

1

3

5

2

4

BLAST Search Set vs. Format Option

[Limit the search result AFTER the search]

6

7

9

8

10

11

12

13

15

14

16

19

21

Multiple alignment as an extension of pairwise alignment

Dynamic programming algorithm
\rightarrow Guarantees to find the optimal alignment based on the scoring system
$>$ Optimal alignments are searched based on alignment score
\rightarrow Match/mismatch $\left(S_{i j}\right)$ and gap penalties

20

Why multiple alignment?

$>$ To examine evolutionary relationships between sequences
\rightarrow To reconstruct phylogenetic trees
$>$ To predict protein functions
(conserved regions, functional or structural domains)
$>$ For homology modeling (structural prediction)
$>$ To design PCR primers etc. etc. ... B10S477/877 L14-22

22

25

How to score multiple alignment

Sum of pairs score
$S(\mathrm{~A})=\Sigma_{i, j} S\left(\mathrm{~A}_{i j}\right)$
$\mathrm{A}_{i j}$: the score of the pairwise alignment between i and j

$\rightarrow S(A)$ has no statistical justification
There is no single good method that can measure the overall quality of multiple alignments!

27

26

28

30

31

33

Multiple alignment: Heuristic methods (updated)

32

34

Progressive multiple alignment: Clustal W

37

39

Progressive multiple alignment: Clustal W
Progressive alignment following the guide tree

Profile alignment: alignment vs. sequence, alignment vs. alignment
BIOS477/877 L14-38
38

Progressive multiple alignment: Clustal W

$>$ Progressive alignment following the guide tree

40

42

43

Progressive multiple alignment: Clustal W

$>$ How sequence weighting works: Example 1

45

Progressive multiple alignment: Clustal W
Sequence weights: based on branch lengths

44

Progressive multiple alignment: Clustal W

$>$ How sequence weighting works: Example 2

[Aligning 54 to the first 3 sequences ($\mathrm{S} 1, \mathrm{S2}$, and S 3) previously aligned]

49

Progressive multiple alignment: Clustal W

How sequence weighting works: Example 2

51

Progressive multiple alignment: Clustal W

How gap penalties are determined:
\rightarrow Initial gap penalties: GOP (gap opening) and GEP (gap extension) \rightarrow set by the user
\rightarrow Weight (scoring) matrix dependent gap penalties
\rightarrow Similarity level dependent gap penalties
\rightarrow Sequence length dependent gap penalties
\rightarrow Position specific gap penalties - if gaps already exist - residue specific (e.g., hydrophilic stretches)

Thompson et al. (1994)
BIOS477/877 L14-53

Progressive multiple alignment: Clustal W
> How to choose scoring matrix:

- Choose only the scoring matrix series (BLOSUM, PAM, etc.)
\rightarrow Specific matrix is determined based on distance between sequences

80-100\% identity
60-80\% identity 30-60\% identity 0-30\% identity

Thompson et al. (1994)
\rightarrow Blosum80
\rightarrow Blosum62
\rightarrow Blosum45
\rightarrow Blosum30

BIOS477/877 L14-52
52

Progressive multiple alignment: Clustal W

Progressive alignment

\rightarrow Greedy (finds local optima, but no guarantee for global optima) \rightarrow Errors (incorrect gap positions) in the early alignments cannot be rectified later

- Global alignment only (local similarity may be missed)

BIOS477/877 L14-54

55

