Today’s Topics

- Assignment 4 Review
- BLASTP & BLASTN outputs
- BLAST & FASTA statistics

BLASTP results

- Proportion of the query aligned
- Bit score
- E-value

Nucleotide Similarity Search

- Default DB NR
 - megablast*: w=28 (16~256)
 - *This is the default search method
 - discontiguous megablast: w=11 (or 12)
 - allows some mismatches
 - blastn: w=11 (7~15)
 - w=7 for a short sequence

Discontiguous megablast

- If discontiguous megablast is chosen:
 - Word matching based on discontiguous pattern (template)
 - e.g., for coding: 110101011011011 (w=11, t=16)
 - mismatches are allowed for '0' positions

BLASTN results

- megablast (only 12 hits, all E<5e-153)
- blastn (125 hits, E<6.9)
- Discontiguous megablast (57 hits, E<6.9)
BLASTN/BLASTX results

- **[blastn]**
 - Query: Caenorhabditis briggsae clone CB051104, complete sequence
 - Database: C. elegans genomic scaffolds

- **[blastx]** (translated query vs. protein db)
 - Low complexity region is masked (shown in lower cases)
 - 6 possible frames

BLASTP results

- **[blastp]**
 - Positive (+) scoring AA pairs (similar AA pairs)

BLAST results

- Click to see the blast search statistics

BLAST Statistics

- **[blastp]**
 - Raw Score (S): simply based on pairwise scores & gap penalties
 - Normalized Score or Bit Score (S'_{norm}):

 \[
 S'_{norm} = \left(\frac{S - log_2 K}{\log_2(1 + L)} \right) / \log_2 2
 \]
 - $\lambda = 0.267$, $K = 0.041$, $S'_{norm} = (0.267 \times 465 - \log_2(0.041)) / \log_2 2 = 183.7$

- Used to calculate the scores for the alignments with gaps

- Raw scores (S) depend on the scoring system; cannot be compared
- Bit scores (S') are normalized using λ and K; independent of scoring system; can be compared
Pairwise alignment vs. database searching

[For a pairwise alignment]

- Karlin-Altschul equation (Karlin & Altschul, 1990)
 \[P(S \geq x) = 1 - \exp[-Kmne^{-x}] \]
 Probability of getting the alignment score \(S \geq x \) by chance

- For the alignment score \(S \geq x \),
 \[E = NP \] (\(N \): number of random alignments; used in PRSS and LALIGN)

[For database searching]

- Multiple pairwise alignments: multiple testing problem
 - If \(P(0 \leq x) = 0.05 \),
 - For 100 alignments, 0.95 is the probability of having \(S \geq x \) by chance for one alignment
 - For 10 alignments, 0.95 is the probability of having \(S \geq x \) by chance for all 10 alignments
 - If \(P(0 \leq x) = 0.05 \),
 - For 100 alignments, 0.95 is the probability of having \(S \geq x \) by chance for one alignment
 - For 10 alignments, 0.95 is the probability of having \(S \geq x \) by chance for all 10 alignments
 - If \(P(0 \leq x) = 0.05 \),
 - For 100 alignments, 0.95 is the probability of having \(S \geq x \) by chance for one alignment
 - For 10 alignments, 0.95 is the probability of having \(S \geq x \) by chance for all 10 alignments

Bonferroni correction

- Multiple comparison correction
 Instead of using \(P = \alpha \)
 Use \(P = \alpha/N \) (for \(N \) comparisons) as the threshold
 \[\alpha = N \times \alpha' \]

BLAST Statistics

- Karlin-Altschul equation (Karlin & Altschul, 1990)
 \[E = Kmne^{-xS} \]

- For database searching, \(E \) is the database size (the number of entries) \(\rightarrow \) the number of alignments

BLAST Statistics

- E-value threshold can be considered as a P-value threshold corrected for multiple comparisons in database searching

P-value, E-value, and database search

- P-value for pairwise alignment = \[1 - \exp[-Kmne^{-x}] \]
 Probability of getting the alignment score \(\geq x \) from random pairwise comparison (\(m \) and \(n \) are the lengths of the two sequences compared)

- E-value = \[Kmne^{-xS} \]
 \(m \): length of the query (or effective length, \(m' \))
 \(n \): length of the database (or effective length, \(n' \))

- P-value for a database search (Bonferroni corrected)
 the probability of having at least one HSP with its score \(\geq S \)
 \[P = 1 - e^{-xS} \] (\(P \approx E \) if \(E < 0.01 \))
 \(E \): the expected number of HSPs with scores \(\geq S \)
 \(E \approx E/N \) if \(E \) is used in FASTA; \(N \): database size

Note: Calculation methods for length adjustment (/) and \(m'/n' \) have been changed based on a new finite-size correction (FSC). See Park et al. (2012, BMC Research Note)
BLAST Statistics

Normalized Score or Bit Score (S'bit):

\[S'_{\text{bit}} = \frac{LS - \log K}{\log 2}, \quad S'_{\text{nat}} = \frac{LS - \log K}{\log 2} \]

\(L = 0.267, K = 0.041, S = 465 \)

\[S'_{\text{bit}} = \frac{0.267 \times 465 - \log 0.041}{\log 2} = 183.7 \]

Raw Score (S): simply based on pairwise scores & gap penalties

Expect (E):

\[E = Kn' e^{-\frac{m'n' S'}{2}}, \quad E = \frac{m'n' e^{-S'}}{2} \]

\[E = 0.041 \times 570 \times 53,472,480,294 \times e^{-183.7} \]

\[E = 570 \times 53,472,480,294 \times 2^{-183} \]

Probability (P):

\[P = 1 - e^{-E} \]

\[P = 1 - e^{-0.041 \times 570 \times 53,472,480,294 \times e^{-183.7}} \]

\[P = 1 - e^{-570 \times 53,472,480,294 \times 2^{-183}} \]

\[P \approx 0 \] (if \(E \approx 0 \))

BLAST search summary statistics

- Word size (W)
- Scoring matrix & gap penalties
- Length separating two HSPs to trigger extension (A: two-hit methods)
- Alignment threshold (not user-definable)
- Neighborhood threshold (T)

BLAST Statistics

[blastp]

BLAST Statistics

[blastp HSP]

BLAST Statistics

[Footer in the old view in plain text format (from Formatting option)]
BLAST Statistics

[Footer in the old view in plain text format (from Formatting option)]

\(m' = m - l = 570 - 161 = 409 \)
(Effective length of query)

\(n' = n - \text{(no. of sequences in the DB)} \times l = 53,472,480,294 - 145,899,600 \times 161 \)
= 29,982,644,694
(Effective length of database)

\(m' \times n' = 409 \times 29,982,644,694 \)
= 12,262,901,679,846
(Effective search space)

BLAST search set vs. format option

[Before search] Restrict a search against the selected organism or limit by Entrez Query

Search space will be limited
\(E \)-values become smaller

[After search] Restrict the result shown for a selected organism or limit by Entrez Query

Search space is not affected

FASTA

http://fasta.bioch.virginia.edu/fasta_www2/fasta_list2.shtml
(includes also SSEARCH)

http://www.ebi.ac.uk/Tools/sss/fasta/
(includes also SSEARCH)

With graphic output
Results can be obtained through email

http://fasta.genome.jp/