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Ø Assignment 2 Review

Ø Amino Acid Substitution Matrix
• Information Theory

Ø Statistical Significance of Alignment Scores

Ø Assignment 5

TODAY'S TOPICS
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Log Odds Matrix
• PAM matrix
 S(i,j) = 10log10{M(i,j)/f(i)}
  M(i,j): Mutation probability from AAj to AAi
  f(i): Frequency of AAi (number of AAi / total number of residues) 
   Probability to find AAi by chance

• BLOSUM matrix
 S(i,j) = 2log2(qij/eij) 
  qij: Observed frequency of AAi, AAj pairs
  eij: Expected frequencies of AAi, AAj pairs

• General form
S(i,j) = 1/l log2(qij/pipj)  [in bit unit]
 S(i,j) = 1/l loge(qij/pipj)  [in nat unit]
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Log Odds Matrix

Ø Log odds (Lod) score: general
 also called log odds ratio or log likelihood ratio
 S(i,j) = 1/l log2(qij/pipj)  [in bit unit]
 S(i,j) = 1/l loge(qij/pipj)  [in nat unit]
 qij: the frequency of the amino acid pair, AAi and AAj
 pi, pj: the individual frequency of AAi or AAj
 l : a scaling factor

AA1 AA2
AA1 S11 S21
AA2 S12 S22

S(i,j)=1/llog{                                                             }
Observed freq. of amino acid pair i and j
Expected freq. of amino acid pair i and j

* In the general format, substitutions does not have to be symmetrical.
S12 = S21 is not assumed. 

If l=1/2, 
S(i,j) = 2log2(qij/pipj)
[a half-bit unit]

(1/l=2 is used with BLOSUM)
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AA1 AA2
AA1 S11 S21
AA2 S12 S22

S(i,j)=1/llog{                                                         }
Observed freq. of amino acid pair i,j
Expected freq. of amino acid pair i,j

H1: Homologous hypothesis (residues i and j are related)
H0: Random hypothesis (residues i and j are unrelated)

[- < S(i,j) < +] Background frequency (pipj)

Target frequency (qii)

Log Odds Matrix

Ø Log odds (Lod) score: general
 also called log odds ratio or log likelihood ratio
 S(i,j) = 1/l log2(qij/pipj)  [in bit unit]
 S(i,j) = 1/l loge(qij/pipj)  [in nat unit]
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AA1 AA2
AA1 S11 S21
AA2 S12 S22

Likelihood of H1
Likelihood of H0

Likelihood ratio (LR) =

H1: Hypothesis to be tested, H0: Null hypothesis

Prob(an event|H1)
Prob(an event|H0)=[0 < LR < +inf]

Ø Log odds (Lod) score: general
 also called log odds ratio or log likelihood ratio
 S(i,j) = 1/l log2(qij/pipj) [in bit unit]
 S(i,j) = 1/l loge(qij/pipj)  [in nat unit]

Log Odds Matrix
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AA1 AA2
AA1 S11 S21
AA2 S12 S22

Log likelihood ratio = log{                               }

 = log{Prob(an event|H1)}-log{Prob(an event|H0)}

Likelihood of H1
Likelihood of H0

H1: Hypothesis to be tested, H0: Null hypothesis

[- < log(LR) < +]

Log Odds Matrix

Ø Log odds (Lod) score: general
 also called log odds ratio or log likelihood ratio
 S(i,j) = 1/l log2(qij/pipj)  [in bit unit]
 S(i,j) = 1/l loge(qij/pipj)  [in nat unit]
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Log Odds Score and Target Frequencies

S(i,j) = 1/l loge(qij/pipj) 
 [or S(i,j) = 1/l log2(qij/pipj) for BLOSUM]

lS(i,j) = loge(qij/pipj)
elS(i,j) = qij/pipj

qij = pipjelS(i,j)

SiSj qij = SiSj pipj elS(i,j) = 1
 (i < j) 

Target frequency Expected (or background) frequency

l can be estimated (matrix specific) 
BIOS477/877 L10 - 
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Relative Entropy (H)
Ø Expected Score (E)
 E = SiSj pipjS(i,j) [pi , pj: expected freq. of AAi, AAj]

Ø Relative Entropy (H)
 H = SiSj qij lS(i,j) [qij is observed freq. of AAi, AAj pair]
 • the average information per residue pair
 • summarizes the behavior of the scoring matrix
 • the ability of the matrix to discriminate related from  
  unrelated (nonrandom matching from random matching)
  ➜ H = 0 when target distribution equals to background distribution

  ➜ H increases when the two distributions become more distinguishable
 ➜ can be used to compare scoring matrices

This is "ENTROPY" in Information Theory;
Completely unrelated to "entropy" in 

thermodynamics!!

[ If qij=pipj, S(i,j) = 1/lloge(qij/pipj) = 1/lloge(1) = 0 ]  

AA1 AA2
AA1 S11 S21
AA2 S12 S22
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Introduction to Information Theory
Ø Information:
  a decrease in uncertainty (unpredictability, a 

degree of surprise)

 ➜ if you can guess every answer correctly
  ➜ there is no surprise
  ➜ you cannot gain any new information

 ➜ but if you have no idea what answer you get
  ➜ every answer is a surprise
  ➜ you gain a lot of information

Information Theory Primer by Tom Schneider (also on Canvas):
http://users.fred.net/tds/lab/papers/primer/

• If you are asking questions to somebody...
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A, A, A, A, A, A, A, A, ...

Introduction to Information Theory

Prob(A) = 1
Only one possible symbol

No surprise
No information

Device

Ø Information:
  a decrease in uncertainty (unpredictability, a 

degree of surprise)
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A, B!, A, B!, A, B, A, B, ...

Prob(A) = 0.5
Prob(B) = 0.5

Two possible symbols
A little surprise

A small amount of information

Device

Introduction to Information Theory
Ø Information:
  a decrease in uncertainty (unpredictability, a 

degree of surprise)
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A, B!, C!!, A, B!, C!!, A, B, ...

Prob(A) = 0.33
Prob(B) = 0.33
Prob(C) = 0.33

Three possible symbols
More surprise, More information

Device

Introduction to Information Theory
Ø Information:
  a decrease in uncertainty (unpredictability, a 

degree of surprise)
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A, A, A, A, A, B!!!, A, A, ...

Prob(A) = 7/8
Prob(B) = 1/8

Two possible symbols
Big surprise! A lot more information...?

But not much surprise in getting the symbol A’s

Device

Introduction to Information Theory
Ø Information:
  a decrease in uncertainty (unpredictability, a 

degree of surprise)
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Ø Information is a decrease in uncertainty 
 • Surprising answers convey more information!
 ➜ If each symbol is equally likely, 
  ➜ the amount of information increases with 

the number of different symbols.
 ➜ The amount of information, or surprise of an 

answer, is inversely proportional to its 
probability.

  I(p) = log2(1/p) or I(p) = -log2p
  I: information, p: probability

Introduction to Information Theory
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Ø Bits: the unit for values converted to base 2 logarithms
 (nats: the unit if base e is used)

I(p) = -log2p
 • If an answer is highly unexpected (e.g., p = 0.1), 
  ➜ I(0.1) = -log20.1 = 3.3 bits (more information)
 • For a very much expected answer (e.g., p = 0.9),
  ➜ I(0.9) = -log20.9 = 0.15 bits (less information)
 • If there is only one possible answer (symbol):
  ➜ p = 1, I(p) = 

Introduction to Information Theory
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Ø Information can be represented by a series of symbols 
each with a certain probability:

 • Shannon Entropy: the average information per symbol
  H = -∑pi(log2pi)
 • If all n symbols are equally possible (pi is the same)
  ➜ H = -∑ p(log2p) = -(np x log2p)
    = -log2p,  since np = 1
    = -log2(1/n),  since p = 1/n
    = log2(n)

Introduction to Information Theory

H(1) = log2(1) = 0 bit, H(2) = log2(2) = 1, H(4) = log2(22) = 2
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Ø Information can be represented by a series of symbols 
each with a certain probability:

 • Shannon Entropy: the average information per symbol
  H = -∑pi(log2pi)
 • For a random DNA sequence: ATGC (p = 0.25 for all)

  H = -(0.25 x 4) x log2(0.25) or log2(4) = 2 bits

 • For a AT-rich DNA sequence: pA= pT = 0.45 and pG = pC = 0.05
  H = {-0.45 x (log20.45)} + {-0.45 x (log20.45)} + 

    {-0.05 x (log20.05)} + {-0.05 x (log20.05)} 

     = {-0.45 x (-1.15)} x 2 + {-0.05 x (-4.32)} x 2 = 1.47 bits

Introduction to Information Theory

19
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Relative Entropy (H)
Ø Expected Score (E)
 E = SiSj pipjS(i,j) [pi , pj: expected freq. of AAi, AAj]

Ø Relative Entropy (H)
 H = SiSj qij lS(i,j) [qij is observed freq. of AAi, AAj pair]

 Since S(i,j) = 1/l log2(qij/pipj) or 1/l loge(qij/pipj) 
 H = SiSj qij log2(qij/pipj) or SiSj qij loge(qij/pipj) 
   = SiSj{qijlog2(qij) – qijlog2{pipj)}

Note: Both Expected Score and Relative Entropy have their units 
in bit or nat.

Connection to
H = -Spi(log2pi)
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Comparing Scoring Matrices

Ø Relative Entropy (H) of a scoring matrix
 H = SiSjqijlS(i,j) [qij is observed freq. of AAi, AAj pair]

 • the average information per residue pair for a scoring matrix
 • summarizes the behavior of the scoring matrix
 • the ability of the matrix to discriminate related from 
   unrelated (nonrandom matching from random matching)
  ➜ H=0 when target distribution equals to background 
   distribution
  ➜ H increases when the two distributions become more 
   distinguishable
 ➜ can be used to compare scoring matrices

[ If qij=pipj, S(i,j) = 1/lloge(qij/pipj) = 1/lloge(1) = 0 ]  
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Ø Relative Entropy (H)
 H(PAM1) = 4.17 bits
 H(PAM50) = 2.00
 H(PAM120) = 0.98
 H(PAM160) = 0.70
 H(PAM250) = 0.36

 
BLOSUM62

from Henikoff and Henikoff (1992)

from Altschul (1991)

H decreases with increasing PAM;
H increases with increasing BLOSUM

Higher BLOSUM is generated 
including sequences that are 
more similar to one another

More amino acid pairs are used 

Comparing Scoring Matrices

22

BIOS477/877 L10 - 23

Ø Relative Entropy (H) of a scoring matrix
 H = SiSjqijlS(i,j) 
 • The average information per residue pair for a scoring matrix
 • Decreases with increasing PAM: H(PAM1) > H(PAM120)
  ➜ All PAMn is extrapolated from PAM1
  ➜ Higher PAM is less specific, contains less information, 
   thus has a lower H
 • Increases with increasing BLOSUM: H(BLOSUM45) < H(BLOSUM80)
  ➜ Higher BLOSUM is generated using more data (fewer 
   information is eliminated), thus has a higher H
   [e.g., BLOSUM100 is generated using the threshold 100%; 

only identical sequences are down-weighted for calculation]

Comparing Scoring Matrices
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BLOSUM and PAM matrices

BLOSUM80 BLOSUM62 BLOSUM45

PAM120 PAM160 PAM250

Less divergent More divergent

(default in BLAST)

0.7 bits 0.36 bits0.98 bitsH =

24
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BLOSUM62
#  Matrix made by matblas from blosum62.iij
#  * column uses minimum score

#  BLOSUM Clustered Scoring Matrix in 1/2 Bit Units
#  Blocks Database = /data/blocks_5.0/blocks.dat
#  Cluster Percentage: >= 62

#  Entropy =   0.6979, Expected =  -0.5209
   A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V  B  Z  X  *

A  4 -1 -2 -2  0 -1 -1  0 -2 -1 -1 -1 -1 -2 -1  1  0 -3 -2  0 -2 -1  0 -4 
R -1  5  0 -2 -3  1  0 -2  0 -3 -2  2 -1 -3 -2 -1 -1 -3 -2 -3 -1  0 -1 -4 
N -2  0  6  1 -3  0  0  0  1 -3 -3  0 -2 -3 -2  1  0 -4 -2 -3  3  0 -1 -4 

D -2 -2  1  6 -3  0  2 -1 -1 -3 -4 -1 -3 -3 -1  0 -1 -4 -3 -3  4  1 -1 -4 
C  0 -3 -3 -3  9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4 
Q -1  1  0  0 -3  5  2 -2  0 -3 -2  1  0 -3 -1  0 -1 -2 -1 -2  0  3 -1 -4 

E -1  0  0  2 -4  2  5 -2  0 -3 -3  1 -2 -3 -1  0 -1 -3 -2 -2  1  4 -1 -4 
G  0 -2  0 -1 -3 -2 -2  6 -2 -4 -4 -2 -3 -3 -2  0 -2 -2 -3 -3 -1 -2 -1 -4 
H -2  0  1 -1 -3  0  0 -2  8 -3 -3 -1 -2 -1 -2 -1 -2 -2  2 -3  0  0 -1 -4 

I -1 -3 -3 -3 -1 -3 -3 -4 -3  4  2 -3  1  0 -3 -2 -1 -3 -1  3 -3 -3 -1 -4 
L -1 -2 -3 -4 -1 -2 -3 -4 -3  2  4 -2  2  0 -3 -2 -1 -2 -1  1 -4 -3 -1 -4 

K -1  2  0 -1 -3  1  1 -2 -1 -3 -2  5 -1 -3 -1  0 -1 -3 -2 -2  0  1 -1 -4 
M -1 -1 -2 -3 -1  0 -2 -3 -2  1  2 -1  5  0 -2 -1 -1 -1 -1  1 -3 -1 -1 -4 
F -2 -3 -3 -3 -2 -3 -3 -3 -1  0  0 -3  0  6 -4 -2 -2  1  3 -1 -3 -3 -1 -4 

P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3  . . .

https://ftp.ncbi.nlm.nih.gov/blast/matrices/

S(i,j) = 2log2(qij/eij) 
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Current Protocols in Bioinformatics (2013)

- Default matrices (e.g., BLOSUM62) are good for identifying <25% identity.
- Deep scoring matrices (e.g., BLOSUM62, PAM250) require long sequence 

alignment to achieve significant scores (e.g., >50 bits).
- They are more likely to extend alignments outside of homologous region.

Relative entropy 
(H) 

(V
T

M
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 P
A

M
 t

yp
e)
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- Short alignments require shallow scoring matrices.
- Shallower scoring matrices (e.g., PAM20) are more 

effective when searching over shorter 
evolutionary distances.

Current Protocols in Bioinformatics (2013)
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RBLOSUM

CorBLOSUM
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Substitution matrices for specific proteins

More substitution matrices reviewed in Trivedi & Nagarajaram (2020)
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Pairwise alignment summary
• Alignment score depends on:
 ➜ Scoring matrix (match, mismatch, Ts/Tv, BLOSUM, PAM, etc.)
 ➜ Gap penalty
 ➜ Alignment method (e.g., global or local)
• Alignment scores cannot be compared directly
 ➜ if the scoring systems used are different
 ➜ if sequences compared are different
  (e.g., longer alignments tend to have higher scores)

• Alignment scores are used:
 for searching optimal alignments
 from the alignment matrix 
 for a given pair of sequences 
 based on a given scoring system

Alignment matrix

30
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• Optimal alignments and biologically meaningful alignments 
may not be the same

• Depending on the scoring system, unreasonable alignments 
can become optimal

➜ We need to choose a better (biologically reasonable) scoring 
system: level of divergence (scoring matrices), gap penalty 
(affine, etc.), algorithm (local, global, or semi-global)

➜ Manual adjustment may be necessary
➜ Test statistical significance of the alignment
  (is the alignment possible just by chance?)

Pairwise alignment summary
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Significance of Alignment Scores

Ø Hypothesis testing (General)
 ➜ Two hypotheses
  • Null-hypothesis
   H0: The previous (original) belief is true
  • Alternative hypothesis
   H1: The previous (original) belief is false;
    the new theory is true
 ➜ S: Test statistic
 ➜ Significance level is chosen a priori (e.g., 0.05)
 ➜ P-value: P(S|H0 is true) Probability of getting S if H0 is true
 ➜ If P < Significance level, reject H0

33
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Significance of Alignment Scores

Ø P-value: P(S|H0 is true)
 ➜ Need to be calculated from the test statistic S
 ➜ Need to know the probability distribution of the 

 test statistic S under H0
Central Limit Theorem: 
If the sample size is large enough, 
the sampling distribution of 
the mean of any independent, 
random variables will be normal or 
nearly normal.

Experiment: 1000 coin tossing
- Count the number of heads
- Repeat 1000 experiments

(Expect to see 500 heads/experiment)

(Example)

Mean: 500
SD: 15.7

Normal 
distribution

34
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Significance of Alignment Scores

Ø P-value: P(S|H0 is true)
 ➜ Need to be calculated from the test statistic S
 ➜ Need to know the probability distribution of the 

 test statistic S under H0

Mean: 500
SD: 15.7

Normal distribution
N(µ, s2)

H=540
(the coin 
is likely 
biased)

H=600 (the coin is very 
likely biased)

H=490
(the coin is 
not biased)
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Significance of Alignment Scores
Ø Hypothesis testing for sequence alignment
 ➜ Two hypotheses
  • Null-hypothesis
   H0: Two sequences are not related (random)
  • Alternative hypothesis
   H1: Two sequences are related
 ➜ Test statistic: alignment score (S)
 ➜ Significance level is chosen a priori (e.g., 0.05)
 ➜ P-value: P(S|H0 is true)
  Probability of getting the alignment score S, even if the two 
  sequences are not related but randomly matched
 ➜ If P < Significance level, reject H0
 (The score should not be obtained just by aligning unrelated sequences)

36
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Significance of Alignment Scores

Ø P-value: P(S|H0 is true)
 ➜ Need to be calculated from the test statistic S
 ➜ Need to know the probability distribution of the 

 test statistic S under H0

Normal
distribution

Distribution of alignment 
scores follow

Extreme Value Distribution
(Gumbel distribution)

The probability distribution of 
highest values in an 

experiment
(e.g., optimal alignment scores)

Extreme value
distribution

37
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Significance of Alignment Scores

Score (S)

Pr
ob

ab
ili

ty
 ( P

)

P(S≥x1|H0) >> 0.05

x1 x2 x3

Not significant Significant!

Highly Significant!

P(S=x|H0)

P(S≥x2|H0) < 0.05

Extreme 
value 

distribution
(EVD)

EVD (Gumbel distribution):
P(S<x) = exp[-e-(x-µ)/b]
P(S≥x) = 1-exp[-e-(x-µ)/b]
b: scale parameter
µ: location parameter

e -Kmne-lx

38
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Significance of Alignment Scores
Ø P(S≥x|H0): Probability of getting the alignment score S ≥ x

 Karlin-Altschul equation (Karlin and Altschul 1990)

 P(S≥x) = 1 - exp[-Kmne-lx] ≈ Kmne-lx

 K and l: calculated from the empirical distribution of S based on a 
given scoring matrix and amino acid composition

 m and n: lengths of sequences aligned
 
 ➜ Solved for ungapped local alignments
 ➜ Can be applied for gapped local alignments
Ø E-value = P(S≥x|H0) x N, 
  where N is the number of sequences in the dataset
 ➜ Expected number of sequences in the dataset to have a score ≥ x

BIOS477/877 L10 - 

P(S≥x)=Kmne-lx

EVD (Gumbel distribution):
P(S≥x) = 1-exp[-e-(x-µ)/b]
l = 1/b, µ = (ln Kmn)/l

E-value ≠ P-value

39
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Significance of Alignment Scores

Ø How to calculate K and l (in LALIGN and PRSS)
 ➜ estimated from an empirical probability distribution. 

 1) The second sequence is shuffled many times.
  (simulates random sequences)

 2) Smith-Waterman local alignment score is calculated from 
each alignment: P(S≥x|H0)

 3) The distribution is fitted to an extreme value distribution 
to obtain estimates of K and l

 4) P-value is estimated based on the K and l, and the 
 original alignment score x: P(S≥x) ≈ Kmne-lx

40
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Simulation of Alignment Scores
- RECA_ECOLI (P0A7G6; 353 amino acids) 
- RAD51_YEAST (P25454; 400 amino acids)

Smith-Waterman local alignment score = 293
( BLOSUM50, gap opening: -10, gap extension: -1)

RECA_ECOLI         3 IDENK-QKALAAALGQIEKQFGKGSIMRLGEDRSMDVETISTGSLSLDIA     51
                     |.|.| .|.|..|...:...|...:...:   |..::..::|||.:||..
RAD51_YEAST      124 ISEAKADKLLNEAARLVPMGFVTAADFHM---RRSELICLTTGSKNLDTL    170

RECA_ECOLI        52 LGAGGLPMGRIVEIYGPESSGKTTL------TLQV-IAAAQREGKTCAFI     94
                     || ||:..|.|.|::|...:||:.|      |.|: :.....||| |.:|
RAD51_YEAST      171 LG-GGVETGSITELFGEFRTGKSQLCHTLAVTCQIPLDIGGGEGK-CLYI    218

RECA_ECOLI        95 DAEHALDPI----YARKLGVDID----NLLCSQPDTGEQALEICDALAR-    135
                     |.|..:.|:    .|:::|:|.|    |:..::....::.|.:.||.|: 
RAD51_YEAST      219 DTEGTFRPVRLVSIAQRFGLDPDDALNNVAYARAYNADHQLRLLDAAAQM    268

RECA_ECOLI       136 --SGAVDVIVVDSVAALTPKAEI--EGEIGDSHMGLAARMMSQAMRKLAG    181
                       .....:||||||.||. :.:.  .||:...:|.||..|  :|:::|| 
RAD51_YEAST      269 MSESRFSLIVVDSVMALY-RTDFSGRGELSARQMHLAKFM--RALQRLA-    314

RECA_ECOLI       182 NLKQSNTLLIFINQIRMKI--GVMFG-NPETTTGGNALKFYASVRLDIRR    228
                       .|....::..||:..::  |:.|. :|:...|||.:...::.||    
RAD51_YEAST      315 --DQFGVAVVVTNQVVAQVDGGMAFNPDPKKPIGGNIMAHSSTTRL----    358

RECA_ECOLI       229 IGAVKEGENVVGSETRVKVVKNKIAAPFKQAEFQILYGEGI    269
                       ..|:|:   |.:...||| :....|..:..|.| |.:|:
RAD51_YEAST      359 --GFKKGK---GCQRLCKVV-DSPCLPEAECVFAI-YEDGV    392

https://www.ebi.ac.uk/jdispatcher/psa/emboss_water
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Simulation of Alignment Scores

Shuffle RAD51_YEAST 1000 times
(generate 1000 random sequences)

Align with RECA_ECOLI
(generate 1000 random local alignments)

RECA_ECOLI

Shuffled 
RAD51_YEAST 

(score?) (score?) (score?) (score?) (score?)

- RECA_ECOLI (P0A7G6; 353 amino acids) 
- RAD51_YEAST (P25454; 400 amino acids)

Smith-Waterman local alignment score = 293
( BLOSUM50, gap opening: -10, gap extension: -1)

42
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Smith-Waterman local alignment scores

Simulation of Alignment Scores

293

From 1000 random 
alignments

- RECA_ECOLI (P0A7G6; 353 amino acids) 
- RAD51_YEAST (P25454; 400 amino acids)

Smith-Waterman local alignment score = 293
( BLOSUM50, gap opening: -10, gap extension: -1)

43
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Smith-Waterman local alignment scores

Simulation of Alignment Scores
Random alignment score distribution

EVD (Gumbel distribution)

P(S≥x)=Kmn e-lx

Fitting the curve to 
estimate K and l

44
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FASTA Web server by William Pearson

https://fasta.bioch.virginia.edu
/wrpearson/

Original FASTA 
package was 
released on 

1988 (earlier 
than BLAST)

The origin of 
FASTA format

https://fasta.bioch.virginia.edu/fasta_www2/fasta_list2.shtml
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