

1

3

5

TODAY'S TOPICS

Protein family/domain databases
(InterPro, SMART, etc.)
$>$ Distance estimation

- Nucleotide substitutions

2

4

6

7

9

11

8

10

12

13

15

14

16

19

21

23

20

22

24

25

27

26

28

31

33

Distance estimation

The simplest method (p-distance)
\rightarrow Number of substitutions per site (p) or degree of divergence

$$
p=\frac{n_{d}}{L} \quad V(p)=\frac{p(1-p)}{L} \text { or } \sigma(p)=\sqrt{\frac{p(1-p)}{L}}
$$

n_{d} : Number of differences between the two sequences
L : Number of nucleotides (or amino acids) compared
$V(p), \sigma(p)$: Variance or standard error of the mean (p) for binomial distribution
\rightarrow Can be used for both nucleotide and amino acid substitutions

$$
\begin{array}{rll}
\text { ACTGTAGGAATCGC } & n_{d}=3, L=14 \\
: \text { X : : X: X : : : : : : : } & p=3 / 14=0.214 \\
\text { AATGAAAGAATCGC } & \sigma_{p}=\sqrt{ } \mathbf{0 . 2 1 4 \times (1 - 0 . 2 1} \\
& p=0.214 \pm 0.110
\end{array}
$$

BIOS477/877 L19-35

HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment
Michael Remmert, Andreas Biegert, Andreas Hauser \& Johannes Söding \square
Nature Methods 9, 173-175 (2012) | Cite this article

32

34

Distance estimation

Ancestral sequence?

ACTGTAGGAATCGC AATGAAAGAATCGC
S1 ACTGTAGGAATCGC
:X::X:X:::::: (No. of differences = 3)
S2 AATGAAAGAATCGC
Were there only three changes during the evolution? BIOS477/877 L19-36

37

39

Effect of multiple substitutions

BIOS477/877 L19-41

Effect of multiple substitutions

$>$ When the degree of divergence between two sequences is small, \rightarrow the chance of having more than one substitution at any site is negligible
\rightarrow Observed divergence \approx actual divergence
$>$ When the degree of divergence becomes larger,
\rightarrow more than one substitution could happen at any site [multiple substitutions or multiple hits]
\rightarrow Observed divergence << actual divergence [Saturation effect]
$>$ Effect of multiple hits is larger for nucleotide substitutions
$>$ Methods to uncover the number of hidden substitutions need to be used [Multiple hit correction]
\rightarrow Actual divergence level is estimated based on the observed degree of divergence

BIOS477/877 L19-42

Distance estimation for nucleotide substitutions
$>$ Jukes-Cantor (one-parameter) method

A	A	C	G	T	$k=-\frac{3}{4} \ln \left(1-\frac{4}{3} p\right)$	
					k : Expected number of nucleotide substitutions per site or Distance p : Proportion of nucleotide differences (observed)	
C	α	-	α	α		
G	α	α	-	α		
T	α	α	α	-	$V(k)=\frac{9 p(1-p)}{(3-4 p)^{2} L}$	L : number of nucleotide
All substitutions occur with equal probability [Jukes-Cantor model of nucleotide substitutions]					$\sigma(k)=\frac{3}{(3-4 p)} \sqrt{\frac{p(1-p)}{L}}$	positions compared
(Derivation of the JC equation: a note on Canvas) BIOS477/877 L19 -43						

43

Distance estimation for nucleotide substitutions

Distance estimation for nucleotide substitutions
Kimura two-parameter method Kimura (1980)

	A	C	G	T	$k=\frac{1}{2} \ln \left[\frac{1}{(1-2 P-Q)}\right]+\frac{1}{4} \ln \left[\frac{1}{(1-2 Q)}\right]$
A		β	α	β	```\(P\) : Proportion of transitional (Ts) differences \\ \(Q\) : Proportion of transversional (Tv) differences```
C	β		β	α	
G	α	β		β	
T	β	α	β		
$\begin{aligned} & \text { Difference in Ts and TV } \\ & \text { substitutions (usually Ts }>\text { TV) can } \\ & \text { be considered } \\ & \text { [Kimurar } \begin{array}{l} \text { P-parameter model of of } \\ \text { nucleotide substitutions] } \end{array} \end{aligned}$					$\left.-\left[\frac{P}{(1-2 P-Q)}+\frac{Q}{(2-4 P-2 Q)}+\frac{Q}{(2-4 Q)}\right)^{2}\right]$
					L : number of nucleotide

46

Sequence evolution as Markov process

Markov Chain: a discrete-time stochastic process In more general continuous-time scale, \rightarrow Markov Process

- Kimura 2-parameter distance:

Sequence evolution as Markov process

	A	C	G	T
A	-	α	α	α
C	α	-	α	α
G	α	α	-	α
T	α	α	α	-
Jukes-Cantor model				

$$
\begin{aligned}
& \text { Jukes-Cantor model } \\
& \text { (} \alpha \text { : substitution rate) }
\end{aligned}
$$

where $r_{t}+3 s_{t}=1$ (row sum) thus $r_{t}=1-3 s t$
Transition probability matrix

49

51

Jukes-Cantor model of sequence evolution

	A	C	G	T
A	-	α	α	α
C	α	-	α	α
G	α	α	-	α
T	α	α	α	-

50

