

BIOS477/877 L11 - 5

BIOS477/877 L11 - 13

Significance of Alignment Scores										
			_	_						
	≻	<u>K</u> a	ind 🌶	l → fι	rom	Alts	chul	80	iish ((1996) table.
a	ь	À	к	H (nats)	a	ь	A	к	H (nats)	← For BLOSUM50;
200	0-20	0.232	0.11	0.34	21	8-11	0.197	0.05	0.21	
					11	6, 7	0.190	0.04	0.19	a: gap opening penalty
16	4-16	0.222	0.08	0.31	11	5	0.184	0.04	0.17	
16	3	0.213	0.06	0.27	11	4	0.177	0.031 0.028	0.15	b: gap extension penalty
16	1	0.180	0.03	0.15	11	3	0.130	0.0028	0.06	
					11	ī		Lincar		(affine gap penalty)
15	8 - 15	0.222	0.09	0.31						(
15	6.7	0.219	0.08	0.29	10	8-10	0.183	0.04	0.17	· · · · · · · · · · · · · · · · · · ·
15	4, 5	0.216	0.07	0.28	10	5	0.178	0.035	0.18	Based on 10,000 random
15	2	0.202	0.05	0.22	10	4	0.156	0.020	0.10	
15	ī	0.166	0.018	0.11	10	3	0.139	0.013	0.07	sequence pairs,
					10	2	0.099	0.007	0.03	
14 14	8-14	0.218	0.08	0.29	10	1		Linear		calculated optimal local
14	4	0.214	0.07	0.27	9	79	0.164	0.029	0.13	
14	3	0.201	0.05	0.22	9	5.6	0.152	0.021	0.10	alignment scores, S.
14	2	0.188	0.034	0.17	9	4	0.134	0.014	0.07	
14	1	0.140	0.009	0.07	8	3	0.107	0.008	0.04	→ K and 2 are estimated
13	8-13	0.211	0.06	0.27	1 %	1,2		Linear		
13	5-7	0.205	0.05	0.24	8	8	0.139	0.017	0.08	by fitting the
13	4	0.202	0.05	0.22	8	7	0.134	0.015	0.07	
13	3	0.188	0.034	0.18	8	6	0.127	0.013	0.06	distribution of S
13	2	0.174	0.025	0.13	8	5	0.117	0.011	0.05	
10	1	0.114	0.000	0.04	8	1-3		dertine o		with $P(S \ge x) \approx Kmne^{-\lambda x}$
12	7-12	0.205	D.06	0.24						$(3 \le \lambda) \sim Kmne$
12	5, 6	0.197	0.05	0.21	7	7	0.100	0.010	0.04	This is what BLAST does!
12	4	0.192	0.04	0.18	7	6	0.094	0.010 derline o	0.03	This is what BLAST does!
12	2	0.178	0.028	0.15	1 7	1-5	Bor	oernne o	runear	
12	ĩ	0.256	Borderl		1-6	1-6		Linear		BIOS477/877 L11 - 24

BLAST Algorithm: extension Solution is trimmed back to the nearest maximum point f_{g} f_{g}

56

57

