

1

Pairwise alignment summary

- Alignment score depends on:
\rightarrow Scoring matrix (match, mismatch, Ts/Tv, BLOSUM, PAM, etc.) \rightarrow Gap penalty
\rightarrow Alignment method (e.g., global or local)
- Alignment scores cannot be compared directly \rightarrow if the scoring systems used are different
\rightarrow if sequences compared are different
(e.g., longer alignments tend to have higher scores)
- Alignment scores are used: for searching optimal alignments from the alignment matrix for a given pair of sequences based on a given scoring system

3

Pairwise alignment summary (continued)

- Optimal alignments and biologically meaningful alignments may not be the same
- Depending on the scoring system, unreasonable alignments can become optimal
\rightarrow We need to choose a better (biologically reasonable) scoring system: level of divergence (scoring matrices), gap penalty (affine, etc.), algorithm (local, global, or semi-global)
\rightarrow Manual adjustment may be necessary
\rightarrow Test statistical significance of the alignment (is the alignment possible just by chance?)

TODAY'S TOPICS

Statistical Significance of Alignment Scores

Similarity Search

- FASTA and BLAST

2

4

Significance of Alignment Scores

$>$ Hypothesis testing (General)
\rightarrow Two hypotheses

- Null-hypothesis
H_{0} : The previous (original) belief is true
- Alternative hypothesis
\mathbf{H}_{1} : The previous (original) belief is false; the new theory is true
$\rightarrow S$: Test statistic
\rightarrow Significance level is chosen a priori (e.g., 0.05)
$\rightarrow P$-value: $P\left(S \mid \mathrm{H}_{0}\right.$ is true) Probability of getting S if H_{0} is true
\rightarrow If P < Significance level, reject $\mathbf{H}_{\mathbf{0}}$

Significance of Alignment Scores

P-value: $P\left(S \mid \mathrm{H}_{0}\right.$ is true)
\rightarrow Need to be calculated from the test statistic S
\rightarrow Need to know the probability distribution of the test statistic S under H_{0}
Central Limit Theorem:

If the sample size is large enough
the sampling distribution of
the mean of any independent,
random variables will be normal or
nearly normal.

(Example)

Experiment: 1000 coin tossing

- Count the number of heads
- Repeat 1000 experiments
(Expect to see 500 heads/experiment)

7

Significance of Alignment Scores

$>$ Hypothesis testing for sequence alignment
\rightarrow Two hypotheses

- Null-hypothesis
H_{0} : Two sequences are not related (random)
- Alternative hypothesis
H_{1} : Two sequences are related
\rightarrow Test statistic: alignment score (S)
\rightarrow Significance level is chosen a priori (e.g., 0.05)
$\rightarrow P$-value: $\boldsymbol{P}\left(S \mid \mathbf{H}_{0}\right.$ is true)
Probability of getting the alignment score S, even if the two
sequences are not related but randomly matched
\rightarrow If P < Significance level, reject \mathbf{H}_{0}
(The score should not be obtained just by aligning unrelated sequences)

9

11

Significance of Alignment Scores

$>P$-value: $P\left(S \mid \mathrm{H}_{0}\right.$ is true)
\rightarrow Need to be calculated from the test statistic S
\rightarrow Need to know the probability distribution of the test statistic S under $\mathbf{H}_{\mathbf{0}}$

Distribution of alignment scores follow
Extreme Value Distribution (Gumbel distribution)

The probability distribution of highest values in an experiment (e.g., optimal alignment scores)

10

Significance of Alignment Scores

$>P\left(S \geq x \mid \mathbf{H}_{0}\right)$: Probability of getting the alignment score $S \geq x$
Karlin-Altschul equation (Karlin and Altschul 1990) $P(S \geq x)=1-\exp \left[-K m n e^{-\lambda x}\right] \approx K m n e^{-\lambda x}$
$\underset{P(S D}{ }{ }_{\text {(Gumbel distribution) }}$ $P(S \geq x)=1-\exp \left[-e^{-(x-\mu) / \beta}\right]$ $\lambda=1 / \beta, \mu=(\ln K m n) / \lambda$
K and λ : calculated from the empirical distribution of S based on a given scoring matrix and amino acid composition m and n : lengths of sequences aligned
\rightarrow Solved for ungapped local alignments \rightarrow Can be applied for gapped local alignments

$$
>\mathrm{E} \text {-value }=P\left(S \geq x \mid \mathrm{H}_{0}\right) \times N,
$$

where N is the number of sequences in the dataset
\rightarrow Expected number of sequences in the dataset to have a score $\geq x$ E-value $\neq P$-value

Significance of Alignment Scores

\gg How to calculate K and λ (in LALIGN and PRSS)

1) The second sequence is shuffiled many times. (simulates random sequences)
2) Smith-Waterman local alignment score is calculated from each alignment: $P\left(S \geq x \mid \mathbf{H}_{0}\right)$
3) The distribution is fitted to an extreme value distribution to obtain estimates of K and λ
4) P-value is estimated based on the K and λ, and the original alignment score $x: P(S \geq x) \approx K m n e^{-\lambda x}$ BIOS477/877 L11-13

13

15

Simulation of Alignment Scores

- RECA ECOLI (P0A7G6; 353 amino acids) - RAD51_YEAST (P25454; 400 amino acids)

Smith-Waterman local alignment score $=293$
(BLOSUM50, gap opening: -10, gap extension: -1)

${ }_{\text {RECA_ECost }}$		51
RR051_yRass		170
Reca_zoorr		94
${ }_{\text {RaOs5_reass }}$		${ }^{218}$
Rec__coir		${ }^{135}$
Reast_renss		268
reca__coir		181
R2051_yrass		${ }^{314}$
Reca_zoir		${ }^{228}$
Rno51_reast		${ }_{35}$
R8CA_zolit		
Rno51_ zrast		

14

16

18

19

21

23

20

22

24

Significance of Alignment Scores

- Alignment scores cannot be compared directly because they depend on: scoring matrix, gap penalty, algorithms used
- Statistical significance of alignments can be tested
\rightarrow Is the alignment possible just by chance?
\rightarrow If the alignment score is statistically significant (not possible simply by chance), the alignment is meaningful.
$\rightarrow \mathrm{P}$-value or E -value ($E=N P$) can be compared regardless of the scoring systems used for alignments.

NOTE: E-values change depending on the number of data used (if N is small, E -value becomes small)

$$
0<\mathrm{P} \text {-value < } 1 \text { vs. } 0<\mathrm{E} \text {-value < N }
$$

25

27

Similarity Search

Why do you want to perform similarity search?

- To find related genes in another organisms \rightarrow Homologue candidates
- To identify a possible function of a gene/protein
[From genomic sequence]
- To predict gene structure: against cDNA sequences \rightarrow exon-intron structure
- To predict gene locations

26

28

Heuristic algorithm (FASTA/BLAST)

BIOS477/877 L11-30

31

33

FASTA/BLAST Algorithm

32

34

FASTA/BLAST Algorithm

37

39

41

FASTA/BLAST Algorithm

38

FASTA Algorithm

1. Find identities using k tuples
(k-tuples $=$ words)
2. Join diagonals without gaps
3. Choose top 10 diagonals using a scoring matrix (e.g., BLosum62) init1: the top diagonal score

40

FASTA Algorithm

$>$ Ranking

- Database sequences are ranked based on z-values or OPT scores
$\rightarrow z$-value $=$ the number of standard deviations from the mean (standardized score)
- The high scored sequence pairs are aligned using the full Smith-Waterman dynamic programming algorithm

$>$ FASTA/SSEARCH website

https://fasta.bioch.virginia.edu/fasta www2/fasta list2.shtmI https://www.ebi.ac.uk/idispatcher/sss/fasta

[FASTA guide]

https://fasta.bioch.virginia.edu/wro fasta/fasta_quide.pdf.
[William R. Pearson's website]
httts://fasta,bioch.virginia.edu/wroearson/

43

BLAST Algorithm: seeding

BIOS477/877 L11-45
45

BLAST Algorithm: seeding

Using words reduce the search space
Neighborhood increases the sensitivity

BLAST resources

$>$ BLAST

https://blast.ncbi.nlm.nih.gov/Blast.cgi
[Guide to BLAST home and search pages]
ftp://ftp.ncbi.nlm.nih.gov/pub/factsheets/HowTo BLASTGuide.pdf
[BLAST Report Description]
https://ftp.ncbi.nlm.nih.gov/pub/factsheets/HowTo NewBLAST.pdf
[BLAST Statistics]
https://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html
[BLAST Command Line User Manual]
https://www.ncbi.nlm.nih.gov/books/NBK279690/
[BLAST YouTube Tutorials]
(Link is available from NCBI Help page or from Canvas)

46

BLAST Algorithm: seeding

49

51

BLAST Algorithm: extension

52

54

55

57

59

BLAST Algorithm: extension

56

58

BLAST Algorithm: Gapped extension

$>$ Gapped extension is triggered after high score ungapped alignments are found

60

61

62

