

1

3

5

TODAY'S TOPICS

PSI-BLAST

$>$ Hidden Markov model and profile HMM $>$ Protein family/domain databases (InterPro, HMMER, etc.)

2

4

6

7

9

Markov models

Markov chain: a stochastic process from one state to the next that exhibits the Markov property
(e.g., States for DNA: A, T, G, C)

- Markov property: The next state of the system depends only on the present state of the system [No memory]

8

Profile hidden Markov models

Probabilistic models of multiple alignments
(Krogh et al., 1994; Krogh 1998)
\rightarrow Closely related to standard profiles (PSSMs) introduced by Gribskov
\rightarrow Used in e.g., PFAM, SMART, Superfamily, Panther (databases of multiple alignments and profile HMMs)

Eddy (2004) What is a hidden Markov model? \longleftarrow DNA regulacory Nature Biotechnology 22: 1315-1316. element example BIOS477/877 L18-10

10

Markov models

$>$ Markov chain: a stochastic process from one state to the next that exhibits the Markov property
(e.g., States for DNA: A, T, G, C)
[P : Transition probability]

- Markov property: The next state of the system depends only on the present state of the system [No memory]
- Transition probabilities are independent of time

TTime homoaeneousl
Markov chain if the state spaces is discrete
Markov process if the state space is continuous
BIOS477/877 L18-12

13

Markov models

Markov chain
Coin tossing example [2 states: Head and Tail]

- $P($ Head $)=0.5, P($ Tail $)=0.5$
- $\mathrm{P}(\mathrm{HH})=\mathrm{P}(\mathrm{H}) \times \mathrm{P}(\mathrm{H})$
- $\mathbf{P}(\mathrm{HHT})=\mathrm{P}(\mathrm{HH}) \mathrm{xP}(\mathrm{T})$
- $\mathbf{P}(\mathrm{HHTH})=\mathbf{P}(\mathrm{HHT}) \times \mathrm{P}(\mathrm{H})$
- $\mathrm{P}($ (HHTHT $)=\mathrm{P}($ HHTH $) \times \mathrm{P}(\mathrm{T})$
...

Markov models

Markov chain
Coin tossing example [2 states: Head and Tail]

$-P($ Head $)=0.5, P($ Tail $)=0.5$

- $\mathbf{P}(\mathrm{HH})=\mathrm{P}(\mathrm{H}) \times \mathrm{P}(\mathrm{H})$
- $P(H H T)=P(H H) x P(T)$

14

16

18

19

21

20

22

24

25

What is hidden Markov model?

Markov chain
Fair coin vs. loaded coin [states: H and 7]

$P_{\mathrm{FO}}=\left[\begin{array}{c}\mathrm{H} .5 .50 .5 \\ \mathrm{~T}\end{array}\right]$

B10S477/877 L18-27
27

What is hidden Markov model?

Markov chain
Fair coin vs. loaded coin [states: H and T]

$$
\begin{aligned}
& P_{\mathrm{FO}}=\left[\begin{array}{c}
\mathrm{H} .50 .5 \\
\mathrm{~T}
\end{array}\right] \\
& P_{F}=H\left[\begin{array}{c}
4 \\
H
\end{array}\right]
\end{aligned}
$$

$P_{L 0}=\left[\begin{array}{c}{ }^{H}, 4.4 \\ 0.6 \\ \hline 0.6\end{array}\right]$

Observation: $\mathrm{H}, \mathrm{H}, \mathrm{H}$
$P_{F}(H H H \mid$ Fair coin $)=$ \square $P_{L}(H H H \mid$ Loaded coin $)=$
 вояservervilus.

What is hidden Markov model?

$>$ Markov chain
Fair coin vs. loaded coin [states: H and T]

$P_{F O}=\left[\begin{array}{c}{ }^{H} .5 \\ 0.5 \\ 0.5 \\ 4\end{array}\right]$ $P_{F}=H\left[\begin{array}{cc}H \\ 0.5 & 0 \\ 0.5 \\ 0.5\end{array}\right]$

Which coin
do you have?

$P_{L O}=\left[\begin{array}{cc}{ }^{H} .4 \\ 0.4 \\ { }^{\top} .6\end{array}\right]$
$P_{L}=H\left[\begin{array}{cc}H \\ 0.4 & 0 \\ 0.4 \\ 0.6\end{array}\right]$

Try tossing the coin. Observe what happens!

28

32

33

What is hidden Markov model?

Markov chain
If fair and loaded coins are mixed!

35

34

What is hidden Markov model?

$>$ State sequence is unknown (hidden): Fair or Loaded Observation:

State:

Can we guess the hidden state sequence?
What we know:
Transition probabilities: $\left[\begin{array}{cc}F & L \\ 0.9 & 0.1 \\ 0.1 & 0.9\end{array}\right]$
Initial probabilities: $(0.5,0.5)$

Emission probabilities: Fair: $\underset{T}{\mathrm{H}}\left[\begin{array}{l}0.5 \\ 0.5\end{array}\right]$ Loaded: $\underset{\mathrm{T}}{\mathrm{H}}\left[\begin{array}{l}0.4 \\ 0.6\end{array}\right]$

38

What is hidden Markov model?

39

What is hidden Markov model?

> State sequence is unknown (hidden): Fair or Loaded

Hidden state sequence! If this is the path with Max (Prob)
Path with the maximum probability shows the most likely path of the hidden state (F or L)

41

43

What is hidden Markov model?

$>$ State sequence is unknown (hidden): Fair or Loaded

40

Profile hidden Markov models

$>$ Probabilistic models of multiple alignments (Krogh et al., 1994; Krogh 1998; Eddy 2004)
\rightarrow Closely related to standard profiles (PSSMs) introduced by Gribskov (used in PROSITE)
\rightarrow Used in e.g., PFAM, SMART, Superfamily, Panther (databases of multiple alignments and profile HMMs for domains and protein families)

- States: Insertion, Deletion, and Match
- Transition probabilities: between states
- Emission probabilities: for 20 amino acids or 4 nucleotides

42

Basic architecture of a profile HMM

- Any sequence can be represented by a path through the model - Multiple paths are possible to model a sequence

45

47

Profile HMM search

- Profile HMM vs. Sequence database

Basic architecture of a profile HMM

$P($ sequence I path): the product of emission and transition probabilities $P(\rightarrow)=0.3 \times 0.008 \times 0.015 \times 0.5 \times 0.46 \times 0.5 \times 0.015 \times 0.73 \times 0.01 \times 1.0$

48

Profile HMM databases for domain/protein families

$>$ InterPro: Classification of protein families
https://www.ebi.ac.uk/interpro/
\rightarrow includes Pfam: a database of multiple-alignments and HMMs coverina manv protein domains
\rightarrow CDD: Conserved domain database $\longleftarrow \sim$ (e.g., Pfam, SMART, etc.) https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
$>$ SMART: Simple Modular Architecture Research Tool http://smart.embl-heidelberg.de/
$>$ Superfamily 2: HMM library and genome assignments server httos://sunfam.org/
> Panther: Protein ANalysis THrough Evolutionary Relationships http://www.pantherdb.org/

- HMMER: profile HMM search http://www.ebi.ac,uk/Tools/hmmer/ [phmmer, hmmscan, hmmsearch, jackhmmer,]
- HHblits: Homology detection by iterative HMM-HMM comparison (MPI Bioinformatics Toolkit https://toolkit.tuebingen.mpg.de) BIOS477/877 L18-50

