

1

Log Odds Matrix

- PAM matrix

$$
S(i, j)=10 \log _{10}\{M(i, j) / f(i)\}
$$

$M(i, j)$: Mutation probability from AA_{j} to AA_{i}
$f(i)$: Frequency of $A A_{i}$ (number of $A_{A_{i}} /$ total number of residues) Probability to find $\mathrm{AA}_{\boldsymbol{i}}$ by chance

- BLOSUM matrix
$S(i, j)=2 \log _{2}\left(q_{i j} / e_{i j}\right)$
$q_{i j}$: Observed frequency of $\mathrm{AA}_{i}, \mathrm{AA}_{j}$ pairs
$e_{i j}$: Expected frequencies of $A A_{i}, \mathrm{AA}_{j}$ pairs
- General form
$S(i, j)=1 / \lambda \log _{2}\left(\mathrm{q}_{i j} / p_{i} p_{j}\right)$ [in bit unit]
$S(i, j)=1 / \lambda \log _{\mathrm{e}}\left(q_{i j} / p_{i} p_{j}\right)$ [in nat unit]

3

\section*{Log Odds Matrix
 | | $\mathbf{A A}_{1}$ | AA_{2} | |
| :--- | :--- | :--- | :--- |
| AA_{1} | $\mathrm{~S}_{11}$ | $\mathrm{~S}_{21}$ | |
| AA_{2} | $\mathrm{~S}_{12}$ | $\mathrm{~S}_{22}$ | |
| | | | |}

Log odds (Lod) score: general also called log odds ratio or log likelihood ratio
$S(i, j)=1 / \lambda \log _{2}\left(\mathrm{q}_{i j} / p_{i} p_{j}\right)$ [in bit unit]
$S(i, j)=1 / \lambda \log _{\mathrm{e}}\left(q_{i j} / p_{i} p_{j}\right)$ [in nat unit]

$$
\begin{aligned}
& \mathrm{S}(\mathrm{i}, \mathrm{j})=1 / \lambda \log \left\{\begin{array}{l}
\text { Observed freq. of amino acid pair } \mathrm{i}, \mathrm{j} \\
{[-<S(i, j)<+]}
\end{array}\right\}
\end{aligned}
$$

H_{1} : Homologous hypothesis (residues i and j are related)
H_{0} : Random hypothesis (residues i and j are unrelated)

TODAY'S TOPICS

Assignment 2 Review
Amino Acid Substitution Matrix

- Information Theory

Statistical Significance of Alignment Scores
Assignment 5

2

4

Log Odds Matrix

	AA_{1}	AA_{2}	
AA_{1}	$\mathrm{~S}_{11}$	$\mathrm{~S}_{21}$	
AA_{2}	$\mathrm{~S}_{12}$	$\mathrm{~S}_{22}$	

$>$ Log odds (Lod) score: general also called log odds ratio or log likelihood ratio
$S(i, j)=1 / \lambda \log _{2}\left(\mathrm{q}_{i j} / p_{i} p_{j}\right)$ [in bit unit] $S(i, j)=1 / \lambda \log _{\mathrm{e}}\left(q_{i j} / p_{i} p_{j}\right)$ [in nat unit]

Likelihood ratio $(L R)=\frac{\text { Likelihood of } H_{1}}{\text { Likelihood of } H_{0}}$

$$
[0<\text { LR }<+ \text { inf }] \quad=\frac{\operatorname{Prob}\left(\text { an event } \mid \mathrm{H}_{1}\right)}{\operatorname{Prob}\left(\text { an event } \mid \mathrm{H}_{0}\right)}
$$

H_{1} : Hypothesis to be tested, H_{0} : Null hypothesis
BIOS477/877 L10-6

6

7

9

Introduction to Information Theory

> Information:
a decrease in uncertainty (unpredictability, a degree of surprise)

Device

$\longrightarrow A, A, A, A, A, A, A, A, \ldots$
$\operatorname{Prob}(A)=1$ Only one possible symbol

No surprise No information

Log Odds Score and Target Frequencies

$S(i, j)=1 / \lambda \log _{\mathrm{e}}\left(q_{i j} / p_{i} p_{j}\right)$
[or $S(i, j)=1 / \lambda \log _{2}\left(q_{i j} / p_{i} p_{j}\right)$ for BLOSUM]

$$
\begin{gathered}
\lambda S\left(i_{i} j\right)=\log _{\mathrm{e}}\left(q_{i j} / p_{i} p_{j}\right) \\
e^{\lambda S(i, j)}=q_{i j} / p_{i} p_{j} \\
q_{i j}=p_{i} p_{j} e^{\lambda S(i, j)} \\
\text { Target frequency } \\
\Sigma_{i} \Sigma_{j} q_{i j}=\Sigma_{i} \Sigma_{j} p_{i} p_{j} e^{\lambda S(i, j)=1} \\
\lambda \text { can be estimated (matrix specific) }
\end{gathered}
$$

8

Introduction to Information Theory

Information:
a decrease in uncertainty (unpredictability, a degree of surprise)

- If you are asking questions to somebody...
\rightarrow if you can guess every answer correctly
\rightarrow there is no surprise
\rightarrow you cannot gain any new information
\rightarrow but if you have no idea what answer you get
\rightarrow every answer is a surprise
\rightarrow you gain a lot of information
Information Theory Primer by Tom Schneider (also on Canvas): http://users.fred.net/dds/lab/papers/primer/

Introduction to Information Theory

Information:
a decrease in uncertainty (unpredictability, a degree of surprise)

Device $\amalg A, B!, A, B!, A, B, A, B, \ldots$

$\operatorname{Prob}(A)=0.5$
$\operatorname{Prob}(B)=0.5$
Two possible symbols
A little surprise A small amount of information

13

Introduction to Information Theory

$>$ Information is a decrease in uncertainty

- Surprising answers convey more information!
\rightarrow If each symbol is equally likely,
\rightarrow the amount of information increases with the number of different symbols.
\rightarrow The amount of information, or surprise of an answer, is inversely proportional to its probability.
$I(p)=\log _{2}(1 / p)$ or $I(p)=-\log _{2} p$
I: information, p : probability

15

Introduction to Information Theory

$>$ Information can be represented by a series of symbols each with a certain probability:

- Shannon Entropy: the average information per symbol $H=-\sum p_{i}\left(\log _{2} p_{i}\right)$
- If all \boldsymbol{n} symbols are equally possible ($\boldsymbol{p}_{\boldsymbol{i}}$ is the same)
$\rightarrow H=-\sum p\left(\log _{2} p\right)=-\left(n p \times \log _{2} p\right)$
$=-\log _{2} p$, since $n p=1$
$=-\log _{2}(1 / n)$, since $p=1 / n$
$=\log _{2}(n)$
$H(1)=\log _{2}(1)=0$ bit, $H(2)=\log _{2}(2)=1, H(4)=\log _{2}\left(2^{2}\right)=2$
BIOS477/877 L10-18

Introduction to Information Theory
$>$ Information:
a decrease in uncertainty (unpredictability, a degree of surprise)

Device $\longrightarrow A, A, A, A, A, B!!!, A, A, \ldots$
$\operatorname{Prob}(A)=7 / 8$
$\operatorname{Prob}(B)=1 / 8$
Two possible symbols
Big surprise! A lot more information...?
But not much surprise in getting the symbol A 's
BIOS477/877 L10 - 14
14

Introduction to Information Theory

$>$ Bits: the unit for values converted to base $\mathbf{2}$ logarithms (nats: the unit if base e is used)

$$
I(p)=-\log _{2} p
$$

- If an answer is highly unexpected (e.g., $p=0.1$), $\rightarrow I(0.1)=-\log _{2} 0.1=3.3$ bits (more information)
- For a very much expected answer (e.g., $p=0.9$), $\rightarrow I(0.9)=-\log _{2} 0.9=0.15$ bits (less information)
- If there is only one possible answer (symbol):
$\rightarrow p=1, I(p)=$?

16

$$
\begin{aligned}
& \text { Introduction to Information Theory } \\
& >\text { Information can be represented by a series of symbols } \\
& \text { each with a certain probability: } \\
& \text { - Shannon Entropy: the average information per symbol } \\
& H=-\sum p_{i}\left(\log _{2} p_{i}\right) \\
& \text { - For a random DNA sequence: } \operatorname{ATGC}(p=0.25 \text { for all) } \\
& H=-(\mathbf{0 . 2 5} \times 4) \times \log _{2}(\mathbf{0 . 2 5}) \text { or } \log _{2}(4)=2 \text { bits } \\
& \text { - For a AT-rich DNA sequence: } p_{\mathrm{A}}=p_{\mathrm{T}}=0.45 \text { and } p_{\mathrm{G}}=p_{\mathrm{C}}=\mathbf{0 . 0 5} \\
& H=\left\{-\mathbf{0 . 4 5} \times\left(\log _{2} \mathbf{0} .45\right)\right\}+\left\{-\mathbf{0 . 4 5} \times\left(\log _{2} 0.45\right)\right\}+ \\
& \left\{-0.05 \times\left(\log _{2} 0.05\right)\right\}+\left\{-0.05 \times\left(\log _{2} 0.05\right)\right\} \\
& =\{-0.45 \times(-1.15)\} \times 2+\{-0.05 \times(-4.32)\} \times 2=1.47 \text { bits }
\end{aligned}
$$

Relative Entropy (H)

Expected Score (E)
$E=\Sigma_{i} \Sigma_{j} p_{i} p_{j} S(i, j)\left[p_{i}, p_{j}\right.$: expected freq. of $\mathrm{AA}_{i}, \mathrm{AA}_{j} \mid$
Relative Entropy (H)
$H=\Sigma_{i} \Sigma_{j} q_{i j} \lambda S(i, j){ }_{\left[q_{j} i \text { is observed freq. of } \mathrm{AA}_{i}, \mathrm{AA}_{j} \text { pair }\right]}$
Since $S\left(i_{, j}\right)=1 / \lambda \log _{2}\left(q_{j} / p_{i} p_{j}\right)$ or $1 / \lambda \log _{e}\left(q_{i j} / p_{i} p_{j}\right)$
$H=\Sigma_{i} \Sigma_{j} q_{i j} \log _{2}\left(q_{i j} / p_{i} p_{j}\right)$ or $\Sigma_{i} \Sigma_{j} q_{i j} \log _{e}\left(q_{i j} / p_{i} p_{j}\right)$

Note: Both Expected Score and Relative Entropy have their units in bit or nat.

Comparing Scoring Matrices

Relative Entropy (H)
$H($ PAM1 $)=4.17$ bits
$H($ PAM50 $)=2.00$
$H($ PAM120) $=0.98$
H (PAM160) $=0.70$
$H($ PAM250 $)=0.36$
from Altschul (1991)
H decreases with increasing PAM:
H increases with increasing BLOSUM

from Henikoff and Henikoff (1992)

BLOSUM and PAM matrices

(default in BLAST)
BLOSUM80
BLOSUM62
BLOSUM45

BIOS477/877 L10-24

26

28

Pairwise alignment summary

- Alignment score depends on:
\rightarrow Scoring matrix (match, mismatch, Ts/Tv, BLOSUM, PAM, etc.)
\rightarrow Gap penalty
\rightarrow Alignment method (e.g., global or local)
- Alignment scores cannot be compared directly \rightarrow if the scoring systems used are different
\rightarrow if sequences compared are different
(e.g., longer alignments tend to have higher scores)
- Alignment scores are used: for searching optimal alignments from the alignment matrix for a given pair of sequences based on a given scoring system

Selecting the Right Similarity-Scoring Matrix
William R. Pearson' Current Protocols in Bioinformatics (2013)

Figure 3.5.2 Comparison of a "shallow" (VTML 20) and "deep" (BLOSUM62) scoring matrix Both matrices are scaled in $1 / 2$-bits. For the small part of the matrices shown here, the VTMLD Both matrices are scaled in $1 / 2$-bits. For the small part of the matrices shown here, the VTML20 matrix produces an average 2.80 half-bit identity score, and an average -0.59 nonidentical score
(weighted by amino-acid abundance). In contrast, BLOSUM62 produces 1.86 for identities but only -0.06 for nonidentities. Thus, VTML20 targets shorter. higher-identity alianments, because it penalizes nonidentities much more strongly.

- Short alignments require shallow scoring matrices. Shallower scoring matrices (e.g., PAM20) are more effective when searching over shorter evolutionary distances.

27

Substitution matrices for specific proteins

 structural alignments

	BIOINFORMATICS	Vol. 27 ISME 2011, pages 115-12 doi:10.1093/bioinformatics/btr23

Environment specific substitution tables improve membrane protein alignment
Jamie R. Hill ${ }^{1}$, Sebastian Kelm ${ }^{1}$, Jiye Shi ${ }^{2,3}$ and Charlotte M. Deane ${ }^{1, *}$

More substitution matrices reviewed in Trivedi \& Nagarajaram (2020)

B1OS477/877 L10-29
29

Pairwise alignment summary

- Optimal alignments and biologically meaningful alignments may not be the same
- Depending on the scoring system, unreasonable alignments can become optimal
\rightarrow We need to choose a better (biologically reasonable) scoring system: level of divergence (scoring matrices), gap penalty (affine, etc.), algorithm (local, global, or semi-global)
\rightarrow Manual adjustment may be necessary
\rightarrow Test statistical significance of the alignment (is the alignment possible just by chance?)

32

Significance of Alignment Scores

$>P$-value: $P\left(S \mid \mathrm{H}_{0}\right.$ is true $)$
\rightarrow Need to be calculated from the test statistic S
\rightarrow Need to know the probability distribution of the test statistic S under H_{0}
Central Limit Theorem:

If the sample size is large enough,
the sampling distribution of
the mean of any independent,
random variables will be normal or
nearly normal.
(Example)
Experiment: 1000 coin tossing

- Count the number of heads - Repeat 1000 experiments (Expect to see 500 heads/experiment)

34

Significance of Alignment Scores

$>$ Hypothesis testing for sequence alignment
\rightarrow Two hypotheses

- Null-hypothesis
H_{0} : Two sequences are not related (random)
- Alternative hypothesis
H_{1} : Two sequences are related
\rightarrow Test statistic: alignment score (S)
\rightarrow Significance level is chosen a priori (e.g., 0.05)
$\rightarrow P$-value: $P\left(S \mid \mathrm{H}_{0}\right.$ is true)
Probability of getting the alignment score S, even if the two sequences are not related but randomly matched
\rightarrow If $\boldsymbol{P}<$ Significance level, reject \mathbf{H}_{0}
(The score should not be obtained just by aligning unrelated sequences)

Significance of Alignment Scores
$>P$-value: $P\left(S \mid \mathrm{H}_{0}\right.$ is true $)$
\rightarrow Need to be calculated from the test statistic S
\rightarrow Need to know the probability distribution of the test statistic S under H_{0}

35

Significance of Alignment Scores

$>P$-value: $P\left(S \mid \mathrm{H}_{0}\right.$ is true)
\rightarrow Need to be calculated from the test statistic S
\rightarrow Need to know the probability distribution of the test statistic S under H_{0}

Distribution of alignment scores follow
Extreme Value Distribution
(Gumbel distribution)
The probability distribution of
highest values in an
experiment
(e.g., optimal alignment scores)

38

Significance of Alignment Scores

$>$ How to calculate K and λ (in LALIGN and PRSS) \rightarrow estimated from an empirical probability distribution.

1) The second sequence is shuffiled many times. (simulates random sequences)
2) Smith-Waterman local alignment score is calculated from each alignment: $P\left(S \geq x \mid \mathbf{H}_{0}\right)$
3) The distribution is fitted to an extreme value distribution to obtain estimates of K and λ
4) P-value is estimated based on the K and λ, and the original alignment score $x: P(S \geq x) \approx K m n e^{-\lambda x}$

40

Significance of Alignment Scores

$P\left(S \geq x \mid \mathbf{H}_{0}\right)$: Probability of getting the alignment score $S \geq x$

Karlin-Altschul equation (Kartin and Altschul 1990) $P(S \geq x)=1-\exp \left[-K m n e^{-\lambda x}\right] \approx K m n e^{-\lambda x}$

EVD (Gumbel distribution) $P(S \geq x)=1-\exp \left[-e^{(x-\mu) / \beta}\right]$ $\lambda=1 / \beta, \mu=(\ln$ Kmn $) / \lambda$
K and λ : calculated from the empirical distribution of S based on a given scoring matrix and amino acid composition m and n : lengths of sequences aligned
\rightarrow Solved for ungapped local alignments \rightarrow Can be applied for gapped local alignments

$>\mathrm{E}$-value $=P\left(S \geq x \mid \mathrm{H}_{0}\right) \times N$,
where N is the number of sequences in the dataset
\rightarrow Expected number of sequences in the dataset to have a score $\geq x$ E-value $\neq P$-value

41

44

FASTA Web server by William Pearson

45

