- SNAP https://www.hiv.lanl.gov/content/sequence/SNAP/SNAP.html
\rightarrow Synonymous \& nonsynonymous (Nei-Gojobori) distance only
- Ape (R package for Analysis of Phylogenetics and Evolution)
\rightarrow Includes many distance methods https://emmanuelparadis.github.io/index.htm https://cran.r-proiect.org/web/packages/ape/index.html
- Phylip3.698 http://evolution.genetics.washington.edu/phylip.html
\rightarrow JC, K2P, F84 (HKY85), LogDet, gamma distances
\rightarrow Dayhoff's PAM, JTT, PMB (Probability Matrix from Blocks), Kimura's PAM approximation, gamma distances
\rightarrow On the Web: http://phylemon.bioinfo.cipf.es (ver. 3.68)
\rightarrow In EMBOSS: hittp://embess.toulouse.inra.fr/cgi-bin/emboss/(found in Phylogeny sections)
- ClustalW2 (ClustalX2) \rightarrow K2P for DNA, hybrid between Kimura and PAM for protein! $p \leq 0.75 \quad$ Use Kimura's PAM distance approximation method $\begin{array}{ll}0.75<p \leq 0.93 & \text { Use a conversion table with } 0.01 \text { interval }(.75, .751, \ldots) \\ k=10.9 \text { arbitral constant] }\end{array}$ BIOS477/877 L21-9

9
HTUs (hypothetical taxonomic units)

Nucleotide substitution patterns

Method	Gene: length (species compared with D. melanogaster)					
	$\begin{aligned} & \text { GC: } 60 \% \\ & \text { Adhr: } 816 \text { bp }(D, \text { teisisiri) } \end{aligned}$		${ }_{\mathrm{Adh}}^{\mathrm{GC}} .762 \mathrm{bp}(\mathrm{D}$, ps. begotara $)$		GC. 4% Col: 1497 bp (D. yakuba)	
	Synonymous	Nonsynonymous	Synonymous	Nonsynorymous	Synorymous	Nonsynonymous
NG	0.402 ± 0.060	0.009 ± 0.004	0.604 ± 0.080	0.053 ± 0.010	0.380 ± 0.041	0.007 ± 0.003
LWL	0.394 ± 0.058	0.009 ± 0.004	0.599 ± 0.080	0.054 ± 0.010	0.364 ± 0.040	0.007 ± 0.002
PBL \longleftarrow	0.328 ± 0.052	0.009 ± 0.004	0.561 ± 0.078	0.054 ± 0.010	0.401 ± 0.051	0.007 ± 0.003

NG: Nei-Gojobori method (Nei \& Gojobori 1986): based on JC model
LWL: Li-Wu-Luo method (Li et al. 1985): based on K2P model
PBL or Li93: Pamilo-Bianchi-Li method (Pamilo and Bianchi 1993; Li 1993)
Kumar method (available in MEGA; modification to PBL)
NG method underestimates the number of synonymous sites: S
LWL method overestimates the number of synonymous sub.: S_{d}
PBL method corrected problems found in both NG and LWL methods

8

Introduction to phylogeny

Phylogeny (phylogenetic tree)
\rightarrow a graphic representation of evolutionary relationships among genes or organisms

- True phylogeny cannot be known

We cannot actually observe the long-term evolution!

- Phylogenetic relationships can be only inferred
- Phylogenetic relationships are reconstructed based on the information available (e.g., sequences)
\rightarrow represents a hypothesis of evolutionary relationships among gene or protein sequences: gene tree
\rightarrow Organismal relationships are inferred based on phylogenetic analysis: species tree
Note: Gene trees do not always represent species trees! \quad B1os $477 / 877$ L21-10
10

Introduction to phylogeny

Many ways of drawing trees

Only horizontal branches show the divergence level

13

15

Introduction to phylogeny

$>$ Three different types of trees

14

16

19

21

23

22

24

25

27

Phylogenetic methods

Data types and tree-building methods

Examine all possible topologies based on a certain criterion Yang and Rannala (2012) Molecular phylogenetics: principles and practice. Nature Reviews Genetics 13: 303-314.

26

28

Phylogenetic methods (Distance)
UPGMA: unweighted pair-group method with arithmetic mean

- reconstructs ultrametric trees
\rightarrow all terminal nodes are equidistant from the root of the tree
\rightarrow equivalent to assuming a molecular clock
\rightarrow assumes all sequences evolve at the same rate

- reconstructs a rooted tree
- extremely sensitive to unequal rates in different lineages \rightarrow could result in a wrong topology

32

34

Phylogenetic methods (Distance)
UPGMA: unweighted pair-group method with arithmetic mean

33

35

37

38

Phylogenetic methods (Distance)

UPGMA: unweighted pair-group method with arithmetic mean

- reconstructs ultrametric trees \rightarrow all terminal nodes are equidistant from the root of the tree
\rightarrow equivalent to assuming a molecular clock
\rightarrow assumes all sequences evolve at the same rate

- reconstructs a rooted tree
- extremely sensitive to unequal rates in different lineages \rightarrow could result in a wrong topology

40

Phylogenetic methods (Distance)

$>$ Fitch-Margoliash method (weighted least-square)
(Fitch and Margoliash, 1967)
initial tree: constructed by clustering 2 OTUs with shortest distances
\rightarrow similar to UPGMA

- No constant rate assumption (additive trees)
- Reconstructs unrooted trees
- Alternative trees are tested to identify the best tree based on the smallest percent standard deviation (PSD):
$P S D=\sqrt{\frac{2 \sum_{i j}\left\{\left(D_{i j}-E_{i j}\right) / D_{i j}\right\}^{2}}{n(n-1)}} \times 100$
n : number of taxa in the tree
$D_{i j}$: observed distances between i and j

Phylogenetic methods (Distance)

UPGMA: unweighted pair-group method with arithmetic mean

39

Phylogenetic methods

Data types and tree-building methods

41

Phylogenetic methods (Distance)
$>$ Estimation of branch lengths: 3 taxa

$d_{\mathrm{AB}}, \boldsymbol{d}_{\mathrm{AC}}, \boldsymbol{d}_{\mathrm{BC}}$: distances between sequences A, B, and C $a, b, c:$ branch lengths

$$
\begin{cases}d_{\mathrm{AB}}=a+b \\ d_{\mathrm{AC}}=a+c & a=\left(d_{\mathrm{AB}}+d_{\mathrm{AC}}-d_{\mathrm{BC}}\right) / 2 \\ d_{\mathrm{BC}}=b+c & b=\left(d_{\mathrm{AB}}+d_{\mathrm{BC}}-d_{\mathrm{AC}}\right) / 2 \\ c=\left(d_{\mathrm{AC}}+d_{\mathrm{BC}}-d_{\mathrm{AB}}\right) / 2\end{cases}
$$

43

Phylogenetic methods (Distance)

Estimation of branch lengths: more than 3 taxa
(Fitch and Margoliash, 1967)

- Choose two taxa (e.g., with the smallest distance) $\rightarrow A$ and B

44

Phylogenetic methods (Distance)

Estimation of branch lengths: more than 3 taxa

Recalculate the distance matrix (as shown in UPGMA)

\[

\]

Phylogenetic methods (Distance)

$>$ Estimation of branch lengths: more than 3 taxa

$$
\left\{\begin{array}{ll}
d_{\mathrm{AB}}=a+b \\
d_{\mathrm{AX}}=\boldsymbol{a}+\boldsymbol{x} \\
d_{\mathrm{BX}}=\boldsymbol{b}+\boldsymbol{x} & \boldsymbol{b}=\left(d_{\mathrm{AB}}+d_{\mathrm{BX}}-d_{\mathrm{AX}}\right) / 2 \\
\hline
\end{array}, \begin{array}{l}
a=\left(d_{\mathrm{AB}}+d_{\mathrm{AX}}-d_{\mathrm{BX}}\right) / 2 \\
\hline \mathrm{~A} \\
\hline
\end{array}\right.
$$

BIOS477877 L21-48

Phylogenetic methods (Distance)

$>$ Estimation of branch lengths: more than 3 taxa

- Choose two taxa (e.g., with the smallest distance)
- Remaining taxa are combined into a single composite taxon $\rightarrow \mathrm{X}$

Phylogenetic methods (Distance)

$>$ Estimation of branch lengths: more than 3 taxa

$d_{\mathrm{AX}}=\left(d_{\mathrm{AC}}+d_{\mathrm{AD}}\right) / 2$
$d_{\mathrm{BX}}=\left(d_{\mathrm{BC}}+d_{\mathrm{BD}}\right) / 2$

\[

\]

$\rightarrow a$ and b can be calculated as before
47

Phylogenetic methods (Distance)

$>$ Estimation of branch lengths: more than 3 taxa

- The two taxa A and B are combined into a single composite taxon $\rightarrow \mathbf{Y}$
- Recalculate the distances between Y and other taxa
 (as in UPGMA method)

Phylogenetic methods (Distance)

Estimation of branch lengths: more than 3 taxa

$$
\begin{aligned}
& d_{\mathrm{YC}}=\left(d_{\mathrm{AC}}+d_{\mathrm{BC}}\right) / 2 \\
& d_{\mathrm{YD}}=\left(d_{\mathrm{AD}}+d_{\mathrm{BD}}\right) / 2
\end{aligned}
$$

$\rightarrow c$ and d can be calculated as before
50

Phylogenetic methods (Distance)

$>$ Estimation of branch lengths: more than 3 taxa
(Fitch and Margoliash, 1967)

- If no other unresolved taxon remains,
$\rightarrow z$ (internal branch length) can be calculated: e.g., $z=d_{\mathrm{AC}}-a-\mathrm{c}$
- If there are still more taxa,
\rightarrow choose two (e.g., closest) taxa and repeat the above procedure $\underset{\text { B1OS477/877 L21-51 }}{ }$
51

Phylogenetic methods (Distance)

Fitch-Margoliash method (weighted least-square)
(Fitch and Margoliash, 1967)

- Initial tree: constructed by clustering 2 OTUs with shortest distances
\rightarrow similar to UPGMA
- No constant rate assumption (additive trees)
- Reconstructs unrooted trees
- Alternative trees are tested to identify the best tree based on the smallest percent standard deviation (PSD):
$P S D=\sqrt{\frac{2 \sum_{i j}\left\{\left(D_{i j}-E_{i j}\right) / D_{i j}\right\}^{2}}{n(n-1)}} \times 100$
n : number of taxa in the tree
$D_{i j}$: observed distances between i and j
$E_{i j}$: estimated distances between i and j (calculated by branch lengths)

