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TODAY'S TOPICS
> Assignment 2 Review

> Amino Acid Substitution Matrix
¢ Information Theory

> Statistical Significance of Alignment Scores

Log Odds Matrix

* PAM matrix
S(ixf) = 10logro{M(iy) (i)}

M(i,j): Mutation probability from AA; to AA;
fi): Frequency of AA; (number of AA;/ total number of residues)
Probability to find AA; by chance

¢ BLOSUM matrix
S(iy) = 2logx(gijle;)
q;: Observed frequency of AA;, AA; pairs
e;;: Expected frequencies of AA;, AA; pairs
* General form
S@EH=14 log:(gi/pipj) [in bit unit]
S(iy) = 1/Aloge(qii/pipj) [in nat unit]

BIOS477/877 L10 -3

> Assignment 5
AR, (AR,
Relative Entropy (H) [2»5u/s»
AR;|S12|S22

> Expected Score (E)
E =X.3; pip;S(i) Ipi> pi: expected freq. of AA;, AA]]

This is "ENTROPY" in Inf tion The A
> Relative Entropy (H) [ lZc:rsnplefely unrel::"re:i‘ f?:r::l;::py"?:ry ]

thermodynamicsl!
H =2.%; q;; AS(i-)) |g; is observed freq. of AA;, AA, pair]
« the average information per residue pair
» summarizes the behavior of the scoring matrix
o the ability of the matrix to discriminate related from
unrelated (nonrandom matching from random matching)
=» H = 0 when taraet distribution eauals to backaround distribution
[ If qi=pipi, S(ij) = 1/Moge(qipipi) = 1/Aloge(1) =0 ]
=» H increases when the two distributions become more distinguishable
=> can be used to compare scoring matrices BIOS477/877 L10 -4

Introduction to Information Theory

> Information:
a decrease in uncertainty (unpredictability, a
degree of surprise)

¢ [f you are asking questions to somebody...

=> if you can guess every answer correctly
=> there is no surprise
=> you cannot gain any new information

=> but if you have no idea what answer you get
=> every answer is a surprise
=> you gain a lot of information

Information Theory Primer by Tom Schneider (also on Canvas):
http://users.fred.net/tds/lab/papers/primer/
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Introduction to Information Theory

> Information:
a decrease in uncertainty (unpredictability, a
degree of surprise)

> A AAAAAAA,..

Prob(A) =1
Only one possible symbol

No surprise
No information
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http://users.fred.net/tds/lab/papers/primer/

Introduction to Information Theory

> Information:
a decrease in uncertainty (unpredictability, a
degree of surprise)

w—> A,B,AB,ABA,B,..

Prob(A) = 0.5
Prob(B) = 0.5

Two possible symbols
A little surprise
A small amount of information
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Introduction to Information Theory

> Information:
a decrease in uncertainty (unpredictability, a
degree of surprise)

—> A,BI,Cl ABl.ClA,B,..

Prob(A) = 0.33
Prob(B) = 0.33
Prob(C) = 0.33

Three possible symbols
More surprise, More information

BIOS477/877 L10 -8

Introduction to Information Theory

> Information:
a decrease in uncertainty (unpredictability, a
degree of surprise)

= A A AAABIAA,..

Prob(A) =7/8
Prob(B) = 1/8
Two possible symbols
Big surprise! A lot more information...?

But not much surprise in getting the symbol A’ s
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Introduction to Information Theory

> Information is a decrease in uncertainty
o Surprising answers convey more information!

=> If each symbol is equally likely,
=> the amount of information increases with
the number of different symbols.

=> The amount of information, or surprise of an
answer, is inversely proportional to its
probability.

I(p) =logx(1/p) or I(p) =-log:p
I information, p: probability
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Introduction to Information Theory

> Bits: the unit for values converted to base 2 logarithms
(nats: the unit if base e is used)

I(p) = -logyp

¢ [f an answer is highly unexpected (.., p = 0.1),
= 1(0.1) = -log0.1 = 3.3 bits (more information)

¢ For a very much expected answer (.., p = 0.9),
= 1(0.9) = -10g,0.9 = 0.15 bits (less information)

o [f there is only one possible answer (symbol):
>p=1,1(p) =*
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Introduction to Information Theory

> Information can be represented by a series of symbols
each with a certain probability:

¢ Shannon Entropy: the average information per symbol
H = -} pi(log:pi)
e If all » symbols are equally possible (p; is the same)
= H=-} p(log:p) = -(np x logp)
= -logyp, since np=1
= -logy(1/n), since p=1/n
= log,(n)
H(1) =log(1) = 0 bit, H(2) =log:(2) = 1, H(4) = log,(2?) =2
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Introduction to Information Theory

> Information can be represented by a series of symbols
each with a certain probability:

¢ Shannon Entropy: the average information per symbol
H=-3pi(log:pi)

 For a random DNA sequence: ATGC (p = 0.25 for all)
H = -(0.25 x 4) x log,(0.25) or log,(4) = 2 bits

 For a AT-rich DNA sequence: p,= p; = 0.45 and p¢ = pc = 0.05
H = {-0.45 x (log,0.45)} + {-0.45 x (log,0.45)} +

{-0.05 x (10g;0.05)} + {-0.05 x (log,0.05)}
= {-0.45 x (-1.15)} x 2 + {-0.05 x (-4.32)} x 2 = 1.47 bits
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Gomparing Scoring Matrices

> Relative Entropy (H) of a scoring matrix
H= Z,Z]qyﬂS(i,]') [¢i is observed freq. of AA;, AA; pair]
o the average information per residue pair for a scoring matrix
* summarizes the behavior of the scoring matrix
o the ability of the matrix to discriminate related from
unrelated (nonrandom matching from random matching)
=> H=0 when target distribution equals to background
distribution [ If gi=pp;, SGij) = VAloge(quipp) = 1/Aloge(1) =0 ]
=» H increases when the two distributions become more
distinguishable

=> can be used to compare scoring matrices
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Comparing Scoring Matrices

> Relative Entropy (H) of a scoring matrix
H = 2.3,4;A8(i )
* The average information per residue pair for a scoring matrix

© Decreases with increasing PAM: H(PAM1) > H(PAM120)
= All PAMr is extrapolated from PAM1
- Higher PAM is less specific, contains less information,
thus has a lower H
o Increases with increasing BLOSUM: H(BLOSUM45) < H(BLOSUMS0)
= Higher BLOSUM is generated using more data (fewer
information is eliminated), thus has a higher H

[ [e.9.. BLOSUMIOO is generated using the threshold 100%: ]

only identical sequences are down-weighted for calculation]
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Relative Entropy (H)

> Expected Score (E)
E= Z,Zj p,p]S(i,]') [Pi» p;: expected freq. of AA;, AA)]
> Relative Entropy (H)
H=X%;q; AS(.f) 1ayis observed freq. of AA, AA; pair]
Since S(i,)) = 1/4 log:(g;/pip;) or 1/A 1og.(q;/pip;)
H =%3 g;l0g:(qi/pp)) OF Z:Z; q;108.(qi/pip))

= Z2;{qilog.(qy) — gilog:{pip))} Connection to
H = -Zp{log:p;)

Note: Both Expected Score and Relative Entropy have their units
in bit or nat.
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Comparing Scoring Matrices
> Relative Entropy (H) o T
H(PAM1) = 4.17 bits
H(PAM50) = 2.00

H(PAM120) = 0.98
H(PAM160) = 0.70 ¢—
H(PAM250) = 0.36

from Altschul (1991)

Total pairs (x10°5)

Relative entropy

Relative
entropy

BLOSUM62[™

H increases with increasing BLOSUM

[ H decreases with increasing PAM: ]
0.1

40 60 80 100
% clustering

Higher BLOSUM is generated
including sequences that are
more similar to one another

-

FiG. 1. Relationship between percentage clustering and total
amino acid pair counts plotted on a logarithmic scale and relative
entropy.

from Henikoff and Henikoff (1992)
More amino acid pairs are used
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BLOSUM and PAM matrices
(default in BLAST)
BLOSUMS0 BLOSUM62 BLOSUM45
Gl [ More divergert]
H = 0.98 bits 0.7 bits 0.36 bits
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BLOSUM62

# Matrix made by matblas from blosum62.iij
# * column uses minimum score
# BLOSUM Clustered Scoring Matrix in 1/2 Bit units S(&yj) = 2logx(gilei)
# Blocks Database = /data/blocks_5.0/blocks.dat
# Cluster Percentage: >= 62
# _Entropy = 0.6979, Expected = -0.5209

A R N D C Q E G H I L K M F P S T W Y V B 2z X *
A 4-1-2-2 0-1-1 0-2-1-1-1-1-2-1 1 0-3-2 0-2-1 0-4
R-1 5 0-2-3 1 0-2 0-3-2 2-1-3-2-1-1-3-2-3-1 0-1-4
N-2 0 6 1-3 0 0 0 1-3-3 0-2-3-2 1 0-4-2-3 3 0-1-4
D-2-2 1 6-3 0 2-1-1-3-4-1-3-3-1 0-1-4-3-3 4 1-1-4
c 0-3-3-3 9-3-4-3-3-1-1-3-1-2-3-1-1-2-2-1-3-3-2-4
-1 1 0 0-3 5 2-2 0-3-2 1 0-3-1 0-1-2-1-2 0 3-1-4
E-1 0 0 2-4 2 5-2 0-3-3 1-2-3-1 0-1-3-2-2 1 4-1-4
G 0-2 0-1-3-2-2 6-2-4-4-2-3-3-2 0-2-2-3-3-1-2-1-4
H-2 0 1-1-3 0 0-2 8-3-3-1-2-1-2-1-2-2 2-3 0 0-1-4
I-1-3-3-3-1-3-3-4-3 4 2-3 1 0-3-2-1-3-1 3-3-3-1-4
L-1-2-3-4-1-2-3-4-3 2 4-2 2 0-3-2-1-2-1 1-4-3-1-4
K-1 2 0-1-3 1 1-2-1-3-2 5-1-3-1 0-1-3-2-2 0 1-1-4
M-1-1-2-3-1 0-2-3-2 1 2-1 5 0-2-1-1-1-1 1-3-1-1 -4
F-2-3-3-3-2-3-3-3-1 0 0-3 0 6-4-2-2 1 3-1-3-3-1-4
P-1-2-2-1-3-1-1-2-2-3 . ..
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Selecting the Right Similarity-Scoring

Matrix Relative entropy
William R. Pearson’ Current Protocols in Bioinformatics (2013) (
Table 3.5.1 Scoring Matrix Target Identity. Content, aps Length®

B Random 50-bit
Matrix Gap penalty” % ldentity position | alignment length  length

SSEARCH version 36.3.6

BLOSUMSO0- o2 253 021 160
T BLOSUMe2 111 280 o010 se
S vrmL 16054 1272 230 o2s 139
+ vrTMmML 140 1071 28.4 044 82
= vrmLazo 111 321 osa ez
£ vrmeso 101 a0.5 o074 a7
3 VIML 40 131 647 102 18
I vrMmL 20 152 86.1 330 1
E vramiio rer2 505 s o
S BLAST version 2.2.27+
BLOSUMSO® 132 204 o030 ss
BLOSUM62 111 206 oa1 82
BLOSUMSO 100 320 oas o
PAM70 1001 330 oss s
PAM30 on as.0 090 34 s6

Default matrices (e.g., BLOSUM62) are good for identifying <25% iderm"ry.\
Deep scoring matrices (e.g., BLOSUM62, PAM250) require long sequence
alignment to achieve significant scores (e.g., >50 bits).

- They are more likely to extend alignments outside of homologous region.
BIOS477/877 L10 -21
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Selecting the Right Similarity-Scoring

Matrix
William R. Pearson’ Current Protocols in Bioinformatics (2013)
VIML 20 BLOSUM62
A R N D C Q E A R N D C Q E
A 4
R -1 5
N -2 0 6

0 -3 -3 -3 9
-1 1 0 0 -3 5
-1 0 0 2 -4 2 5

-4 -13

A
R
N
D -2 -2 1 6
c
Q

-5 -10 -5 -1 -14 -7 E

Figure 3.5.2 Comparison of a “shallow” (VTML 20) and “deep” (BLOSUM62) scoring matrix.
Both matrices are scaled in 1/2-bits. For the small part of the matrices shown here, the VTML20
matrix produces an average 2.80 half-bit identity score, and an average —0.59 nonidentical score
(weighted by amino-acid abundance). In contrast, BLOSUM62 produces 1.86 for identities but
only —0.06 for nonidentities. Thus. VTML20 targets shorter, higher-identity alignments. because
it penalizes nonidentities much more strongly.

- Short alignments require shallow scoring matrices.
- Shallower scoring matrices (e.g., PAM20) are more
effective when searching over shorter

evolutionary distances. BIOS477/877 L10 -22

CORRESPONDENCE VOLUME 26 NUMBER 3 MARCH 2008 NATURE BIOTECHNOLOGY

BLOSUMG62 miscalculations
improve search performance

Mark P Styczynski*>%, Kyle L Jensen>>5,
Isidore Rigoutsos* & Gregory Stephanopoulos'

Hess et al. BMC Bioinformatics (2016) 17:189
DOI 10.1186/512859-016-1060-3

BMC Bioinformatics

Addressing inaccuracies in BLOSUM ®-

computation improves homology search

performance CorBLOSUM

Martin Hess'-2t, Frank Keul?"!, Michael Goesele! and Kay Hamacher?
BMC Research Notes

Govindarajan et al. BMC Res Notes (2018) 11:328
https://doiorg/10.1186/513104.018-3415-5

RESEARCH NOTE

RBLOSUM performs better
than CorBLOSUM with lesser error per query

Renganayaki Govindarajan”®, Biji Christopher Leela and Achuthsankar S. Nair
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Substitution matrices for specific proteins

BMC Bioinformatics

PFASUM: a substitution matrix from Pfam ®
structural alignments

Vol. 27 ISMB 2011, pages i15-123
doi:10.1093/bioinformatics/btr230

Environment specific substitution tables improve membrane
protein alignment
Jamie R. Hill', Sebastian Kelm', Jiye Shi?-® and Charlotte M. Deane™*

More substitution matrices reviewed in Trivedi & Nagarajaram (2020)
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Pairwise alignment summary

 Alignment score depends on:
= Scoring matrix (match, mismatch, Ts/Tv, BLOSUM, PAM, etc.)
= Gap penalty
= Alignment method (e.g., global or local)

¢ Alignment scores cannot be compared directly
=3 if the scoring systems used are different
= if sequences compared are different
(e.g., longer alignments tend to have higher scores)

* Alignment scores are used: < Alignment matrix |

for searching optimal alignments
from the alignment matrix

for a given pair of sequences
based on a given scoring system
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https://ftp.ncbi.nlm.nih.gov/blast/matrices/

(om

c
Bioinformatics

METHODOLOGY ARTICLE Open Access

Improving pairwise sequence alignment accuracy
using near-optimal protein sequence alignments
Michael L Sierk’, Michael E Smoot?, Ellen J Bass®, William R Pearson®”
A. 1hdaB00 vs 1mytA00 B. 1bcgA00 vs 1b7dA00
HoH A OHCH W E s

LI Ll e & H

uod —=e 7 60 {"/ Z

120 | — Maras V4

suboptimal{‘ . 73%

., 1b7dA00

2 40 6 8 100 120 10 2 20 )
1hdag0o 1begA00
Alignment paths of structure-based, and optimal and suboptimal sequence alignments. Two
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Significance of Alignment Scores

> Hypothesis testing (General)
=> Two hypotheses
© Null-hypothesis
Ho: The previous (original) belief is true
e Alternative hypothesis
H;: The previous (original) belief is false;
the new theory is true
=> §: Test statistic
=> Significance level is chosen a priori (e.g., 0.05)
=> P-value: P(S|Hj is true) Probability of getting  if H, is true
= If P < Significance level, reject Hy
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Significance of Alignment Scores

> P-value: P(S|H, is true)
=> Need to be calculated from the test statistic .S

=> Need to know the probability distribution of the
test statistic S under Hy

N | distributi S: # of head
ormal distribution Mean: 500
Ny, o) s‘l::"15.7 P(S2490[Ho) >> 0.05
BN P(S2540Ho) < 0.05
P(5>600|Ho) << 0.05
2 ® H=540
I (the coin o
e [ H=600 (the coin is very
i ;,si,:'s':ﬂ‘)/ ,/  likely biased)
=1 H=49Q ; -
(the coinis i /

not biased)

AN
QA

T T T
400 as0 550 BIOS477/877 L10 -30

500
(H: # head)
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Pairwise alignment summary (continued)

 Optimal alignments and biologically meaningful alignments
may not be the same

* Depending on the scoring system, unreasonable alignments
can become optimal

=> We need to choose a better (biologically reasonable) scoring
system: level of divergence (scoring matrices), gap penalty
(affine, efc.), algorithm (local, global, or semi-global)

=> Manual adjustment may be necessary

=> Test statistical significance of the alignment
(is the alignment possible just by chance?)
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Significance of Alignment Scores

» P-value: P(S|H, is true)

=> Need to be calculated from the test statistic .S
=> Need to know the probability distribution of the
test statistic .S under H,
Central Limit Theorem:

Mean (u): 500
If the sample size is large enough,

8
Sb (o) 157
the sampling distribution of g
the mean of any independent, - Normal
random variables will be normal or g2 distribution
g Ny, &)
nearly normal. < g
(Example) e
Experiment: 1000 coin tossing <
- Count the number of heads
- Repegt 1000 experiments . 50 500 550 o0
(Expect to see 500 heads/experiment) #head BI0S477/877 L10 -29
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Significance of Alignment Scores

> Hypothesis testing for sequence alignment
=> Two hypotheses

e Null-hypothesis

Hj: Two sequences are not related (random)
e Alternative hypothesis
H;: Two sequences are related

= Test statistic: alignment score (S)
=> Significance level is chosen a priori (e.4., 0.05)
=> P-value: P(S|Hj is true)
Probability of getting the alignment score S, even if the two
sequences are not related but randomly matched

= If P < Significance level, reject H,
(The score should not be obtained just by aligning unrelated sequences)
BIOS477/877 L10 -31
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Significance of Alignment Scores

» P-value: P(S|Hj is true)
= Need to be calculated from the test statistic .S
=> Need to know the probability distribution of the
test statistic .S under Hy

Extreme Value Distribution of alignment

Distribution scores follow
Normal (EVD) Extreme Value Distribution
distribution (6umbel distribution)

The probability distribution of
highest values in an

'
\
v
\
\,

exrerimen
(e.g., optimal alignment scores)

T T *f T
d00 450 500 550 600 BIOS477/877 L10 -32

Significance of Alignment Scores

EVD (Gumbel distribution): /'
P(S<x) = exp|-¢ ] ="
P(S2x) = 1-exp|-c 4]

B scale parameter
4 location parameter

P(S=x{H)

P(S2x1[Ho) >> 0.05
P($2x,|Hy) < 0.05

P(S>x2|Hp) <4< 0.05
A EigE!y Signiﬁicum'.
Score (S) —> 4 i 4

X1 2 X3

Not significant

Probability (P)—>
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Significance of Alignment Scores

> P(S=x|H,): Probability of getting the alignment score S > x

Karlin-Altschul equation (kariin and Altschul 1990) EVD (Gumbel distribution):
_ Xl ~ Ax P(S>x) = 1-exp[-¢ 2]
P(S5>x) =1 - exp[-Kmne*]| = Kmne A= 1B, = (n Kmn)/A

K and A: calculated from the empirical distribution of S based on a
given scoring matrix and amino acid composition

m and n: lengths of sequences aligned

P(S2X)=Kmne*

- Solved for ungapped local alignments
- Can be applied for gapped local alignments

> E-value = P(S>x|H)) x N,
where N is the number of sequences in the dataset
- Expected number of sequences in the dataset to have a score > x
E-value # P-value
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Simulation of Alignment Scores

- RECA_ECOLI (POA7G6; 353 amino acids)
- RAD51_YEAST (P25454; 400 amino acids)

Smith-Waterman local alignment score =293
( BLOSUM50, gap opening: -10, gap extension: -1)

RECA_ECOLT
RADS1_YEAST
RECA_ECOLT
RADS1_YEAST
RECA_ECOLT
RADS1_YEAST
RECA_ECOLT
RADS1_YEAST
RECA_ECOLT
RADS1_YEAST
RECA_ECOLT

RADS1_YEAST

3

124

51
Tl

[N
£

https:

www.ebi.ac

water.
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Significance of Alignment Scores

> How to calculate K and A (in LALIGN and PRSS)
- estimated from an empirical probability distribution.

1) The second sequence is shuffled many times.
(simulates random sequences)

2) Smith-Waterman local alignment score is calculated from
each alignment: P(S>x|H,)

3) The distribution is fitted to an extreme value distribution
to obtain estimates of K and 1

4) P-value is estimated based on the K and A4, and the
original alignment score x: P(S>x) = Kmne-**
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Simulation of Alignment Scores

- RECA_ECOLI (POA7G6; 353 amino acids)
- RAD51_YEAST (P25454; 400 amino acids)

Smith-Waterman local alignment score = 293
( BLOSUM50, gap opening: -10, gap extension: -1)

Shuffle RAD51_YEAST 1000 titmes
(generate 1000 random sequences)

4
Align with RECA_ECOLT
(generate 1000 random local alignments)

REcA_EcOLr > NN NN NN IS
“bsi';"g'g. > O (T T T e
(score?) (score?) (score?) (score?) (score?)
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https://www.ebi.ac.uk/jdispatcher/psa/emboss_water

Simulation of Alignment Scores

s
g4
-RECA_ECOLI (POA7G6; 353 amino acids)
a -RAD51_YEAST (P25454; 400 amino acids)
2 Smith-Waterman local alignment score = 293
[]  (BLOSUMSO0, gap opening: -10, gap extension: -1)
s 1
. 8
3
§
3 From 1000 random
b g alignments
. e e
ECTTH CBOCD CCBOD [T BCET
o
]
° T T T T T T
30 40 50 60 70 80 %

Smith-Waterman local alignment scores

293
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Frequency

100

60

40

20

Simulation of Alignment Scores

Random alignment score distribution

? I EVD (6umbel distribution)

P(S=x)=Kmn e

Fitting the curve to

estimate K and A

T T T T T f T
30 40 50 60 70 80 90

Smith-Waterman local alignment scores
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FASTA Web server by William Pearson

FASTA Sequence Comparison at the U. of Virginia

A

i
Nadl

hitps://fasta.bioch.virginia.cdu

New: Actsion fetres vatabe o
UVa FASTA Server ‘SwissProuPIR1 liorary searches.
svou
* Getling st databes ‘sequence. Other programs
p=edetet Ui BLAST FASTA s b usd o ar
O EasTA Sovecs | famies
« ovaLze
* RECG v
0= Protein Nucleotide
-
+ Prosnpn FASTA o
s . >
* Psteessry | 8 :
 Snce

* FASTSFASTE

tastxhizety)

CHAPS -Convert| + Pepides vs Tranlated DN (tasts)
Huiis and

Profies

Near opimal

aigument Local Duplications.

FASTA Exercises

« EMBLESI Sorve

(ggsearch)

« GlobaliLoca potein-proein (glsearch)

= Protan-prtei wih unordered pepices (fasts)

= Proiein potein win mixed pepide sequences
(tasty)

Transiated Statitcal ignificance '
.

st | o
DINA v DNA sl (prss)
nvs < Translated DN

Protons (fastuasty)
« e

2 Pl DNA slgrment "Gotpit (plalign)

hovireinia.cdw/fasta www/fasta lis2.shiml

Original FASTA
package was
released on
1988 (earlier

than BLAST)

The origin of
FASTA format
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https://fasta.bioch.virginia.edu/fasta_www2/fasta_list2.shtml

