

1

3

5

2

4

6

7

9

11

8

10

12

13

15

blastp Protein Similarity Search

14

16

18

19

21

blastp Similarity Search: a Case Study
[Search using the "Query subrange" option]

20

22

23

25

27

29

BLAST Databases (Nucleotide)

Nucleotide database	Description
Nucleotide Collection (nr/nt) default	Partially non-redundant nucleotide sequences from GenBank, EMBL, DDBJ, PDB, and RefSeq, excluding ETS, STS, GSS,
RefSeq databases	WGS, TSA, patent sequences, HTGS, and sequences $>100 \mathrm{Mb}$ RefSeq RNA, RefSeq Select (human and mouse), RefSeq Genome, Human RefSeqGene, etc.
Whole-Genome-Shotgun contigs (WGS), Expressed sequence tags (EST), Sequence Read Archive (SRA), Transcriptome Shotgun Assembly (TSA), High Throughput Genomic Sequences (HTGS), Genomic survey sequences (GSS), Sequence tagged sites (STS)	
PDB nucleotide sequences	Sequences from the Protein Data Bank (PDB)
Patent sequences	Nucleotide sequences derived from the Patent division of GenBank
16 r ribosomal RNA	16 S ribosomal RNA (Bacteria and Archaea type strains)
18 S ribosomal RNA	18 S ribosomal RNA sequences (SSU) from Fungi type and reference material
28 r ribosomal RNA	28 S ribosomal RNA sequences (LSU) from Fungi type and reference material
Internal transcribed spacer region	Internal transcribed spacer region (ITS) from Fungi type and reference material
and more... https://ftp.ncbi.nlm.nih.gov/blast/d	B1OS477/877 L13-26

26

28

31

33

BLASTP Results

[blastp]

32

34

BLASTP Statistics

BLASTP Statistics

[blastp]

4Fe-4S dicluster domain-containing protein [Thermoproteota archaeon] Sequence ID: NPA84857.1 Length: 716 Number of Matches: 1
Range 1: $\mathbf{2 3 1}$ to $\mathbf{7 0 3}$ GenPept Graphics
Score
313 bits(802) Expect Method
1e-94 Compo \qquad itional matrix adjust $\underset{\substack{\text { Identities }}}{\text { Int. }} 187 / 503$ (3)

PKY
PKY
PKYPKYKVEVDPNRCMLCERCTIECSWGVYRREGDR-ITSYSNRGG $267 / 503(53 \%)$ (31/503(6\%)

$\begin{array}{llllll}\text { Sbjct } & 31 & \text { PKYRVVFKYDICIGCGTCAMVCPEGVIKMKGYKPVAAREADCIGCYACMNYCPTDAVKVE } & 290 \\ \text { Query } & 87 & \text { ENAISWRSHPLWDVDARVDIYNQAKTGCILLSGMGNAKEHPIYFDKIVLDACQVTNPSID } & 126\end{array}$
 Raw Score (S): simply based on pairwise scores \& gap penalties
Normalized Score or Bit Score ($S_{\text {bit }}^{\prime}$):
$S_{b i t}^{\prime}=\left(\lambda S-\log _{e} K\right) / \log _{e} 2,\left[S_{n a t}^{\prime}=\lambda S-\log _{e} K\right]$
$\lambda=0.267, K=0.041, S_{\text {bit }}^{\prime}=\left\{0.267 \times 802-\log _{e}(0.041)\right\} / \log _{e} 2=313.5$
Raw scores (S) depend on the scoring system; cannot be compared
Bit scores ($S_{\text {'bit }}$) are normalized using λ and K;
\rightarrow independent of scoring system; can be compared
37

Bonferroni correction

Multiple comparison correction
Instead of using Prob $=\alpha$ as the threshold use Prob = α / N (for N comparisons) as the threshold

- For 10 alignments, use $\alpha^{\prime}=0.05 / 10=0.005$ (instead of 0.05) as the threshold \rightarrow For $P(S \geq x)=0.005,(1-0.005)^{10} \approx 0.95$ is the probability to have all 10 alignments with $S<x$ by chance
$\rightarrow \mathbf{1 - 0 . 9 5}=0.05$ is the probability to have at least one alignment with $S \geq x$ by chance
- For 100 alignments, use $\alpha^{\prime}=0.05 / 100=0.0005$ (instead of 0.05) as the threshold
\rightarrow For $P(S \geq x)=0.0005,(1-0.0005)^{100} \approx 0.95$ is the probability to have all 100 alignments with $S<x$ by chance
$\rightarrow \mathbf{1 - 0 . 9 5}=0.05$ is the probability to have at least one alignment with $S \geq x$ by chance BIOS477/877 L13-39

39

BLAST Statistics

Karlin-Altschul equation (Karlin \& Altschul, 1990) [For a pairwise alignment]
$P=K m n e^{-\lambda S}$ (Lec 11 slide 12)
m, n : lengths of the sequences compared
$\rightarrow m \times n$: search space

[For database similarity searching] Search space
$E=K m n e^{-\lambda S}$ (used by BLAST instead of $E=N \mathbf{x} P$)
E-value: the expected number of HSPs with scores $\geq S$
m : length of the query consider a database as a single very long sequence
n : length of the database (total number of residues)
$P=1-e^{-E}(P \approx E$ if $E<0.01)$
\rightarrow the probability of having at least one HSP with its score $\geq_{\text {B10S477/877 L13-41 }}$

Pairwise alignment vs. database searching

[For a pairwise alignment]
$>$ Karlin-Altschul equation (Karlin \& Altschul, 1990)
$e^{a} \approx 1+a$, where $a=-$ Kmne $e^{-2 x}$
Taylor series approximation \rightarrow works if a is small ((1) Probability of getting the alignment score $S \geq x$ by chance
[For database searching]
$>$ Multiple pairwise alignments \Rightarrow multiple testing problem

- $P(S \geq x)$: Probability of getting the alignment score (S) larger than x by chance from one pairwise alignment
- If $P(S \geq x)=0.05, P(S<x)=1-P(S \geq x)=0.95$
$\rightarrow 0.95$ is the probability to have one pairwise alignment with $S<x$ by chance
- For 10 alignments, $0.55^{\circ} \approx 0.60$ is the probability to have all 10 alignments with $S<x$
$\rightarrow 1-0.60=0.40$ is the probability to have at least one alignment with $S \geq x$ by chance
- For 100 alignments, $0.95^{100} \approx 0.006$ is the probability to have all 100 with $S<x$
$\rightarrow 1-0.006 \approx 0.99$ is the probability to have at least one alignment with $S \geq x$ by chance
$\mathrm{Pr}=0.05$ as the significance level is not good enough
if many alignments need to be tested!
BIOS477/877 L13-38
38

Bonferroni correction in database searching

Multiple comparison correction
\rightarrow Threshold without correction: $P=\alpha$
\rightarrow Threshold with correction: $P=\alpha=\alpha / N$
(for N comparisons)
$E=N \mathbf{x} P$
\rightarrow For E-value, using $E=\alpha$ as the threshold is equivalent to using the threshold corrected for multiple comparisons

- For database searching:
$N=$ the database size $=$ the number of entries $=$ the number of alignments

40

BLAST Statistics

Karlin-Altschul equation (Karlin \& Altschul, 1990) $E=K m^{\prime} n^{\prime} e^{-\lambda S} \quad$ (See also Altschul \& Gish, 1996
m^{\prime} : effective length of the query n^{\prime} : effective length of the database
$\boldsymbol{m}^{\prime}=\boldsymbol{m}-\boldsymbol{l}$
$\boldsymbol{n}^{\prime}=\boldsymbol{n}-\boldsymbol{l} \times$ (number of sequences in the database) beyond the edge
l : length adjustment \rightarrow correction for edge effects

- HSPs cannot occur too close to the search space edges.
- Effective lengths of HSPs should be shorter than the actual lengths.
- blastn and tblastx: $l=\ln (\mathbf{K m n}) / H$ is used
- blastp, blastx, tblastn: adjusted m ' and n ' is calculated using the finite-size correction (FSC) (Park et al., 2012)

P-value, E-value, and database search

[FASTA]
$>$ P-value for pairwise alignment $=1-\exp \left[-K m n e^{-2 S}\right] \approx K m n e^{-\lambda s}$ \rightarrow Probability of getting the alignment score $\geq S$ from random pairwise comparison (m and n are the lengths of the two sequences compared)
$>\mathrm{E}$-value $=P \times N$, where N : database size (number of entries)
[BLAST]
effectively $P \times N$ where $P=$ Kmnde--VS
where n d: database length
$>\mathrm{E}$-value $=K m^{\prime} n^{\prime} e^{-2 s} \quad$ where $n \mathrm{n}$: database length
\rightarrow Number of alignments with a score $\geq S$ expected by chance from a database search m ': effective length of the query n ': effective length of the database
$>$ P-value for a database search: $P=1-e^{-E}$
\rightarrow The probability of having at least one HSP with its score $\geq S$
BLAST Statistics: hittps://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html Altschul et al. (1994) BIOS477/8

43
44

45

BLASTP Statistics

[blastp]

4Fe-4S dicluster domain-containing protein [Thermoproteota archaeon]
Sequence ID: NPA84857.1 Length: 716 Number of Matches: 1
Range 1: $\mathbf{2 3 1}$ to $\mathbf{7 0 3}$ GenPept Graphics

| $\begin{array}{lll}\text { Score } \\ 313 \text { bits (802) }\end{array}$ |
| :--- | :--- | :--- | Query PKYKVEVDPNRCMLCERCTIECSWGVYREGDR-IISYSNRGGACHRCVVMCPRDAITIK

 126
350 $\boldsymbol{V} \lambda=0.267, K=0.041, S=802, S_{\text {bit }}^{\prime}=\{0.267 \times 802-\ln (0.041)\} / \ln 2=313.5$ Expect $(E)=K \boldsymbol{m}^{\prime} \boldsymbol{n}^{\prime} \boldsymbol{e}^{-\lambda S}$ or $\boldsymbol{m}^{\prime} \boldsymbol{n}^{\prime} \boldsymbol{e}^{-S^{\prime} n a t}$ or $\boldsymbol{m}^{\prime} \boldsymbol{n}^{\prime} 2^{-S_{b i l}^{\prime}}$ $\boldsymbol{E}=0.041 \times \boldsymbol{m}^{\prime} \times \boldsymbol{n}^{\prime} \times \boldsymbol{e}^{-0.267 \times 802}$ [from the raw score] $\boldsymbol{E}=\boldsymbol{m}^{\prime} \times \boldsymbol{n}^{\prime} \times \mathbf{2}^{-313}$ [from the bit score]

```
                                    P}=1-\mp@subsup{e}{}{-
\(=1-\exp \left(-5.89 \times 10^{-81}\right)\)
```

W/O length adjustment: $m=510, n=278,407,168,794$
$\mathrm{E}=0.041 \times 510 \times 278,407,168,794 \times e^{-0.267 \times 802}=5.89 \mathrm{E}-81=5.89 \times 10^{-81}$
$\mathrm{E}=510 \times 278,407,168,794 \times 2^{-313}=8.51 \mathrm{E}-81=8.51 \times 10^{-91}{ }^{\prime}(>1 \mathrm{E}-94)$
Without length adjustment, E -values are overestimated)
46

49

51

53

BLAST Search Set vs. Format Option

50

52

54

55

57

59

56

58

61

63

FASTA Statistics

62

64

