

PAM matrices							
Corresponder and t	nce betwe he Evolut	en Observed D tionary Distanc	ifferences ce				
OI P Di	bserved ercent fference	Evolutionary Distance in PAMs(%	actual distance)				
	1	1					
	5	5					
	10	11					
	15	17					
	20	23					
	25	30					
$n-1$ $\sum am$	30	38	D 4 44				
$p = 1 - \sum_{i} g_i m_{n(ii)}$	40	47	PAMN				
	45	67					
	50	80					
	55	94					
	60	112					
	65	133					
	70	159					
	75	195					
	80	246					
	85	328					
Dayhoff et al. (1978)			BIOS477/877 L20 - 13				

Table 1. Maximum likelihood estimates of the α parameter ^a								
Sequences	Species	â	Refs					
Nuclear genes								
α- and β-globin genes, positions 1 and 2	5 mammais	0.36	10,23					
Albumin genes, all positions	5 vertebrates	1.05	44					
Insulin genes, all positions	5 vertebrates	0.40	44					
c-myc genes, all positions	5 vertebrates	0.47	44					
Prolactin genes, all positions	5 vertebrates	1.37	44					
16S-like rRNAs, stem region	5 species	0.29	45					
16S-like rRNAs, loop region	5 species	0.58	45					
ψη-globin pseudogenes	6 primates	0.66	23					
Viral genes								
Hepatitis B virus genomes	13 variants	0.26	46					
Mitochondrial genes								
12S rRNAs	9 rodents	0.16	22					
895-bp mtDNAs	9 primates	0.43	10					
Positions 1 and 2 of 13 genes ^b	11 vertebrates	0.13-0.95	28					
Position 1 of four genes	6 primates	0.18	19					
Position 2 of four genes	6 primates	0.08	19					
Position 3 of four genes	6 primates	1.58	19					
D-loop region of mtDNAs ^o	25 humans	0.17	12					
Protein sequences								
Mitochondrial cytochrome b	16 deuterostomes	0.44	12					

tance estimation	on and sampl	ing error proble
Uncorrected p	JC distance	SE (100 bp)
0.1	0.1073	0.03462
0.2	0.2326	0.0545
0.3	0.3831	0.0764
0.4	0.5716	0.1050
0.5	0.8240	0.1500
0.6	1.2071	0.2449
0.66	1.5902	0.3948
0.7	2.0310	0.6874
0.72	2.4142	1.1225
0.74	3.2381	3.2898
When p is too la → low statistica	urge, sampling errors b 11 power	ecome large BIOS477/877

BIOS477/877 L20 - 35

	omparisons among the	methods for estimating Gene	synonymous and nor length (species com	nsynonymous substitution upared with <i>D. melanog</i>	on numbers per site paster)	
	Adhr: 816 bp (D. teissieri)		Adh . 762 bp (D. ps. bogotana)		Col: 1497 bp (D. yakuba)	
Method	Synonymous	Nonsynonymous	Synonymous	Nonsynonymous	Synonymous	Nonsynonymou
NG LWL	0.402 ± 0.060 0.394 ± 0.058	0.009 ± 0.004 0.009 ± 0.004	0.604 ± 0.080 0.599 ± 0.080	0.053 ± 0.010 0.054 ± 0.010	0.380 ± 0.041 0.364 ± 0.040	0.007 ± 0.003 0.007 ± 0.002
PBL 🗲	0.328 ± 0.052	0.009 ± 0.004	0.561 ± 0.078	0.054 ± 0.010	0.401 ± 0.051	0.007 ± 0.003
NG: Nei- LWL: Li-' PBL or Li Kumar me	Gojobori meth Wu-Luo metho 93: Pamilo-Bia ethod (availabl	od (Nei & Goja d (Li et al. 198 nchi-Li methoa le in MEGA; ma	bori 1986): b 5): based on I (Pamilo and dification to	oased on JC ma K2P model Bianchi 1993; PBL)	odel Li 1993)	
			wimbon of a	vnonvmoue ei	ter C	

